
Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Exam Spring 2015

Embedded Systems
Prof. L. Thiele

Note:

The given solution is only a proposal. For correctness, completeness, or understandability, no
responsability is taken.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 1

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 1

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 1

Task 1 : Real-Time Scheduling (maximal 40 points)

1.1: Periodic Task Scheduling (maximal 20 points)

A harmonic periodic task set is a periodic task set where all periods of the tasks are pairwise
multiples or divisors of each other. Table 1 shows an example of a harmonic periodic task set.

Computation Time Period = Deadline
Task 1 1 2
Task 2 1 4
Task 3 2 8

Table 1: Harmonic periodic task set.

(a) (5 points) Schedule all tasks in Table 1 using Rate Monotonic (RM) scheduling. Draw
the RM schedule in Figure 1. Do all tasks meet their deadlines?

Sample solution:
The priorities are Task 1, then Task 2, then Task 3. All deadlines are met.

0 1 2 3 4 5 6 7 8

Time

Task 3

Task 2

Task 1

Figure 1: RM Schedule.

(b) (5 points) Schedule all tasks in Table 1 using Earliest Deadline First (EDF). In case of
equal deadlines, a task with lower index has higher priority. Draw the EDF schedule in
Figure 2. Is the EDF schedule the same as the RM schedule?

Sample solution:
RM and EDF Schedules are the same.

�



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 2

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 2

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 2

0 1 2 3 4 5 6 7 8

Time

Task 3

Task 2

Task 1

Figure 2: EDF Schedule.

(c) (10 points) Let Ci and Ti denote the computation time and the period of the periodic
task i, respectively. Assume that the relative deadline of each task is equal to its period.
Prove the following statement:

If a periodic task set with n tasks is harmonic (i.e., for any two tasks i and j, if

Ti ≥ Tj then
Ti

Tj
is a positive integer) and it holds that

∑

1≤i≤n

Ci

Ti
≤ 1, then all tasks

of the task set meet their deadline using the RM scheduling policy.

(Hint: Start by using the necessary and sufficient schedulability test of the RM scheduling
algorithm for the lowest priority task)

Sample solution:
Assume n tasks ordered in descending order of priority/rate. Sufficient RM feasibility condition
for lowest priority task is:

∑

1≤i≤n−1

(

Ci ·

⌈

Tn

Ti

⌉)

+ Cn ≤ Tn

Since tasks are harmonic

⌈

Tn

Ti

⌉

=
Tn

Ti

. Therefore:

∑

1≤i≤n−1

(

Ci ·
Tn

Ti · Tn

)

+
Cn

Tn
≤ 1 =⇒

∑

1≤i≤n

Ci

Ti
≤ 1

For task j, the necessary schedulability condition is:

∑

1≤i≤j−1

(

Ci ·
Tj

Ti · Tn

)

+
Cj

Tj
≤ 1 =⇒

∑

1≤i≤j

Ci

Ti
≤ 1



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 3

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 3

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 3

Furthermore:
∑

1≤i≤j

Ci

Ti
≤

∑

1≤i≤n

Ci

Ti
∀j ≤ n

Therefore,
∑

1≤i≤n

Ci

Ti
≤ 1 is a sufficient condition for RM feasibility of a harmonic periodic

task set.

1.2: Aperiodic Task Scheduling (maximal 7 points)

An application consists of periodic tasks and three aperiodic tasks. The total utilization of
periodic tasks is 0.6. Parameters of aperiodic tasks are given in Table 2.

Arrival Time Computation Time
J1 57 10.5
J2 60 37.2
J3 180 65.4

Table 2: Aperiodic Tasks.

Assume that the application is scheduled using EDF and all aperiodic tasks are scheduled
using a Total Bandwidth Server (TBS).

(a) (2 points) What is the maximum utilization of the TBS?

Sample solution:
0.4, as the maximum utilization is 1 and the utilization of periodic tasks is 0.6.

(b) (5 points) Determine the worst-case finish time of aperiodic tasks J1, J2, J3.

Sample solution:
Let Ai and Fi denote the arrival and finish time of aperiodic task Ji. In the worst-case,
aperiodic tasks finish at their deadlines.

F1 = 57 + 10.5/0.4 = 83.25

F2 = max(60, 83.25) + 37.2/0.4 = 176.25

F3 = max(180, 176.25) + 65.4/0.4 = 343.5

1.3: Resource Sharing (maximal 13 points)

Three tasks share a single resource protected by a critical section. The execution patterns
for the tasks are shown in Figure 3 and their release times are given in Table 3. The critical
sections are shaded in grey. P1, P2, and P3 represent the priorities of Task 1, Task 2, and
Task 3, respectively. Lower index tasks have higher priority; i.e., P1 > P2 > P3.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 4

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 4

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 4

Task 1

Task 2

Task 3
0 1 2 3 4 5

Time

Figure 3: Execution Patterns.

Release Time
Task 1 5
Task 2 3
Task 3 0

Table 3: Release Times.

(a) (5 points) Use the Priority Inheritance Protocol to schedule all tasks. Draw your schedule
in Figure 4.

Sample solution:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time

Task 3

Task 2

Task 1

Figure 4: Task Schedule.

(b) (3 points) Draw the priority level of Task 3 with respect to time in Figure 5.

Sample solution:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time

P3

P2

P1

Figure 5: Task 3 Priority.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 5

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 5

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 5

(c) (5 points) Explain with an example how a deadlock can occur when the Priority In-
heritance Protocol is used. (Note: This question is independent of questions 1.3a and
1.3b.)

Sample solution:
This occurs with nested critical sections. Consider following execution patterns:

Task 1

Task 2

0 1 2 3 4 5
Time

The release times of Task 1 and Task 2 are 1.5 and 0 respectively. At time 1, Task 2 acquires
lock to light gray critical section. Task 2 is preempted at time 1.5 by Task 1, which has higher
priority. Task 1 acquires lock to dark grey critical section at time 2.5. At time 3.5, Task 1
tries and fails to acquire lock to light grey critical section; since it is held by Task 2. Task 2’s
priority increases. It executes from time 3.5 - 4. At time 4, Task 2 tries and fails to acquire
dark grey critical section; since it is held by Task 1. Neither task can now make progress.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 6

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 6

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 6

Task 2 : Components and Communication (maximal 45 points)

2.1: Components (maximal 3 points)

(a) (1 point) Digital Signal Processors are especially suited for . . . (check one box).

Sample solution:
Control Dominated Systems � Data Dominated Systems ⊠

(b) (1 point) Briefly outline (in about two sentences) the main characteristics of Control
Dominated Systems and of Data Dominated Systems.

Sample solution:
Control Dominated Systems are reactive systems which are event driven. Data Domi-
nated Systems are streaming oriented with (mostly) periodic behavior.

(c) (1 point) State in two sentences, what are the main characteristics of FPGAs and ASICs?
What are the respective advantages and disadvantages for implementing an embedded
application?

Sample solution:
FPGAs are more flexible (reprogrammable); ASICs have a fixed application; ASICs are
harder to design, more expensive, but better fitting for specific application (lower energy
footprint, increased performance).

�

2.2: CSMA/CR (maximal 6 points)

Consider a wired communication system with Carrier Sense Multiple Access Collision Reso-
lution (CSMA/CR). The system is dominant high, meaning that a device sending a high (1)
has higher priority than a device sending a low (0). The communication packets consist of
[Device ID | Data] (most significant bit sent first); there are four devices A, B, C, and D,
with device IDs A = 12, B = 7, C = 13, and D = 14.

(a) (4 points) Sort the devices A, B, C, and D in descending order of priority. (Hint: start
with the device that has the highest priority in accessing the communication system.)

Sample solution:
Convert the Client IDs to binary representation and compare the binary strings. The
solution is: D,C,A,B

�



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 7

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 7

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 7

(b) (2 points) In the system described above, if the highest priority device is continuously
sending packets, the other devices are not be able to send any packets. This effect is
called starvation. Can starvation also happen when using CSMA/CD? Provide a short
motivation (about two sentences) for your answer.

Sample solution:
NO. Ethernet also uses timeslots, but in case of an collision, all clients which tried to
send wait for an arbitrary amount of time. Due to the random waiting time (back-off),
there is no prioritizing and therefore starvation cannot happen.

�

2.3: Token Ring (maximal 18 points)

Consider the token ring with four clients of Figure 6. The maximum transmission rate is
16Mbps†, communication proceeds in rounds, each round can last at most 5ms, and there
is one token. Within each round, the client that has the token performs the following steps:

1. If there is data ready, send a packet consisting of a 4 kb‡ header, followed by data.

2. If a packet was sent, wait until an ACK of 4 kb‡ is received.

3. Pass on the 8 kb‡ token to the next client.

Step 3 always takes place once per round; steps 1 and 2 only happen, once per round, if the
client has data to send. If data is too big to be sent in one round, it has to be partitioned

Client A Client B

Client D Client C

Token

Data

544 kb

Data

736 kb

Data

240 kb

Data

640 kb

Figure 6: Token ring status at time 0; the four clients need to send the specified data amounts†.

into multiple rounds. All clients receive messages without any delay and the processing time
for tokens, packets, and ACKs is negligible. At time 0, client A has the token; at the end of

†
1Mbps = 10

6 bps (bits per second), 1 kbps = 10
3 bps

‡
1Mb = 10

6 b (bits), 1 kb = 10
3 b



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 8

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 8

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 8

each round, the token is passed to the next client on the network, in a clockwise direction.
At time 0, every client has data ready to send; Figure 6 shows the data size.

(a) (12 points) Calculate the total time needed until all clients have sent all their packets
and the token is in possession of Client A again.

(b) (6 points) Calculate the aggregated data throughput of the network (in Mbps) for this
scenario.

Sample solution:

(a) Overall sending time:

• Sending the token takes 0.5 ms, the ACK takes 0.25 ms and the header causes
additional 0.25 ms that are needed for the transmission. Therefore the net time
that can be used to transmit a packet per round is 4 ms. This means a packet of
a maximum size of 64 kb can be transmitted.

• Calculate how many rounds are needed per client. The maximum number is 12
rounds, needed by Client D. This means the token has to travel 12 rounds till all
the packets are fully sent and the token is back at Client A.

• The token needs 0.5 ms to be sent. Therefore, in order to complete a full round
it takes 2 ms → 24 ms for 12 rounds.

• In total 35 packets need to be sent, which causes an additional overhead of 35 ∗
0.5 = 17.5 ms.

• Total Time =
∑

(Time needed for packet sending)+ Token Time + Packet Over-
head = 176.5 ms

(b)
∑

(Size of Packet)
Total Time

= 12.238 Mbps

�

2.4: Bluetooth (maximal 18 points)

A Bluetooth connection is defined with the following characteristics:

• Slaves can only send packets directly after they have received a packet from the master.

• One slot has a duration of 625µs.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 9

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 9

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 9

• Each packet contains a 126 bit header, a 24 bit CRC, and the maximum integer number
of bytes‡ of payload (user data) to fill up the rest of the packet.

• It is possible to send packets with the length of 1 slot, 3 slots or 5 slots.

• Only a maximum of 366µs of the first slot can be used for packet transmission.

• The data rate is 1 Mbps†

(a) (10 points) Determine the channel throughput (only transmitted user data, excluding
header, CRC, etc.) for the packet lengths given in Table 4 and the Bluetooth connection
defined above. Please show all your calculations.

Sample solution:

• Packet length in slave direction 1: The packet consists of 366 bits of which 126
bits are reserved for the MAC header and another 3 bytes are used for the higher
layers and the CRC. The number of data bits that can be sent in one slot thus is
366−126−3∗8 = 216. Since, master and slave send data in alternate slots, and the
length of one slot is 625µs. The throughput in either direction is 216

2∗0.625 = 172.8
kbps.

• Packet length in slave direction 3: DH3 packet structure allows sending of 183
bytes (1464 bits), and spreads across 3 625µs slots. After every three 625µs slots
used by the slave, the master uses one 625µs for polling. Thus, the throughput
in the slave direction is 1464

4∗0.625 = 585.6 kbps. The master continues to send 216
bits per slot, every 4th slot with a throughput of 216

4∗0.625 = 86.4 kbps.

• Packet length in slave direction 5: DH5 packet type allows sending 339 bytes (2712
bits) in five 625µs slots. Thus, the number of data bits sent is 2712

6∗0.625 = 723.2.
The argument for the throughput in the master direction is same as above, which
leads to a throughput of 216

6∗0.625 = 57.6 kbps.

Packet Length in Slots Throughput in kbps (1 kbps = 1000 bps)
To Slave To Master To Slave To Master

1 1 172.8 172.8
1 3 86.4 585.6
1 5 57.6 723.2

Table 4: Packet lengths and channel throughput calculation.

‡
1 byte = 8 bits

†
1 Mbps = 10

6 bits per second



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 10

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 10

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 10



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 11

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 11

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 11

(b) (2 points) Why is the first 625µs slot not entirely used for packet transmission? Answer
in one short sentence.

Sample solution:
The spare time needs to be used to prepare the hardware for the next slot because the
frequency is changed.

(c) (6 points) Which two connection types are defined in the Bluetooth Standard, and what
are those types used for? Please state in two short sentences.

Sample solution:

• Synchronous Connection-Oriented - Point-to-Point Full Duplex in reserved slots -
regular data transmission (big data)

• Asynchronous Connection-Less - Asynchronous Service without reserved slots -
spontaneous transmissions/irregular



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 12

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 12

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 12

Task 3 : Low Power Design (maximal 35 points)

3.1: Energy Minimization (maximal 18 points)

Consider a heterogeneous dual-core platform consisting of processors π1 and π2. A task of 107

clock cycles is going to be executed on this platform. The workload can be freely partitioned
between the two processors to run in parallel. In addition, we make the following assumptions:

• The platform has two operation modes: active and sleep.

• In active mode, the frequency, dynamic and leakage power consumptions of πi are
denoted as fi, Pdi and Pli, respectively. We assume they are constant: f1 = 1 MHz,
Pd1 = 3 mW, Pl1 = 0 mW, f2 = 4 MHz, Pd2 = 10 mW and Pl2 = 6 mW. We assume
dynamic power is only dissipated when a processor is processing tasks, while leakage
power is always dissipated in active mode.

• In sleep mode, the processor frequency is zero and no power is dissipated, neither
dynamic nor leakage. The switching overheads in terms of time and energy can be
neglected.

(a) (10 Points) Assume that a processor can switch to sleep mode whenever it is idle, i.e.,
when it is not processing tasks. What is the optimal (i.e., minimal) energy consumption
of the system?

Sample solution:
We can first derive the energy consumption when executing a single clock cycle:

Esinglecycle,i = tsinglecycle,i · Poverall,i =
1

fi
∗ (Pdi + Pli)

- For π1: Esinglecycle,1 =
(Pd1+Pl1)

f1 = 3 nJ. - For π2: Esinglecycle,2 =
(Pd2+Pl2)

f2 = 4 nJ.

Processor π1 is more energy-efficient. Hence, the solution is to let the task run com-
pletely on π1 for 107

106Hz
= 10 s. Then put π1 into sleep mode. π2 is not utilized and

resides in sleep mode. Total consumed energy is 10 s× (Pd1 + Pl1) = 30mJ

�

(b) (8 Points) Assume that the platform can only switch to sleep mode if both processors are
idle. What is the optimal (i.e., minimal) energy consumption of the system now? (Hint:
assume that x and y number of clock cycles are assigned to π1 and π2, respectively.
You can formulate and solve the problem with respect to x and y, or find directly the
relation between x and y.)



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 13

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 13

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 13

Sample solution:

min
x

1MHz
× 3 mW+

y

4MHz
× 10 mW+max{

x

1MHz
,

y

4MHz
} × 6mW

s.t. x+ y = 107, {x, y} ∈ N
2
0

Now we can distinguish between two cases x ≥ y
4 or x < y

4 . We find the optimal
solution exists when x = 2×106 and y = 8×106 (both are active for the same amount
of time), and the min. energy is 38 mJ.

�



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 14

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 14

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 14

3.2: Energy Harversting (maximal 17 points)

Consider a processor with negligible leakage power dissipation and dynamic power dissipation

specified as Pdynamic =
(

f
MHz

)3
mW, where f is the frequency in Hz. The processor is put

into a zero power state whenever it is idle. The set of hard real-time tasks of Table 5 needs
to be executed on the processor:

Tasks T1 T2 T3

Period (ms) 6 4 12
Relative Deadline (ms) 6 4 12

Cycles (x103) 2 1 2

Table 5: Characteristics of the hard real-time tasks to be executed.

All tasks initially arrive at time zero. The system has a battery with initial energy C microjoule
(µJ) and it is replenished by a constant power source of A microjoule per millisecond (µJ/ms).

(a) (9 Points) Assume C = 6 µJ, A = 0.5 µJ
ms

and f = 1 MHz. Apply EDF scheduling and
draw in Figure 7 the battery energy during the time interval [0 ms, 12 ms].

Sample solution:
Execution times of T1, T2 and T3 are 2 ms, 1 ms and 2 ms, respectively. Applying EDF
scheduling, the processor is busy in [0 ms, 9 ms].

0
1
2
3
4
5
6
7
8
9
10

0 1 2 3 4 5 6 7 8 9 10 11 12

(9,1.5)

Time (ms)

Energy (µJ)

Figure 7: Battery energy diagram.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 15

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 15

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 15

�

(b) (8 Points) Assume the battery does not run out of charge. Prove or disprove the following
statement:

To have the maximum possible battery energy after each hyper-period (12 ms), all
tasks should run at the same frequency.

(Hint: providing main arguments or formal proof are both accepted.)

Sample solution:
Method 1:
Applying the statement in the slides, (1) run on a constant frequency, (2) fully utilize
the processor, (3) above two minimizes energy consumption for each hyper-period, (4)
remaining energy is maximized.

Method 2:
For (1) and (2), applying YDS will also lead to the same conclusion.

�



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 16

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 16

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 16

Task 4 : Architecture Synthesis (maximal 60 points)

4.1: Architecture Synthesis Fundamentals (maximal 12 points)

Mark the following statements as true or false and provide a brief explanation (1 sentence).
Sample solution:

• (1 point) The different paths in a dependence graph represent branches in the control
flow of a program.

� True ⊠ False
Explanation: They represent a partial order among operations of the program. They
expose the degree of parallelism of the program operations.

• (1 point) In a marked graph, a node with more than one input edge is activated (it can
fire) if there is a token on at least one of its input edges.

� True ⊠ False
Explanation: It is activated if there is at least one token on all input edges.

• (1 point) As-Soon-As-Possible (ASAP) is an exact scheduling algorithm for minimizing
the latency of an operation set, under no resource constraints.

⊠ True � False
Explanation: It is no heuristic approach. It guarantees minimal latency when there are
no resource constraints.

• (1 point) Under resource constraints, the LIST algorithm returns a schedule with guar-
anteed minimal latency.

� True ⊠ False
Explanation: LIST is a heuristic approach. ILP would return an optimal solution.

• (2 points) The LIST scheduling algorithm can be applied to pipelined implementations
with limited resources.

⊠ True � False
Explanation: It can be modified to account for resources that are still occupied by
operations from previous iterations.

• (2 points) When loop folding is enabled in a functional pipeline, operations are scheduled
such that their starting and finishing times are always in the same physical iteration.

� True ⊠ False
Explanation: With loop folding, the starting and finishing time of an operation can be
in different physical iterations.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 17

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 17

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 17

• (2 points) Consider the sequence graph of Fig.8(a) and the resource graphs of Fig.8(b).
A unit of each resource type (ADD or MUL) costs 0.5 SFr. Given these, there is exactly
one resource allocation that minimizes both the schedule latency and implementation
cost.

⊠ True � False
Explanation: In this case, the Pareto-front consists of only 1 solution (latency=3,
cost=1).

• (2 points) For the weighted constraint graph of Fig.8(c), there is a feasible schedule
which fulfills all timing constraints.

� True ⊠ False
Explanation: V1 → V5 → V2 :

∑

= +1 (positive cycle).

�

nop

+

*

+

v1 v2

v3

v5

v0

*

v6

-

nop

v4

(a) Sequence
Graph.

v1

v3

ADD

1

1

1

v2

v5

MUL

1

1

+

-

+

*

*
v4

(b) Resource Graph.

nop

-2

-1
1

-1

-1

1

-1

3 -1 1

-1

v0

v6

v2

v1

v3

v4

v5

nop

(c) Weighted Constraint Graph.

Figure 8: Architecture Synthesis Fundamentals



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 18

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 18

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 18

4.2: Scheduling with Resource Constraints (maximal 25 points)

Determine a resource allocation and a schedule for implementing the following functions:

int func (int a, int b, int c, int d, int e, int f, int g, int h){
int x = (a ∗1 b) +3 (c ∗2 d) +4 2;
int y1 = (e +5 f);
int y2 = (g +6 h);
int y = mod (y1, y2);
int z = (x ∗8 y);
return z;

}

int mod (int arg1, int arg2){
int res = arg1 %7 arg2;
return res;

}

Notation ∗1 indicates that the index of this multiplication is 1 (node v1 in a sequence graph).

Additions (+) need 1 cycle to be executed on an adder, ADD. Multiplications (∗) and modulo
operations (%) need 2 cycles on a multiplier, MUL. Calling a function and returning take 0
time.

(a) (6 points) Provide the hierarchical sequence graph GS = (VS , ES) for function func.
Denote each node as vi, where i is the index of the corresponding operation in the code.

Sample solution:
See Fig.9.

�

(b) (6 points) Apply the ASAP and ALAP algorithms to compute the earliest (li) and latest
(hi) starting times of all operations vi ∈ VS , i ∈ {1, · · · , 8}. For ALAP, assume the
maximum latency L̄ = 7. Fill in the starting times in Table 6.

Sample solution:
See Table 6.

�



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 19

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 19

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 19

*

nop

nop

+

+ +

+

v1 v2

v3

v4

v5 v6

v7

v8

v0

*

*
v9

nop

CALL mod

%

nop

Figure 9: Sequence graph GS

li(ASAP ) hi(ALAP )
v1 0 1
v2 0 1
v3 2 3
v4 3 4
v5 0 2
v6 0 2
v7 1 3
v8 4 5

Table 6: Starting time bounds given no resource constraints

(c) (13 points) An Integer Linear Program (ILP) needs to be formulated for the problem of
area minimization of the implementation, under latency constraints. On a given chip,
an adder (ADD) requires s(ADD) = 0.15mm2 and a multiplier s(MUL) = 0.35mm2,
respectively. We seek a resource allocation and a feasible schedule with latency not
greater than Lmax = 8.

v1 v2 v3 v4 v5 v6 v7 v8
li 0 0 2 4 0 0 2 6
hi 2 2 4 5 2 2 4 6

Table 7: Starting time bounds for operations v1, . . ., v8



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 20

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 20

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 20

For the ILP formulation, the binary variables xi,t ∈ {0, 1} are defined ∀vi ∈ VS and
∀t : li ≤ t ≤ hi. Please consider the li, hi values in Table 7 for this question (not the
values from (b)). xi,t = 1 if operation vi starts executing at time t in a schedule or
xi,t = 0, otherwise. Function τ : VS → N can be used to denote the starting time of
an operation vi ∈ VS and function α : VR → N

+ to denote the allocation of resource
instances, where VR = {ADD,MUL}. Given the above notations:

• (4 points) Express the objective function of the ILP.

Sample solution:
minimize: s(ADD) · α(ADD) + s(MUL) · α(MUL)

�

• (2 points) Express the latency constraint.

Sample solution:
τ(v9)− τ(v0) ≤ 8

�

• (2 points) Define τ(v1) as a function of x1,t, where l1 ≤ t ≤ h1.

Sample solution:
τ(v1) = x1,1 + 2 · x1,2

�

• (5 points) Express all resource constraints at time t = 2 (without
∑

formulation).

Sample solution:
t = 2:

x1,1 + x1,2 + x2,1 + x2,2 + x7,2 ≤ α(MUL)
x3,2 + x5,2 + x6,2 ≤ α(ADD)



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 21

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 21

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 21

�

4.3: Iterative Algorithms (maximal 23 points)

Consider the marked graph GM in Figure 10. The nodes labelled with +, *, x2 represent addi-
tion, multiplication of two input values, and multiplication of an input value by 2, respectively.
The edge f3 → f2 has m initial tokens, and the edge f3 → f1 has n initial tokens, where
m > n. The input u generates a sequence of numbers, with u(k) being the k-th number.

+ * x�u v

...

...

n tokens wi�� i�i�i��

v����� �1, 			, sn

m tok��� ei�� i�i�i��

v����� 
1, 			, 
m

Figure 10: Marked graph GM

(a) (6 points) Determine the output value v(k) as a function of the input values for k > m.

Sample solution:
v(k) = 2 · (u(k) + v(k − n) · v(k −m)

�

(b) (6 points) Assume m = 3 and n = 1. Illustrate the data dependencies among the
operations with an equivalent extended sequence graph GS = (VS , ES , d), where VS =
{f0, · · · , f4} and dij denotes the index displacement for each (fi, fj) ∈ ES .

Sample solution:
See Figure 11.

+ * ��u v

 

 


3

1

Figure 11: Extended sequence graph GS



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 22

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 22

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2015 Embedded Systems– Sample solution Page 22

�

(c) (6 points) An addition needs 1 time unit and a multiplication needs 2 time units to
execute. Suppose that we implement the algorithm using functional pipelining. Express
all data dependency constraints in GS in the form:

τ(fj)− τ(fi) ≥ w(fi)− dij · P, ∀(fi, fj) ∈ ES, (1)

where P is the iteration interval of the pipeline and w(fi) the execution time of fi.

Sample solution:
Data dependency constraints:

τ(f1) ≥ 0
τ(f2)− τ(f1) ≥ 1 (1)
τ(f3)− τ(f2) ≥ 2 (2)
τ(f4)− τ(f3) ≥ 2 (3)
τ(f1)− τ(f3) ≥ 2− P (4)
τ(f2)− τ(f3) ≥ 2− 3 · P (5)

�

(d) (5 points) Assuming unlimited resources, what is the highest throughput 1
P

that can
be achieved with functional pipelining?

Sample solution:
Based on the previous system of inequalities:
(1)+(2)+(4) =⇒ 0 ≥ 5− P =⇒ P ≥ 5
(2)+(5) =⇒ 0 ≥ 4− 3P =⇒ P ≥ 4

3
Hence, Pmin = 5 and the max. feasible throughput is 1/5.

�


