
Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Exam Spring 2016

Embedded Systems
Prof. L. Thiele

Note:

The given solution is only a proposal. For correctness, completeness, or understandability, no
responsability is taken.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 1

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 1

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 1

Task 1 : Real-Time Scheduling (maximal 42 points)

1.1: Fixed-Priority Scheduling (maximal 17 points)

A periodic task-set as shown in Table 1 is to be scheduled on a processor. The first release
of each task occurs at time zero.

Task Computation Time Period Deadline
τ1 2 5 4
τ2 1 4 3
τ3 2 8 8

Table 1: A periodic task-set

(a) (3 points) Construct the scheduling diagram under Deadline Monotonic (DM) preemp-
tive scheduling.

Sample solution:

0 1 2 3 4 5 6 7 8
Time

τ3

τ2

τ1

Figure 1: Preemptive DM schedule

The priorities are τ2 > τ1 > τ3.

(b) (2 points) Construct the scheduling diagram under DM non-preemptive scheduling (i.e.
once started, any task has to run to completion before yielding the processor to the
other tasks).

Sample solution:

0 1 2 3 4 5 6 7 8
Time

τ3

τ2

τ1

Figure 2: Non-preemptive DM schedule

The priorities are the same as before.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 2

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 2

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 2

(c) (9 points) Assume preemptive scheduling and DM priority assignment.

(1) (3 points) Does the task-set pass the sufficient schedulability test?

Sample solution: No, it does not, as the following does not hold:

2/4 + 1/3 + 2/8 ≤ 3(21/3 − 1)

1.083 ≤ 0.780
(1)

(2) (6 points) Does the task-set pass the necessary and sufficient schedulability test?

Sample solution: Yes it does, as every task meets its deadline:

τ2: R2 = 1.

τ1: R1 = 2 + ⌈R1

4
⌉ × 1, R1 = 3.

τ3: R3 = 2 + ⌈R3

5
⌉ × 2 + ⌈R3

4
⌉ × 1, R3 = 8.

(d) (3 points) Assume non-preemptive fixed-priority scheduling. In the worst-case, how many
lower priority jobs can delay the execution of one job? Justify your answer.

Sample solution:

At most one lower priority job.

We can prove this by contradiction. Suppose there are more than one lower priority
jobs that could interfere with the execution of one job; then, when the jobs switch,
the system would choose instead of the rest of the lower priority jobs, the job under
analysis. Contradiction.

1.2: EDF Scheduling (maximal 16 points)

A periodic task-set as shown in Table 2 is to be scheduled on a preemptive processor under
Earliest Deadline First (EDF). For a periodic task τi, we denote its computation time with
Ci, period with Ti, and relative deadline with Di. We assume that the first release of each
task occurs at time zero.

Task Computation Time Period Deadline
τ1 1 4 3
τ2 1 2 2
τ3 2 8 8

Table 2: A periodic task-set

(a) (2 points) Construct the preemptive EDF scheduling diagram.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 3

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 3

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 3

Sample solution: Notice that over interval [6,8], the order can be swapped as two jobs
have the same deadline.

0 1 2 3 4 5 6 7 8
Time

τ3

τ2

τ1

Figure 3: EDF schedule

(b) (2 points) A periodic task-set with constrained deadlines (i.e. Di ≤ Ti,∀τi) is schedu-

lable if
∑

i

Ci

Di
≤ 1. Does the task-set pass this sufficient schedulability test?

Sample solution: It does not, as 1/3 + 1/2 + 2/8 > 1.

(c) (12 points) The demand bound (db) of a periodic task τi for any time interval of length
∆ is defined as

db(τi,∆) = max

{⌊

∆−Di

Ti

⌋

+ 1, 0

}

· Ci.

It is known that a set of such periodic tasks {τi | 1 ≤ i ≤ n} (with arbitrary first release
times) is schedulable on a preemptive processor under EDF if and only if

∀∆ ≥ 0,
n
∑

i=1

db(τi,∆) ≤ ∆.

(1) (9 points) Plot the total system db as a function of ∆ for the task-set in Table 2.

Based on the above demand bound test, is the system schedulable under EDF?

Sample solution: In [0,8], the demand bound test condition is satisfied. After that, the
system just repeats (with a hyper-period of 8). Hence, the system is schedulable.

Note, in the Figure we have three lines to represent individual db’s of tasks, the thin
red lines represents the sum of these or total db, and the thick red line is the supply.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 4

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 4

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 4

Sample solution:

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9
∆

db

supply
total db

Figure 4: System db

(2) (3 points) Explain in a few sentences why passing the demand bound test is a
necessary schedulability condition.
Hint: You can think about what db represents.

Sample solution: For an interval length of ∆, the demand bound function of a task
represents the maximum workload that must be finished in any interval of length ∆.
Therefore, if the demand bound test is not passed, no scheduling algorithm can meet
all task deadlines.

1.3: Server Scheduling (maximal 9 points)

A periodic task-set as shown in Table 3 is to be scheduled on a preemptive processor. In
addition, a job J with unknown arrival time and computation time of 5 units needs to be
scheduled on the processor.

(a) (3 points) Assume Rate Monotonic (RM) scheduling for the periodic tasks, while job
J is served by a polling server with period TS = 3 and computation time CS = 0.5.
What is the smallest relative deadline that J can always satisfy?



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 5

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 5

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 5

Task Computation Time Period Deadline
τ1 1 4 4
τ2 2 5 5

Table 3: A periodic task-set

Sample solution: RJ = (1 + ⌈ 5
0.5⌉)× 3 = 33.

(b) (6 points) Assume EDF scheduling for the periodic tasks, while job J is served by a
total bandwidth server. What is the smallest relative deadline that J can always satisfy
such that the periodic tasks are also schedulable?

Sample solution: RJ = 0 + 5
Userver

≥ 5
1−1/4−2/5 = 14.3.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 6

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 6

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 6

Task 2 : Communication & Low Power Design (maximal 37 points)

2.1: TDMA & Energy Harvesting (maximal 11 points)

Four sensor nodes (S1, S2, S3, S4) transmit messages to a host H over a wireless network
with the topology depicted in Figure 5.

H

S1 S2 S3 S4

Figure 5: Network Topology

Communication occurs during frames that repeat periodically. Each frame is composed of four
slots of equal duration Tslot, with one slot for each sensor. Sensors transmit messages during
slots according to a Time Division Multiple Access (TDMA) protocol. The radio of the host
and each sensor supports a data rate within the range of [1,10] Mbps (106 bits per second),
and the propagation delay is negligible.

(a) (5 points) Assume each sensor Si is assigned a slot duration Tslot = 50 ms. Each sensor
makes periodically available 125 kb (1 kb = 103 bits) with a period of 250 ms. What
is the minimum data rate given that the maximum allowed latency is 200 ms?

Definition: Latency is the time between making data available for transmission at the
sensor and receiving the data at the host.

Sample solution:

Since Tslot is already set, a maximum latency of 200 ms implies that each node transmits
their 125 kb during one frame. The minimum data rate is then D = 125kb/50ms =
2.5Mbps.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 7

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 7

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 7

(b) (6 points) Consider the TDMA schedule shown in Figure 6, which includes additional
time Tprocessing for the host to process the received messages. During Tprocessing, the
host must compute for 105 cycles. The host processor can execute at a clock frequency
F from the discrete set {5, 10, 20} MHz. Assume that frequency is proportional to volt-
age (F ∼ Vdd) and the power P satisfies P ∼ V 2

dd ∗ F .

¾½

Tslot

Ö Ñ ½ Ö Ñ ¾

t
S 4S 3S 2S 1

Frame 1

Tframe

Tprocessing
¾½

Ö Ñ ½ Ö Ñ ¾

S 4S 3S 2S 1

Tprocessing

Frame 2

Figure 6: TDMA schedule including host processing time.

If Tslot = 10 ms and Tframe ≤ 50 ms, find the host frequency which minimizes the
energy required for processing. Justify your answer.

Sample solution:

Given the above inequality, it follows that Tprocessing ≤ 10 ms. For frequencies F =
{5M, 10M, 20M}, their processing time is Tprocessing = {20ms, 10ms, 5ms}, respec-
tively. Hence, F = 5M is not a valid frequency.

The energy consumed when F=10M is E10M ∼ 10MHz∗V 2
dd,10M ∗10ms= 105∗V 2

dd,10M .

The energy consumed when F=20M is E20M ∼ 20MHz∗V 2
dd,20M ∗ 5ms= 105 ∗V 2

dd,20M .

Given that F ∼ Vdd, it follows that Vdd,10M < Vdd,20M . Consequently, F=10M consumes
the least energy.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 8

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 8

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 8

2.2: Dynamic Voltage Scaling (maximal 14 points)

Consider a processor whose dynamic power dissipation when running with a clock frequency

f in Hz, is given by Pdynamic =
(

f
106Hz

)3

mW. It is assumed that the processor has negligible

static and leakage power dissipation.

The processor must execute the following task-set:

Task τ1 τ2 τ3
Arrival Time (ms) 0 2 4

Absolute Deadline (ms) 6 5 9
Cycles (x103) 3 9 3

Table 4: Task set.

Assume the clock frequency of the processor can be selected from a continuous range of
frequencies. Apply the online YDS algorithm and plot the schedule in Figure 7. How much
energy does the processor consume to complete all tasks?

Sample solution:

Apply the online YDS algorithm using intensity function G[z1, z2] =

∑

i∈V ′

ci

z2−z1
.

Step 1:
τ1 : G[0, 6] = 3/6
Schedule task τ1 @ 0.5 MHz

Step 2:
τ2 : G[2, 5] = 9/3
τ1 : G[2, 6] = 11/4
Schedule task τ2 @ 3 MHz

Step 3:
τ2 : G[4, 5] = 3/1
τ1 : G[4, 6] = 5/2
τ3 : G[4, 9] = 8/5
Schedule task τ2 @ 3 MHz

Step 4:
τ1 : G[5, 6] = 2/1



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 9

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 9

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 9

Schedule task τ1 @ 2 MHz

Step 5:
τ3 : G[6, 9] = 3/3
Schedule task τ3 @ 1 MHz

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
Time (ms)

F
re
q
u
en
cy

(M
H
z)

τ1

τ2
τ1

τ3

Figure 7: Online YDS Schedule.

To calculate the energy, different methods can be used. One is to convert the above figure
to power, given the Pdynamic equation, and calculate the area underneath the curve. Since
Pavg = 0.125 ∗ (2/9) + 27 ∗ (3/9) + 8 ∗ (1/9) + 1 ∗ (3/9) = 10.25mW , it follows that
Econsumed = Pavg ∗ T = 10.25mW ∗ 9ms = 92.25uJ .

�



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 10

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 10

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 10

2.3: Dynamic Power Management (maximal 12 points)

Consider a processor supporting two modes: IDLE and ACTIVE. The power dissipation is
Pidle = 5 mW and Pactive = 50 mW, respectively. The processor must schedule the following
periodic task-set:

Task τ1 τ2 τ3
Period (ms) 10 10 10

Arrival of First Task (ms) 0 3 5
Relative Deadline (ms) 3 7 10
Execution Time (ms) 1 1 2

Table 5: Periodic task-set.

Definition: A workload-conserving scheduler always executes a task when the ready queue is
not empty.

Definition: The average power dissipation between time 0 and T is given by Pavg = 1
T

∫ T
0
P (τ)dτ .

(a) (6 points) Assuming zero energy and time overhead between IDLE and ACTIVE mode,
plot the power dissipation during two periods for a workload-conserving schedule using
Figure 8. The processor is in IDLE mode at time 0. What is the average power Pavg

between time 0 ms and 20 ms?

Sample solution:

We can calculate the average power of one period by taking into account the time in
each system mode. Since the schedule in both periods are the same, the average of two
periods is the same as the average of one: Pavg = Pactive∗4/10+Pidle∗6/10 = 23mW .



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 11

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 11

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (ms)

P
ow

er
(m

W
)

0

10

20

30

40

50

Figure 8: Solution for workload-conserving scheduler.

�



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 12

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 12

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 12

(b) (6 points) Now assume that there is a third mode called SLEEP, with Psleep = 0 mW.
The system modes and allowed transitions, along with their energy and time overheads,
are shown in Figure 9. Power dissipation during a mode transition is constant. A
transition to ACTIVE mode occurs when there is at least one task in the ready queue.
Plot the power dissipation during two periods for an energy-minimizing, workload-
conserving schedule using Figure 10. The processor is in SLEEP mode at time 0. What
is the average power Pavg between time 0 ms and 20 ms?

SLEEP ACTIVE IDLE

7.5 μJ, 1 ms

0 μJ, 0 ms

0 μJ, 0 ms

0 μJ, 0 ms

Figure 9: System modes and allowed transitions.

Sample solution:

First, we have to calculate the break-even time tbev ≥ 7.5µJ/5mW = 1.5ms. Since
the gaps between tasks τ1 and τ2 are only 1ms long, the system should stay in IDLE
during these gaps. After task τ3, the 3ms gap is greater the break-even time, meaning
the system should enter SLEEP mode. Lastly, the average power during the switch from
SLEEP to ACTIVE, Pswitch = Eswitch/tswitch = 7.5mW . Now, we can calculate the
average power of one period by taking into account the time in each system mode. Since
the schedule in both periods are the same, the average of two periods is the same as the
average of one: Pavg = Pactive ∗ 4/10 +Pswitch ∗ 1/10 + Pidle ∗ 2/10 + Psleep ∗ 3/10 =
21.75mW .

�



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 13

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 13

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (ms)

P
ow

er
(m

W
)

0

10

20

30

40

50

Figure 10: Power dissipation using an energy-minimizing workload-conserving scheduler



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 14

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 14

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 14

Task 3 : Architecture Synthesis (maximal 41 points)

3.1: Architecture Synthesis Fundamentals (maximal 7 points)

Mark the following statements as true or false and provide a one sentence explanation.

• (1 point) In a sequence graph, a LOOP node is considered an operation or task node.

Sample solution:

� True ⊠ False
Explanation: Sequence graphs have operation or tasks nodes, and hierarchy nodes. A
LOOP node is the latter.

�

• (1 point) ALAP (as late as possible) scheduling provides a schedule with maximal la-
tency, when limited resources are available.

Sample solution:

� True ⊠ False
Explanation: ALAP scheduling produces minimal latency, assuming unlimited resources.

�

• (1 point) A dependence graph does not specify a schedule.

Sample solution:

⊠ True � False
Explanation: A dependence graph specifies partial order between operations, not the
schedule.

�

• (1 point) In a marked graph, tokens on edges can be interpreted as data stored in a
LIFO (last in, first out) queue.

Sample solution:

� True ⊠ False
Explanation: Tokens correspond to data stored in FIFO queues.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 15

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 15

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 15

�

• (1 point) A marked graph can be implemented in hardware.

Sample solution:

⊠ True � False
Explanation: There are different possibilities of marked graphs implementation, both in
hardware and software.

�

• (1 point) In List scheduling, node priorities change as the algorithm executes through
different time steps.

Sample solution:

� True ⊠ False
Explanation: In list scheduling, priorities are determined a priori and do not change
during execution.

�

• (1 point) For a given problem, a heuristic algorithm guarantees optimal solutions.

Sample solution:

� True ⊠ False
Explanation: Heuristics are non-optimal algorithms.

�



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 16

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 16

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 16

3.2: List Scheduling (maximal 13 points)

Consider the sequence graph in Figure 11, and answer the following questions.

nop
0

+
1

×
2

×
3

+
4

+
5

×
6

+
7

+
8

+
9

×
10

+
11

+
12

nop
13

Figure 11: A sequence graph

(a) (10 Points) Suppose that one multiplier and two adders are available as resources.
Addition and multiplication take one and two time units on the adders (r1, r2) and
multiplier (r3), respectively. The first operation starts at t = 0 and the top node (’nop’)
is executed in zero time. The priority is assigned for each operation as the maximal

distance to the bottom node (’nop’). The maximal distance is defined as the number of
edges on the longest path between two nodes. Fill out Table 6 using the List scheduling
algorithm. For a timestep t: Ut,k denotes the set of operations that are ready to be
scheduled on resource rk. St,k denotes the set of operations that start at time t on
resource rk. Tt,k denotes the set of operations in execution at time t on resource rk.



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 17

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 17

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 17

t k Ut,k Tt,k St,k

0 r1, r2 ν1, ν4, ν5 — ν1, ν5
r3 ν2, ν3 — ν2

1 r1, r2 ν4, ν9 — ν4, ν9
r3 ν3 ν2 —

2 r1, r2 ν11 — ν11
r3 ν3, ν6 — ν6

3 r1, r2 — — —
r3 ν3 ν6 —

4 r1, r2 ν8 — ν8
r3 ν3 — ν3

5 r1, r2 — — —
r3 ν10 ν3 —

6 r1, r2 ν7 — ν7
r3 ν10 — ν10

7 r1, r2 — — —
r3 — ν10 —

8 r1, r2 ν12 — ν12
r3 — — —

Table 6: Table for Task 3.2. (a)



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 18

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 18

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 18

(b) (1 Point) What is the corresponding latency?

Sample solution:

L = 9.

�

(c) (2 Points) If it is allowed to add a single additional hardware unit, an adder or a
multiplier, which resource should be added to reduce the latency? Explain why.

Sample solution:

The critical path (2 → 6 → 8 → 10 → 12) bounds the minimum latency. At time
t = 5 the lack of multipliers introduces a delay. An additional multiplier would avoid
this delay, while an additional adder would not reduce the latency.

�



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 19

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 19

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 19

3.3: Timing Constraints (maximal 12 points)

Consider the sequence graph and execution times w(fi) of tasks fi in Figure 12, answer the
following questions.

nop

f1 f2 f3

f4 f5 f6 f7

f8 f9

f10 f11

nop

Task w(fi)
f1 1
f2 5
f3 1
f4 2
f5 2
f6 2
f7 4
f8 3
f9 2
f10 3
f11 2

Figure 12: A sequence graph and execution times

(a) (2 Points) Complete the Weighted Constraints Graph GC = (VC , EC , d) by annotating
edges with numbers in Figure 12.

Sample solution:

See Figure 13.

�

(b) (5 Points) Formulate the following constraints using τ(fi) as the start time of task fi.
Add appropriate annotated edges to the constraint graph GC in Figure 12.

i) f2 should start no earlier than 5 time units after the start of f3.

Sample solution:

τ(f2) ≥ τ(f3) + 5 ⇒ τ(f2)− τ(f3) ≥ 5



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 20

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 20

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 20

�

ii) f4 should finish no earlier than 3 time units after the start of f5.

Sample solution:

τ(f4) + 2 ≥ τ(f5) + 3 ⇒ τ(f4)− τ(f5) ≥ 1

�

iii) f9 should start no later than 8 time units after the finish of f5.

Sample solution:

τ(f9) ≤ τ(f5) + 2 + 8 ⇒ τ(f5)− τ(f9) ≥ −10

�

iv) f10 should start exactly 3 time units after the start of f11.

Sample solution:

τ(f10) = τ(f11) + 3 ⇒ τ(f11)− τ(f10) ≥ −3 ∧ τ(f10)− τ(f11) ≥ 3

�

v) f10 should finish no later than 14 time units after the finish of f3.

Sample solution:

τ(f10) + 3 ≤ τ(f3) + 1 + 14 ⇒ τ(f3)− τ(f10) ≥ −12

�

(c) (5 Points) In case of unlimited resources, does a feasible schedule exist for the given
sequence graph and all of the above timing constraints? Justify your answer.

Sample solution:

No. There exist positive cycles in GC , i.e f3, f2, f6, f9, f11, f10, f3. See Figure 13.

�



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 21

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 21

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 21

nop

f1 f2 f3

f4 f5 f6 f7

f8 f9

f10 f11

nop

1
5

5 5 1

2

2

2

3
2

2

4

3 2

5

1

-10

-3

3 -12

Figure 13: A sequence graph and execution times



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 22

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 22

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 22

3.4: Iterative Algorithm (maximal 9 points)

Consider the marked graph GM and the task execution times in Figure 14, and answer the
following questions.

ν1 ν2 ν3 ν4

ν5

Task ν1 ν2 ν3 ν4 ν5
w(νi) 1 2 1 1 2

Figure 14: A marked graph with task execution times

(a) (5 points) Formulate all existing dependencies in Figure 14 from νi to νj in the form of

τ(νj)− τ(νi) ≥ w(νi)− dij × P,

where P is the minimum iteration interval.

Sample solution:

τ(ν2)− τ(ν1) ≥ 1
τ(ν3)− τ(ν2) ≥ 2
τ(ν4)− τ(ν3) ≥ 1
τ(ν5)− τ(ν3) ≥ 1
τ(ν2)− τ(ν5) ≥ 2− 1× P

�



Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 23

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 23

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2016 Embedded Systems– Sample solution Page 23

(b) (4 Points) Function ν2 uses the result of ν5 from the previous iteration. Suppose that
any arbitrary number of tokens can be inserted on this edge to reduce P using functional
pipelining. Assuming unlimited resources, and that the same operation of different it-
erations cannot be executed in parallel or overlap, how many tokens should be added
on the edge ν5 → ν2 to achieve the minimal iteration interval? To justify your answer,
draw the pipelined schedule for four iterations in Figure 15. Determine the latency L
of this schedule.

Sample solution:

Two more tokens should be added. P = 2 and L = 6. See Figure 15 for the schedule.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ν1

ν2

ν3

ν4

ν5

Figure 15: Scheduling grid for Task 3.4 (b)

�


