
Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Exam Spring 2020 – Sample solution

Embedded Systems
Prof. L. Thiele

First Name, Last Name:

ETH Student Card Number:

General information:

• Put your ETH student card on the desk.
• Write down your First/Last Name and your ETH Student Card Number on this

cover page.
• Check that you have received all sheets of this examination paper (pages 1 - 24).
• To answer the questions, you can use the white space between questions in this exam-

ination paper and/or additional sheets.
• Use a black or blue pen for writing your answers; no pencils, no red ink.
• For each additional sheet you use, write down on each sheet (upper right corner) your

First/Last name, ETH Student Card Number, and the relevant task number. Start
each task on a new sheet of paper, not only on a new page.

• Read each task completely before starting to write the answer.
• Cross out completely and clearly all invalid answers.
• At the end of the exam, submit ALL your answer sheets together with this exam-

ination paper (pages 1 - 24).

For correction only. Leave blank!

Task Max. Points Achieved Points Initials Remarks
1 39
2 40
3 41

Total: 120 Grade:

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 1

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 1

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 1

Task 1 : Real-Time Scheduling (39 points)

1.1: Short Questions (8 points)

Answer the following questions for the MSP-432 processor:

(a) (3 points) A system uses UART to transmit data, with the following configuration: the
baud rate is 115 200 bits/s, 1 start bit, 2 stop bits, 7 data bits and 1 parity bit. How
much time is needed to transmit 240 KB of data (1 KB = 1024 bytes)?

Sample solution:
Symbols transmitted with overhead: ⌈240KB × 1 024 × 8× 11

7 ⌉ = 3089 555 bit

Time to transmit: 3 089 555 bit/115 200 bit

s
= 26.82 s.

(b) (2 points) How many bytes can be written in a block of memory accessed using byte-
addresses 0x3000_0000 through 0x308F_FFFF?

Sample solution:
0x308F_FFFF − 0x3000_0000 + 1 = 0x008F_FFFF + 1 = 0x0090_0000

There are 9× 220 addresses, which means 9 Megabytes of memory.

(c) (3 points) The following function returns the value that has been read from the appro-
priate GPIO port (pin 7 being the MSB).

uint8 t GPIO getInputPortValue(uint fast8 t selectedPort);

Pins 0 through 7 of GPIO port PORT1 are equipped with buttons with pull-up resistors
(when the button is not pressed, the GPIO is connected to the supply voltage; when
the button is pressed, the GPIO is connected to the ground). If only buttons connected
to pins 2 and 7 of PORT1 are pressed, what value will variable uint8 t kk have after
the following line of code is executed?

uint8 t kk = GPIO getInputPortValue(PORT1) & 0x3C;

Hint: & is the logical AND operator.

Sample solution:
As pull-up resistors are used, a pushed button yields a 0, while a released one yields 1.
We therefore have:

kk = 0b0111 1011 AND 0b0011 1100 = 0b0011 1000 = 0x38

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 2

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 2

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 2

1.2: Cyclic-Executive Scheduling (8 points)

Cyclic-executive scheduling with a period P = 12 and a frame length f = 3 is used to schedule
the task-set given in Table 1. Note that ”frame 1” is the first frame of each period.

Table 1: A task set

Task Period Deadline Phase Execution Time Frames
τ1 4 1 2, 4
τ2 12 10 2 2
τ3 6 5 1 1.5

(a) (4 points) Determine one feasible assignment of tasks τ2 and τ3 to frames, construct
the schedule for one period P and illustrate it graphically.

Sample solution:
One possible assignment is shown

t

τ1

τ2

τ3

0 1 2 3 4 5 6 7 8 9 10 11 12
frame 1 frame 2 frame 3 frame 4

(b) (4 points) Determine the period of task τ1 and its minimal possible phase, if the task
is executed in frames 2 and 4.

Sample solution:
The period of task τ1 is 6, as it occurs twice in 12 time units. The minimal solution for
the initial phase for task τ1 is 2.

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 3

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 3

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 3

1.3: Rate Monotonic Scheduling (11 points)

A periodic task set is given in Table 5. Assume all phases are zero, and deadlines equal periods.

Table 2: A task set

τP1 τP2 τP3 τP4
Period 5 7 11 13

Execution Time 1 2 3 3

(a) (2 points) Test if the given task set is schedulable under rate monotonic (RM) schedul-
ing, using the sufficient test (the utilization bound test).

Sample solution:
The sufficient test:

n
∑

i=1

Ci

Ti

=
1

5
+

2

7
+

3

11
+

3

13
= 0.989

n× (2
1

n − 1) = 4× (20.25 − 1) = 4× (1.189 − 1) = 0.757

0.989 > 0.757 . . . INCONCLUSIVE

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 4

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 4

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 4

Table 3: The task set, repeated

τP1 τP2 τP3 τP4
Period 5 7 11 13

Execution Time 1 2 3 3

(b) (5 points) Test whether the given task set is schedulable under rate monotonic (RM)
scheduling, using the necessary and sufficient test.

Sample solution:
τ4:

R0
4 = C4 = 3 I04 = ⌈35⌉1 + ⌈37⌉2 + ⌈ 3

11⌉3 = 1 + 2 + 3 = 6 6 + 3 6= 3
R1

4 = 6 + 3 = 9 I14 = ⌈95⌉1 + ⌈97⌉2 + ⌈ 9
11⌉3 = 2 + 4 + 3 = 9 9 + 3 6= 9

R2
4 = 9 + 3 = 12 I24 = ⌈125 ⌉1 + ⌈127 ⌉2 + ⌈1211⌉3 = 3 + 4 + 6 = 13 13 + 3 6= 12

R3
4 = 13 + 3 = 16 . . . UNSCHEDULEABLE

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 5

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 5

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 5

Table 4: The task set, repeated

τP1 τP2 τP3 τP4
Period 5 7 11 13

Execution Time 1 2 3 3

(c) (4 points) Using earliest deadline first (EDF) scheduling, construct a schedule from
time 0 to time 24, and illustrate it graphically. Note if any task misses its deadline.

Sample solution:

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

τP1

τP2

τP3

τP4

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 6

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 6

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 6

1.4: Scheduling Mixed Tasks (12 points)

We have a task set with periodic and aperiodic tasks. The periodic tasks are τP1, τP2 and
τP3; the aperiodic tasks are τA1, τA2, and τA3. Additionally, task τPS is a polling server meant
to service the aperiodic tasks. All tasks are specified in Table 5.

Deadline Monotonic scheduling is used to schedule the periodic tasks and the polling server,
while the polling server services aperiodic tasks on a first-come-first-serve basis.

Assume task τA1 arrives at time 1, task τA2 at time 0 and task τA3 at time 14.

Table 5: Mixed task set

Task Period Phase Deadline Execution Time
τP1 5 0 5 2
τP2 9 7 2 1
τP3 10 1 7 1

τPS 8 2 6 3

τA1 5 1
τA2 1 1
τA3 9 3

Illustrate the schedule of all of the tasks graphically, including the polling server, from time 0
to time 24. Note if any task misses its deadline.

Sample solution:

The priorities are τP2 > τP1 > τPS > τP3. There is one deadline violation of the second
aperiodic task.

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

τP1

τP2

τP3

τPS

τA1

τA2

τA3

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 7

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 7

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 7

Task 2 : Low Power Design (40 points)

2.1: Dynamic Voltage Scaling (10 points)

Consider a processor whose dynamic power dissipation when running with a clock frequency f

in Hz, is given by Pdynamic =
(

f
106Hz

)3
mW. It is assumed that the processor has negligible

static and leakage power dissipation. Furthermore, its clock frequency can be freely selected
from a continuous range of frequencies.

The processor must execute the following task set:

Task τ1 τ2 τ3
Arrival Time (ms) 0 3 5
Absolute Deadline (ms) 8 6 10
Cycles (x103) 8 12 2

Table 6: Task set.

Apply the offline YDS algorithm and plot the schedule of tasks and frequencies in Figure 1.
Provide the steps of your solution in detail.

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 8

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 8

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 8

Sample solution:

Apply the offline YDS algorithm using intensity function G[z1, z2] =

∑

i∈V ′

ci

z2−z1
.

Step 1:
All intervals:
G[0, 6] = 12/6 = 2
G[0, 8] = (8 + 12)/8 = 2.5
G[0, 10] = (8 + 12 + 2)/10 = 2.2
G[3, 6] = 12/3 = 4
G[3, 8] = 12/5 = 2.4
G[3, 10] = (12 + 2)/7 = 2
G[5, 10] = 2/5 = 0.4
hence run τ2 @ 4MHz in [3,6]

Step 2:
New task set:
τ1 : [0, 5], C1 = 8
τ3 : [3, 7], C3 = 2
hence new intervals:
G[0, 5] = 8/5 = 1.6
G[0, 7] = (8 + 2)/7 = 1.43
G[3, 7] = 2/4 = 0.5
hence, run τ1 @ 1.6MHz in [0,3] and [6,8]

Step 3:
New task set:
τ3 : [0, 2], C3 = 2
run τ3 @ 1MHz in [8,10]

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 9

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 9

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 9

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11

Time (ms)

F
re
q
u
en
cy

(M
H
z)

τ1 τ1

τ2

τ3

Figure 1: Offline YDS Schedule.

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 10

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 10

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 10

2.2: Dynamic Power Management (14 points)

Consider an embedded system with a processor that can execute in one of three modes,
namely HIGH, LOW, and SLEEP mode. The valid transitions between the three execution
modes, the power dissipation, and the processor frequency within each mode are summarized
in Figure 2. The transition cost in terms of both time and energy are denoted by t1, t2 and
E1, E2, respectively.

HIGH

Phigh = 100mW

fhigh = 100MHz

LOW

Plow = 50mW

flow = 25MHz

SLEEP

Psleep = 10mW

fsleep = 0MHz

t1, E1

t1, E1

t2, E2

t2, E2

Figure 2: Processor execution modes.

The processor must schedule the following periodic real-time tasks:

Task τ1 τ2 τ3
Period (ms) 10 10 10
Arrival of First Task (ms) 0 4 7
Relative Deadline (ms) 3 8 10
Cycles (×105) 1 2 2

Table 7: Periodic task set.

(a) (4 points) Assume zero transition energy (i.e. E1 = E2 = 0) and instantaneous mode
transitions (i.e. t1 = t2 = 0). Plot in Figure 3 a schedule that includes the power
consumption over time, as well as tasks that are executing, using a workload-conserving
scheduler that minimizes the average power. A workload-conserving scheduler always
executes when a ready task is available.

Sample solution:
It can be shown that it is more energy efficient to execute in HIGH mode than in LOW

mode (i.e. Plow

flow
>

Phigh

fhigh
). Since there is no energy overhead in transitioning from HIGH

to SLEEP mode, it is more energy efficient to enter SLEEP mode when there are no
tasks to execute. The energy efficient workload-conserving schedule is as follows:

2

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 11

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 11

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (ms)

Power (mW)

10

50

100

T
as
k
1

Task 2 Task 3

T
as
k
1

Task 2 Task 3

Figure 3: Energy efficient schedule using a workload-conserving scheduler.

For the following tasks assume the time and energy overhead between the execution modes as
defined in Figure 2 to be t1 = 0.1ms, t2 = 0.9ms, and E1 = 10 µJ, E2 = 40µJ, respectively.

(b) (5 points) Calculate the break-even time for the HIGH to SLEEP mode transitions.

Definition of break-even time: The minimum idle time required to compensate the
cost of entering an inactive (sleep) state.

Sample solution:
The energy consumed without entering SLEEP mode is:
Eh = Tw · Phigh.

When entering the to SLEEP mode the total energy consumed during the idle time is:
Es = 2 · (E1 + E2) + (Tw − 2 · (t1 + t2)) · Psleep

The break-even needs to satisfy:
Tw · Phigh ≥ 2 · (E1 + E2) + (Tw − 2 · (t1 + t2)) · Psleep

Tw ≥ 2 · E1+E2−(t1+t2)·Psleep

Phigh−Psleep

Tw ≥ 0.889ms

An additional constraint comes from the time needed to switch from HIGH to SLEEP

mode and back, .i.e. Tw ≥ 2(t1 + t2) = 2ms.
The final break even time therefore is Tw = 2.0ms.

2

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 12

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 12

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 12

(c) (5 points) Find a schedule (not necessarily workload conserving) that satisfies all task
deadlines and minimizes the energy consumption. Plot the schedule in Figure 4 that
includes the power consumption over time, as well as tasks that are executing. Assume
constant power consumption during the transition between different execution modes.

Sample solution:
The schedule that minimizes the energy consumption removes the overhead associated
with executing in LOW mode, in favor of executing longer in SLEEP mode. This is
achieved by delaying the execution of task τ2 by 2ms and τ3 by 1ms, thus producing
a slack of 5ms between the end of task τ1 and the beginning of task τ2. The power
consumption between HIGH and LOW is 100mW, and the power consumption between
LOW and SLEEP is 44 mW. The schedule, including the HIGH to SLEEP transition
times, that minimizes the energy consumption is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (ms)

Power (mW)

10

50

100

T
as
k
1

Task 2 Task 3

T
as
k
1

Task 2 Task 3

Figure 4: Energy minimizing schedule satisfying all task deadlines.

2

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 13

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 13

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 13

2.3: Solar Cells and Power Point Tracking (5 points)

We are given a solar cell with characteristics

I = G− 10−4 × (
U

0.05
)3, (1)

where I is the normalized current, U is the normalized voltage, and G is the relative solar
irradiance.

Execute by hand the power point tracking algorithm as presented in the lecture for G = 0.8.
Determine the voltage U(k) and power P (k) for k = 0, . . . , 5 with U(0) = 0.5 and U(1) = 0.55,
using the stepsize 0.05.

Sample solution:

k 0 1 2 3 4 5 ...
U(k) 0.50 0.55 0.60 0.65 0.70 0.65 ...
P (k) 0.350 0.367 0.376 0.377 0.368 0.377 ...

Table 8: Values obtained by executing power point tracking algorithm.

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 14

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 14

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 14

2.4: Application Control (11 points)

We consider an application control scenario with the harvested energy in time interval [t, t+ 1]
of p(t), used energy of u(t) and battery capacity B. As the utility function we use µ(u) =

√
u.

The units of p, u, and B are Wh, the unit of t is h.

(a) (3 points) Suppose the energy is harvested by a solar panel, which generates a(t) =
0.05Wh/cm2 per hour in the daylight, which lasts 8 hours every day. During the rest
of the day, the solar panel generates a(t) = 0Wh/cm2. For a solar panel with a size
of S, the harvested energy function is p(t) = a(t) · S. The system is equipped with a
solar panel of size S = 200 cm2. Is it possible for the system to continuously dissipate
a constant power of 3W for infinite days? If yes, what is the minimal battery size B in
Wh to sustain this operation?

Sample solution:
Yes, it is possible. In 24h we harvest 8 ·200 ·0.05 = 80Wh and we consume 24 ·3Wh =
72Wh.

During all daylight hours, the harvested energy is larger than the consumed energy.
Therefore, the battery only needs to store energy for the night (24 − 8 = 16h). Thus,
the minimal battery size is B = 16 · 3Wh = 48Wh

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 15

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 15

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 15

(b) (8 points) Suppose now that B = 33Wh. The harvested energy function p(t) is given in
Figure 5. Determine an optimal energy usage function u∗(t) that maximizes the utility
and never leads to failure state. Draw u∗(t) in Fig. 5.

Hint: All values of u∗(t) are integers.

Sample solution:
We use the theorem explained in the lecture. The optimal energy use u∗(t) is determined
by satisfying the conditions in the theorem.

• When choosing u(t) for the whole day, then this appears to be the maximal mini-
mum use energy: At b(17), the battery is full and at b(8) it is empty. Any further
increase in u(t) = 3 will inevitably lead to an unfeasible solution.

• During the time interval with surplus energy (t ∈ [9, 16])) we can increase the use
function to u(t) = 4 without violating any feasibility constraint and still achieving
a full battery at time 17. Red dots in Fig. 5 represent u∗(t).

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 16

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 16

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 16

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time [h]

p
(t
)
[W

h
]

Figure 5: Application Control, Task (b)

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 17

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 17

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 17

Task 3 : Models and Architecture Synthesis (41 points)

3.1: Architecture Synthesis Fundamentals (9 points)

Mark the following statements as true or false and provide a one sentence explanation.

• (1 point) The ”Stack Policy” as introduced in the lecture could be used in combination
with EDF task scheduling

Sample solution:
⊠ True � False

Explanation: The ”Stack Policy” can be used with dynamic priorities

2

• (1 point) A dependence graph as defined in the lecture can represent parallelism in a
program and can represent branches in control flow.

Sample solution:
� True ⊠ False

Explanation: It does not represent branches in control flow.

2

• (1 point) The throughput of an implementation of an iterative algorithm can be in-
creased by decreasing the iteration interval.

Sample solution:
⊠ True � False

Explanation: Throughput is the inverse of the iteration interval

2

• (1 point) A marked graph is designed to be implemented in software only.

Sample solution:
� True ⊠ False

Explanation: A marked graph can be implemented in software and hardware.

2

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 18

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 18

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 18

• (1 point) In a marked graph, a node with 2 input edges requires at least 2 tokens on
any of the input edges to be activated.

Sample solution:
� True ⊠ False

Explanation: It requires at least one token on each edge.

2

• (2 points) Given two operations, v1 and v2, with execution time w(v1) = 2 and
w(v2) = 2, respectively. “τ(v2) − τ(v1) ≤ 4” models the following constraint : “v2
must start not later than 2 time units after the end of v1”.

Sample solution:
⊠ True � False

Explanation: τ(v1) + w(v1) + 2 ≥ τ(v2).

2

• (1 point) Energy consumption can be improved by using pipelining instead of sequential
processing of a given task set.

Sample solution:
⊠ True � False

2

• (1 point) List scheduling is an optimal algorithm for task scheduling with resource con-
straints.

Sample solution:
� True ⊠ False

Explanation: It is not an optimal algorithm.

2

3.2: LIST Scheduling (13 points)

Given the sequence graph in Figure 6.

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 19

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 19

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 19

(a) (8 points) Suppose that one multiplier and one adder are available as resources. Addi-
tion take one time unit for execution with the adder (r1). Multiplication take two time
units for execution with the multiplier (r2). The first operation starts at t = 0 and the
top node (’nop’) is executed within zero time unit. The priority is assigned for each
operation as maximal distance to the bottom node (’nop’). In case of equal priorities
choose the node with the lowest index number. Fill out Table 9 using LIST scheduling
algorithm. For a timestep t, the value Ut,k denotes the set of operations that are ready
to be scheduled on resource rk (to be more specific, the set of operations that can be
mapped on resource rk and whose predecessors are all completed). St,k denotes the set
of operations that start at time t on resource rk, while Tt,k is the set of operations in
execution at time t on resource rk.

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 20

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 20

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 20

+ + + +

+ +

+

+

*

*

*

nop

nop

1 2 3 4 5

6 7 8

9 10

11

Figure 6: A sequence
graph

t k Ut,k Tt,k St,k

0 r1 ν2, ν3, ν4, ν5 — ν2
r2 ν1 — ν1

1 r1 ν3, ν4, ν5 — ν3
r2 — ν1 —

2 r1 ν4, ν5 — ν4
r2 ν6 — ν6

3 r1 ν5, ν7 — ν5
r2 — ν6 —

4 r1 ν7, ν8 — ν7
r2 ν9 — ν9

5 r1 ν8 — ν8
r2 — ν9 —

6 r1 ν10 — ν10
r2 — — —

7 r1 ν11 — ν11
r2 — — —

8 r1 — — —
r2 — — —

9 r1 — — —
r2 — — —

10 r1 — — —
r2 — — —

11 r1 — — —
r2 — — —

12 r1 — — —
r2 — — —

13 r1 — — —
r2 — — —

Table 9: Table for subtask (a)

(b) (1 point) What is the resulting latency?

Sample solution:
L = 8.

2

(c) (2 points) Suppose it is allowed to add either one adder or one multiplier, which resource
should be added to shorten the latency? What is the corresponding latency?

Sample solution:
Adder because the critical paths (e.g. 5 → 8 → 10 → 11) are delayed by adders, not
multipliers. The corresponding is L = 7.

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 21

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 21

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 21

2

(d) (2 points) In case of unlimited hardware resource, what is the minimized latency? Explain
why.

Sample solution:
L = 6. With infinite adders and multipliers, the critical paths (2 → 6 → 9 → 11) are
now delayed by multipliers.

2

2

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 22

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 22

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 22

3.3: Iterative Algorithms (19 points)

Consider the marked graph GM in Figure 7. The nodes labeled with +, x2, +4 represent
addition, multiplication by 2, and addition with 4, respectively. f1, f3 and f4 need 1 time unit
each, f2 needs 2 time units. The input u is a sequence of numbers, with u(k) representing
the k-th number.

+ x2u v+

+4

Figure 7: Marked graph GM

(a) (7 points) Determine the output value v(k) corresponding to the graph in Figure 7 as
a function of the input values u(·) and previous output values v(·). Assume k > 2.

Sample solution:

f1(k) = u(k) + f2(k − 2) + f4(k − 1)

f2(k) = 2 · f1(k)
f3(k) = f2(k) + 4 = 2 · f1(k) + 4

f4(k) = f2(k) + f3(k) = 2 · f2(k) + 4 = 4 · f1(k) + 4

v(k) = f4(k)

⇒ f1(k) =
f4(k)−4

4

⇒ f2(k) =
f4(k)−4

2

⇒ f4(k)−4
4 = u(k) + f4(k−2)−4

2 + f4(k − 1)
⇒ v(k) = 4 · u(k) + 2 · v(k − 2) + 4 · v(k − 1)− 4

2

(b) (4 points) Suppose that we implement the algorithm using functional pipelining. Express
all constraints which stem from the data dependencies in GS , considering also the data
dependencies among successive iterations.

Hint: Determine constraints of the form τ(fj)−τ(fi) ≥ w(fi)−dij ·P , ∀ (fi, fj) ∈ ES ,
where P is the iteration interval of the pipelined implementation, w(fi) denotes the

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 23

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 23

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 23

execution time of fi, and dij represents the index displacement associated with edge
(fi, fj).

Sample solution:
Data dependency constraints:

τ(f2)− τ(f1) ≥ 1 (1)
τ(f3)− τ(f2) ≥ 2 (2)
τ(f4)− τ(f2) ≥ 2 (3)
τ(f4)− τ(f3) ≥ 1 (4)
τ(f1)− τ(f2) ≥ 2− 2P (5)
τ(f1)− τ(f4) ≥ 1− 1P (6)

2

(c) (3 points) Assuming unlimited resources, determine the smallest feasible iteration in-
terval Pmin. Justify your solution.

Sample solution:
Based on the previous system of inequalities:
(1)+(3)+(6) =⇒ 0 ≥ 1 + 2 + 1− P =⇒ P ≥ 4
(1)+(2)+(4)+(6) =⇒ 0 ≥ 1 + 2 + 1− P =⇒ P ≥ 5
(1)+(5) =⇒ 0 ≥ 1 + 2− 2P =⇒ P ≥ 3

2
Hence, Pmin = 5.

2

(d) (3 points) Now assume that, there are only one multiplier to compute f2 and one adder
to compute f1,f3 or f4 available. First, depict a pipelined scheduling in Figure 8 under this
resource constraint with a predefined minimal iteration interval P = 5. Then, indicate
the latency L of the schedule. Draw three consecutive iterations, and mark different
iterations clearly, e.g. with different colors, different textures, or different numbers.

L = 5

2

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 24

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 24

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Spring 2020 Embedded Systems – Sample solution Page 24

1098765432 1514131211 160 1 17 18 19 20 21 t

Figure 8: Pipelined Scheduling with resource constraints

(e) (2 points) Can the latency of a schedule given the marked graph be decreased by using
an unlimited number of adders and multipliers? Explain why?

No, because the outputs of the adders depend on each other.

2

