
Institut für
Technische Informatik und
Kommunikationsnetze

Prof. Lothar Thiele

Embedded Systems - HS 2020

Embedded Systems Companion

Introduction

As its name indicates, the Embedded Systems Companion has been compiled to be a collection of useful
definitions, reminders, and tips that will help you to successfully and joyfully go through the Embedded
Systems lecture. At least, that’s the plan :-)
Needless to say, we strongly recommend that you carefully read through the whole document at least
once.

Contents

1 General Definitions 2
1.1 Software . 2
1.2 Hardware . 4

2 C Programming Crash Course 5
2.1 Basics . 5
2.2 Advanced Types and Keywords . 6
2.3 Strings . 9
2.4 C operators . 10
2.5 Preprocessor Programming . 13
2.6 Functions . 15
2.7 Addresses and Pointers . 16

3 Good Programming Practices 18

1

1 General Definitions

1.1 Software

Integrated
Development
Environment

An Integrated Development Environment (IDE) is a software application that pro-
vides comprehensive facilities to computer programmers for software development.
In the Embedded Systems labs, we use the Code Composer Studio IDE.

Terminal A terminal is an interface for sending commands to and receivings outputs from a
Linux system. It is a textual user interface (in constrast to a graphical user interface
(GUI)).
A terminal emulator is a program that provides a terminal in a graphical environ-
ment. The most common one on Linux is called... ‘Terminal’.

In the Embedded Systems labs, we use a terminal emulator included directly in Code
Composer Studio.

Project A project is the set of all the source files of a program. It also contains configuration
information (which compiler to use, etc), including the intended target hardware.
A large part of this information is stored in hidden files, e.g. .ccsproject (the
filenames of hidden files start with “.”).

Low-level
programming
language

A low-level programming language is a programming language that provides little or
no abstraction. Such language typically uses instructions which are specific to the
target hardware or CPU architecture. Assembly is the lowest-level of programming
language you are likely to encounter.

High-level
programming
language

A high-level programming language (e.g., Java or Python), is meant to be easier
to use. This class of languages is not compiled at runtime (only interpreted) and is
hence independent of the target hardware. However, it will generally require more
memory, have longer computation time and be less capable of addressing a system’s
pecularities.

Operating
System

An operating system (OS) is a software that manages the hardware and software
resources of a computing platform and provides common services for computer pro-
grams.

Bare-metal
programming

Programming bare-metal means to program an embedded system without using an
underlying operating system like e.g., Linux or FreeRTOS.

Instruction An instruction (also sometimes called statement) is a basic operation (or combina-
tion of operations) that can be executed by a processor. The instruction set describes
the set of operations that a processor can execute.
A computer programm is essentially a list of instructions.

2

Function A function is a list of instructions that can be executed in multiple places in your
code. A function takes (possibly) multiple parameters as input and returns (possibly)
multiple output values.

Executable
program

An executable program is a piece of software containing a list of instructions (ma-
chine code) that can be read and executed directly by a processor.
It is also referred to as an executable or binary.

Compiler A compiler is a program that translates source code, written in some high-level pro-
gramming language, to a lower-level language (e.g., assembly language, or machine
code) to create an executable program.

Compile,
Build

In general, the compilation refers to the conversion of the source code into an
executable program. In practice, it is a (very) complicated process that involves
multiple steps and parameters (e.g., the compilation flags).
Instead of compile, you may also find the term build (as it’s called in Code Composer
Studio). Strickly speaking, compiling is only one of the operations performed when
building (which also include e.g., linking).

Flash, Run,
Debug

Flashing means loading an executable program onto the target platform’s memory.
Running means starting the execution of the program in memory.
Debugging generally refers to stepping into the execution of the program, inspecting
which instructions are executed, the current values of variables, etc.
In practice, these terms tend to be used interoperatively. For example, in Code
Composer Studio, when hitting the Debug button, the IDE first flashes the program
and then starts debugging.

Library A library is a set of source or precompiled files that contains functions and definitions.
Once you include a library in your project, all corresponding functions and definitions
are usable in your own code.

Overflow Standard computers possess plenty of memory and processing power. Contrarily,
embedded systems are rather limited. It is therefore important to carefully choose
the integer types one uses: storing a counter value expected to range between 0 and
10 in a uint64_t wastes a lot of memory, as a uint8_t is sufficient!
However, one must be careful with overflows. A variable is said to overflow when it
is assigned a value which is outside the range that its type can normally contain. For
example, a uint8_t can contain any number between 0 and 255. What happens if
you assign e.g., 300 to such variable?

1 uint8_t a = 300; // assign 300 , even though the max value is 255
2 printf ("%u", a); // Prints : ‘‘44’’

300 requires 9 bits to be written in binary. As the variable “a” is only 8-bit long,
only the lower 8 bits of 300 will be assigned to “a”, that is 00101100, which is 44
in decimal; or put differently, 300%256.
Be also careful with subtractions on unsigned integers. Negative values are not
defined! If you assign an negative value, the variable “wraps-around”, like in the
following example.

1 uint8_t a = 0;
2 a--;
3 printf ("%u", a); // Prints : ‘‘255’’

.

3

Warning 1: Stack Overflow
The term overflow is also used in the context of stack buffers. A stack buffer overflow occurs if the
program writes to a memory address on the program’s call stack outside the intended data structure.

1.2 Hardware

MCU A microcontroller (or MCU – microcontroller unit) is a small computer on a single
integrated circuit that contains one or more CPUs (central processing units) along
with memory and programmable input/output peripherals. Program memory in the
form of FRAM or Flash (several kB to few MB) is also often included on chip, as
well as a small amount of RAM (few kB).
Microcontrollers are designed for embedded applications, in contrast to the micro-
processors used in personal computers.

Registers Registers are small memory blocks inside the processor with fast access times. Reg-
isters can have different sizes (e.g., 8, 20, 32 bits) depending on the processor
architecture.
Control registers are used to control the CPU at the lowest level possible, which is
usually taken care of by the operating system (OS).

X-Bit CPU A X-Bit CPU (e.g., 32-Bit) refers to a processor architecture having X-Bit wide
registers, typically using X-Bit memory addressing.

GPIO Pins A General-purpose input output (GPIO) is a generic pin on an integrated circuit.
A pin is one physical line that conveys a binary information. From an logical point-
of-view, a pin is either high (1) or low (0). From an electrical point-of-view, this
may correspond for example to a voltage of +3V (1) and 0V (0) on the pin.
A port is a logical grouping of GPIO pins. The CPU embedded in the MPS432
Launchpad we use in the lab has 10 ports with 8 pins each. For example, ’P2.1’
refers to the pin 1 on port 2.

Target The target of a program is the computing platform meant to run the program.

Debugger A debugger is a hardware and software component used to flash, run, and debug
an executable programm on a target.

Memory At a high-level, memory can be seen as a linear array containing values. The index
of a value in this array is called an address.
Addresses are usually written in hexadecimal format for legibility. The illustration
below shows the correspondance in decimal in parenthesis.

Address Memory

0x0000 156

0

75

472965

6

... ...

0x0001

0x0002

0x0003

(0)

(1)

(2)

(3)

0x1000(4096)

......

4

2 C Programming Crash Course

2.1 Basics

main() Every C program must contain a main() function. This is the first function executed
by the processor. When (or if) the main function returns, the program stops its
execution.

End of line All instructions must be terminated by a semincolon ’;’. If you forget one, the
compilation will fail. Read the error log to find out which line causes the problem!

Comments There are two ways to write comments in C, as illustrated below. They are used to
document the code.

1 ... // A one -line comment
2
3 ... /*
4 * A longer comment
5 * spreading across
6 * multiple lines
7 */

Variables In C, a variable is defined by an address, a value, and a type. A variable’s name is
only an alias for the variable’s address in memory.
In memory, a variable’s value is stored as a number in binary format. The variable’s
type allows the compiler to interpret this binary number. Example of types include
integers (int), characters (char), etc.
Variables must be declared before they can be used. The declaration reserves the
space in memory to store the variable and sets its type. A variable definition is a
declaration plus the assignment of the variable’s initial value.

1 <type > <name >; // Declaration without initialization
2 <type > <name > = <initial_value >; // Declaration with initialization

= Definition

Recap 1: Variable naming
A variable’s name can only contain lower- and upper-case letters, numbers, and underscores. It cannot
start with a number.

Most signifi-
cant bits

The most significant bit (MSB) is the bit of a binary number having the greatest
value (which depends on the number of bits: 2N−1 for a N -bit number), i.e., the
left-most one.

Least signifi-
cant bits

Conversely, the least significant bit (LSB) is the bit of a binary number having the
smallest value, which is always 1, i.e., the right-most one.

1 // 0b _ _ _ _ _ _ _ _
2 // ^ ^
3 // MSB LSB

5

Endianness The endianness refers to the sequential order in which Bytes are arranged into larger
numerical values when stored in memory or when transmitted (over a bus, the radio,
etc.).
In big-endian format, the most significant Byte (i.e., the Byte containing the MSB)
is stored/sent first.
In little-endian format, the least significant Byte (i.e., the Byte containing the LSB)
is stored/sent first.

2.2 Advanced Types and Keywords

Generic inte-
ger types

In C, the number of bits used to encode integer types is not fixed. This
varies between implementations (e.g., depending on the platform or the CPU). The
problem is that when you declare an int variable in C, it is not clear how many
bits are then reserved in memory. Thus, if you run the same program on different
platforms, the size of an int can change, which may lead e.g., to overflows.
To avoid this problem, embedded programmers use generic integer types (also called
fixed-width integers). The idea is simple: the type uintN_t is used to store an
unsigned integer number encoded with N bits. N can generally be 8, 16, 32, or 64.
The following table summarizes these types and their value range.

Table 1: Ranges of 8, 16, and 32-bits fixed-width integer types

Unsigned types Signed types
Type Min value Max value Type Min value Max value

uint8_t 0 255 int8_t -128 127
uint16_t 0 65535 int16_t -32768 32767
uint32_t 0 4294967295 int32_t -2147483648 2147483647

Recap 2: Standard Integer Library
These generic types are defined in the stdint.h library. Don’t forget to include it in your project, or
the compiler will complain!

6

Qualifiers A variable can be associated a qualifier. It will give additional information to the
compiler about how the variable is intended to be used. Here are some qualifiers
you should know.

const Short for constant. A const variable is not allowed to change its value at
runtime. Thus, the variable value must be set with the declaration. It is defined
as follows

1 const <type > <name > = <initial_value >; // Definition of a ‘const ’
variable

volatile The compiler usually performs complex optimizations to increase the per-
formance of the binary. For example, it “removes” instructions that it sees as
useless, like repeatedly reading the value of a variable which is not updated
by the program.
The compiler assumes only the program can update the variables. However,
external hardware events can also change the value of some variables. For
example, when a button is pressed. In such cases, the volatile quantifier
is used to tell the compiler that the value of the variable may change at any
time – without any action being taken by the code.
To make it simple, the volatile qualifier turns off optimizations made by the
compiler and therefore guarantees that all read and write operations on a
volatile variable will be effectively executed by the target.

7

Qualifiers
static The effect of the static quantifier depends on where it is used:

Outside a function A variable declared static outside a function (in other
word, a global variable) can be used only in the current file. For the code
in the other files, this variable simply does not exist. This is used mostly
to avoid name conflict (it reduces the scope of the variable).

Within a function A variable declared static within a function will hold its
value until the end of the program execution (otherwise it would be reini-
tialized every time the function is executed). For example, it is commonly
used for counting the number of times a given function executes, like in
the example below. The declaration of count as static has the effect
of (i) not reinitializing it to 0 every time the function executes and (ii)
remembering its value between two executions.

1 int MyFunction (){
2 static count = 0;
3 count ++;
4 /*
5 * MyFunction ’s code , with eventually instructions depending on

the value of ‘count ’
6 */
7 }

In summary, a static variable can be accessed only in the file it is declared.
Furthermore, it is created once at the beginning of the program and kept
during the whole runtime (even if defined within a function).

extern The extern qualifier can be used together with a variable declaration of a
global variable and informs the compiler that the variable is defined elsewhere
(typically in another source file). Therefore, the compiler does not need to
allocate memory for this variable declaration. An external variable can be
accessed by all functions in all modules of a program.

Structure A structure is a customized type, constructed as a collection of variables of different
types under a single name. These variables are so called members of the structure
variable. A structure is declared with the keyword struct, as in the example below.

1 struct student { // the structure name
2 char name [80]; // first member an array of characters
3 float marks ; // second member a decimal value
4 int age; // third member an integer
5 }; // end of declaration

This declares a new type, which can then be used to declare (struct) variables as
usual.

1 struct student studentA ; // Creates a variable ‘studentA ’ of type ‘
struct student ’

2 studentA .age = 25; // Assigns a value to the ‘age ’ member of the
‘studentA ’ struct

A member m of a struct variable s can be accessed by using the “.” operator: s.m. If
p is a pointer to a structure variable, the “->” operator can be used to dereference
the pointer and to access a member m at same time: p->m.

8

typedef The typedef keyword is used to explicitly associate a type with an identifier, or
name. Essentially, it creates an alias for the type. This is commonly used for renaming
the structure types, but also for creating meaningful type names.

1 typedef struct student student_t ; // Create an alias for the type ‘
struct student ’

2 student_t studentB ; // Create a variable of type ‘Student
’, which is in fact a ‘struct student ’

3 typedef int timer_t ; // Create an alias for ‘int ’ to be
used for timers

Casting We mentioned that each variable has a type, which is used by the compiler to
interpret the ’meaning’ of the variable’s value. Casting, also called typecasting,
consists in virtually changing the type of a variable for one instruction operation.
To typecast something, simply put the type you want the variable to act as inside
parentheses in front of the variable, as in the example below.

1 int x = 40;
2 printf ("x = %i\n", x); // Print ‘x = 40’
3 printf ("x = %c\n", (char) x); // Cast ‘x’ into a ‘char ’ and print it
4 // -> Print ‘x = (’

Many numbers are implicitely converted into other types, e.g. when assigning values
of a type to variable of another type or when passing variables to functions. In this
case, no explicit typecast is necessary. However, the precision might be reduced in
such an implicit conversion without your consent!

2.3 Strings

C-string In C, a string is an array of characters. A character, or char, is an 8-bit integer.
1 myString // a variable called myString
2 " myString " // a string literal , i.e. representation of a string

in the code , not a variable !
3 "1sdf _sdA^hb" // another string literal

A string ends with a null character, literally the integer value 0. Just remember that
there will be an extra character at the end of a string, like a period at the end of
a sentence. It is not counted as a letter, but it still takes up one character space.
Thus, in a 50-char array, you can only ‘use’ 49 letters plus the null character at the
end to terminate the string.

1 const char myString [] = " Embedded Systems is great !"; // Define a string (
the size required for ‘myString ’ is computed automatically at
initialization)

2 printf ("%s",myString); // Print the whole string
3 printf ("%c",myString [0]); // Print the first character : ‘E’

A string may also contain non-printable characters (identified by the backslash sym-
bol ‘\’). You should know \n (New line – Moves the active position to the initial
position of the next line) and \r (Carriage return – Moves the active position to the
initial position of the current line).

1 printf (" Embedded \ nSystems \n is great !");
2 /* Print
3 * ’Embedded
4 * Systems
5 * is great !’
6 */

9

Warning 2: Array’s index
Do not forget that in C, the indexing of arrays starts with 0, not 1.

printf() The standard printf is provided by the #include <stdlib> library. As shown in
previous examples, printf can display formatted strings. The format of the string
may include specifiers (identified by the percent symbol ‘%’) which are essentially
placeholders for variables, passed as additional arguments to the printf function.
The variable’s value is then included in the string in the format given by the specifier.

1 const char myOpinion [] = " awesome ";
2 printf (" Embedded Systems is %s!", myOpinion);
3 /* Print
4 * ’Embedded Systems is awesome !’
5 */

Here is a short recap table of the specifiers you should know.

%c Character
%s String of characters

%d or %i Signed decimal integer
%u Unsigned decimal integer
%x Unsigned hexadecimal integer

2.4 C operators

Arithmetic
operators

Addition (+) subtraction (-) multiplication (*) division (/) and modulo (%)

Recap 3: Integer division and modulo
In “normal” calculation, 9/4 = 2.25. However, in C, the result is 2. This is because the result of an
operation on integers in also an integer. The compiler neglects the term after the decimal point. In
an arithmetic operation with variables of mixed types, the compiler determines the result’s type and
(some of) the numbers are implicitly converted to other types before the evaluation. For example, the
expression 9/2.0 evaluates to 4.5 in C (automatic cast to float).
The modulo operator (%) computes the remainder. If a = 9 is divided by b = 4, the remainder is 1
(i.e., a%b = 1). The modulo operator can only be used with integers.

Increment A short-hand notation; e.g., “a = a+1”, “a += 1” and “a + +” both increment the
variable a by 1. Similarly for decrement.

Assignment
operators

Another short-hand notation (see Table 2).

Tests Equal (==) Greater (>) Greater or equal (>=)
Not equal (!=) Smaller (<) Smaller or equal (<=)

Assignments
vs Tests

Beware of one common mistake in C: the confusion between an assignment and a
test.

• a = b is an assignement. It sets the value of a equal to the value of b.
• a == b is a test. It returns 1 if a and b have the same value and 0 otherwise.

10

Table 2: C Assignment Operators

Operator Example Same as

= a = b a = b
+= a += b a = a+b
-= a -= b a = a-b
*= a *= b a = a*b
/= a /= b a = a/b
%= a %= b a = a%b

Logical opera-
tors

Logical AND (&&), OR (||) and NOT (!)

Bitwise opera-
tors

Bitwise AND (&), OR (|), XOR (∧) and complement (∼)

Warning 3: Logical vs Bitwise operators
It is really important to understand the difference between logical and bitwise operators!

• A logical operator is global and returns a binary result (0 or 1).
• A bitwise operator operates on each bit individually and returns an integer (see Snippet 1).

1 12 = 00001100 (In Binary)
2 25 = 00011001 (In Binary)
3
4
5 Bit Operation of 12 and 25 Bitwise OR Operation of 12 and 25
6 00001100 00001100
7 & 00011001 | 00011001
8 ________ ________
9 00001000 = 8 (In decimal) 00011101 = 29 (In decimal)

10
11
12 Bitwise XOR Operation of 12 and 25 Bitwise complement Operation of 12
13 00001100
14 ^ 00011001 ~ 00001100
15 ________ ________
16 00010101 = 21 (In decimal) 11110011 = 243 (In decimal)

Snippet 1: Example of bitwise operators

11

Left- and
right-shift

The left- and right-shift operators (< < and > > respectively) shift all bits by a certain
number of bits. It is rather easy to understand them with examples:

1 212 = 11010100 // Unsigned int
2 212 > >0 = 11010100 // No Shift
3 212 > >2 = 00110101 // Right - shift by two bits
4 212 > >7 = 00000001 // Right - shift by 7 bits
5
6 -10 = 11110110 // Signed int (two ’s- complement)
7 -10>>1 = 11111011 // Right - shift by one bit

1 212 = 11010100 // (In binary)
2 212 < <1 = 110101000 // (In binary) [Left - shift by one bit]
3 212 < <0 = 11010100 // (Shift by 0)
4 212 < <4 = 110101000000 // (In binary) = 3392 (In decimal)

If the bits are interpreted as integer numbers, a right-shift is equivalent with integer-
dividing the number by 2, and the left-shift is equivalent with multiplying the number
by 2.
Note that, a left-shift can lead to an “increase” in the number of bits. However,
keep in mind that this may only happen if there is “room left” in memory.
Note that for right-shifting signed integers, the bits inserted on the left need to
be equal to the left-most bit before the shift in order to ensure that the variable’s
sign remains unchanged. This behaviour for negative numbers is implementation-
dependent!

sizeof The sizeof operator returns the size of data (constant, variables, array, structure
etc) in Bytes, as illustrated below.

1 struct student { // the structure name
2 char name [80]; // first variable an array of characters
3 int8_t size; // second variable a decimal value
4 int8_t age; // third variable an integer
5 };
6 printf ("%d bytes ",sizeof (struct student)); // Prints ‘‘82 bytes ’’

12

2.5 Preprocessor Programming

Preprocessor
directives

Preprocessor directives are specific instructions executed before compilation (i.e.
they are not executed by the CPU which runs the program). In C, preprocessor
directives are easy to recognise: they start with the ‘#’ symbol. These directives
modify the source files on the text level: essentially they replace, insert, or delete
blocks of text in the source files before the start of the compilation process.
There are three types of directives you should know:

#include This directive literally inserts the content of a source file in another one.

#define This directive replaces a word by an expression. For example,
MY_FAVORITE_LECTURE replaces the string “Embedded Systems”.

1 # define MY_FAVORITE_LECTURE " Embedded Systems "

This is performed by the preprocessor before the beginning of the compilation.
Thus, the compiler does not ‘see’ MY_FAVORITE_LECTURE. When the compiler
looks at the code, it is ‘hard-coded’ that your favorite lecture is ‘Embedded
Systems’. Essentially, it has the same effect as running a ‘Find/Replace all’
command in your code.

#if, #ifdef These directives (and the associated #else, #elif, etc.) are used for
conditional compilation.

Including files A project often contains multiple files that must be combined together. This is
done using the #include preprocessor directive. The common practice is to use it
differently depending on where the files are located.

• To include a file from the compiler/system/IDE installation directories (more
generally, anything in the include path), one uses < ... >

• To include a file from your project directory, one uses “ ... "

1 # include <stdlib .h> // ‘stdlib .h’ is stored in the compiler
installation directory

2 # include " myFunctions .h" // ‘myFunctions .h’ is stored in the project
directory

13

Macro The #define directive can also be use to associate any source code to a word (not
only a static value like “Embedded Systems”). Such word is then called a macro.
Macros can take parameters, similarly to functions. The macros are often written in
full caps to deferentiate them from variables or functions in the source code.

1 # define MACRO_lab1_configureUART (config) \
2 { \
3 /* Selecting P1 .2 and P1 .3 in UART mode */ \
4 GPIO_setAsPeripheralModuleFunctionOutputPin \
5 (\
6 GPIO_PORT_P1 , \
7 GPIO_PIN2 | GPIO_PIN3 , \
8 GPIO_PRIMARY_MODULE_FUNCTION \
9); \

10 /* Configuring UART Module */ \
11 UART_initModule (EUSCI_A0_BASE , config); \
12 /* Enable UART module UART_enableModule (EUSCI_A0_BASE); */ \
13 }

In this example, the defined word is ‘MACRO_lab1_configureUART(config)’
where config is a parameter. The preprocessor does textual replacement in the
source code. If somewhere in the code it reads ‘MACRO_lab1_configureUART(3
)’, this will be replaced by the content of the macro with config replaced by 3.
The backslash symbol ‘\’ is required to write a single macro accross multiple lines.

Conditional
compilation

Preprocessor directives can also be used for conditional compilation. Essentially, you
can tell the compiler that some instructions should not be executed, exactly as if
they were commented out.

1 #if condition
2 /* Source code to compile if condition is true */
3 #elif condition2
4 /* Otherwise , if condition2 is true compile this code */
5 #else
6 /* Otherwise , compile this code */
7 # endif

Using the #define directive, one can define a constant (i.e., a word) without any
associated value. This can then be used to do conditional compilations by using the
#ifdef directive, as shown in the example below.

1 # define WINDOWS
2
3 # ifdef WINDOWS
4 /* Source code for Windows */
5 # endif
6
7 # ifdef LINUX
8 /* Source code for Linux */
9 # endif

10
11 # ifdef MAC
12 /* Source code for Mac */
13 # endif

Similarly, the directive #ifndef (‘if not defined’) is extremely useful to prevent
infinite inclusions. This would happen if a file A includes a file B which itself includes
A. This is prevented by using an include guard, as shown in the example below.

1 # ifndef DEF_FILENAME // If the constant ‘DEF_FILENAME ’ is not yet
defined , the file has never been included

2
3 # define DEF_FILENAME // The constant is defined to prevent future

inclusions
4
5 /* Content of the file to include */
6
7 # endif

14

Predefined
preprocessor
constants

The preprocessor usually provides predefined constants that can be useful, e.g., for
debugging:

__LINE__ Give the current (source) code line.

__FILE__ Give the file name.

__DATE__ Give the date of compilation.

__TIME__ Give the time of compilation.

2.6 Functions

C functions In C, functions can return at most one variable. But this variable may be of any
type, including a struct. In case one wants to return more than one value, it is
common to define a structure as a function output. Another approach consists in
using pointers (see later). If a function does not return anything, the output type is
set to void, which means ‘empty’.

1 int MyFunction (){ // A function taking no input and returning an ‘int ’
2 int output = 0;
3 /*
4 * MyFunction ’s code
5 */
6 return output ;
7 }

Call by value It is important to remember that a function does not modify the value of its input
variables! Instead, a local copy of the variables is created. This is referred to as
‘calling by value’. See the example below.

1 void triple (int var){
2 var = 3* var;
3 printf ("%d", var);
4 }
5
6 int main (){
7 int x = 10;
8
9 printf ("x = %d", x); // Print : ‘x = 10’

10 triple (x); // Print : ‘30’
11 printf ("x = %d", x); // Print : ‘x = 10’
12
13 return 0;
14 }

15

Prototype A function can also be declared using a prototype. A prototype is an instruction
describing the inputs and output types of a function. Once the compiler has seen
the prototype, it will know what to do if the function is called... assuming you still
define the function somewhere in the project!

1 void MyFunction (int var1 , char var2); // Prototype of ‘MyFunction ’,
defining the types

2 // of the inputs parameters and
the return type

3 int main (){
4
5 /*
6 * some instructions
7 */
8
9 MyFunction (x,y); // The function can be called

here
10 // even though it has not been

defined yet
11 /*
12 * some more instructions
13 */
14
15 return 0;
16 }
17
18 void MyFunction (int var1 , char var2){ // ‘MyFunction ’ declaration
19 /*
20 * MyFunction ’s code
21 */
22 }

Header files A header file is a type of source file that contains function prototypes, definitions
and macros. It is distinguished by its file extension: file.h. This separation of code
into separate files is considered good practice to keep the code structure clean.
However, it is not enforced by the compiler, i.e. it’s possible to have all the code in
.c files only.

2.7 Addresses and Pointers

Address The address of a variable identifies the memory block where the variable’s value is
stored. A variable address can be accessed using the ampersand symbol ’&’ as in
the following example. This is important in particular when working with pointers.

1 int studentA_grade = 6;
2 printf (’%d’, studentA_grade); // Prints ‘6’
3 printf (’%d’, & studentA_grade); // Prints ‘47965 ’ , i.e. the address of ‘

studentA_grade ’

Pointers A pointer is a specific type of variable intended to store an address (compared to
regular variables, which contain values).
The initialization of a pointer is not conpulsory, but strongly recommended. The
keyword NULL is often used to initialize a pointer. NULL is defined as the integer
value 0, which is regarded as “invalid address”.

1 int * pointerName ; // a pointer on ‘int ’, not initialized .
2 int * pointerName = NULL; // a pointer on ‘int ’, initialized to ‘‘no

address ’’

A pointer contains the address of a memory location (it ’points’ to this memory location). It may also
be used to access the value of the memory location it points to. This is called dereferencing a pointer.
The value is obtained using the asterisk * symbol as shown in the example below.

1 int studentA_grade = 6; // a variable of type ‘int ’

16

2 int * pointerGrade = NULL; // a pointer on a variable of type ‘int ’
3 pointerGrade = & studentA_grade ;
4 printf (’%d’,pointerGrade); // Returns the value of pointerGrade ,
5 // which is the address of studentA_grade
6 printf (’%d’ ,* pointerGrade); // Returns the value of studentA_grade , that is: 6
7 // We ‘dereference ’ the pointer pointerGrade .

If we look in memory, here is what we would find

pointerGrade

studentA_grade

Address Memory

0x0000 156

0

75

4096

6

... ...

0x0001

0x0002

0x0003

(0)

(1)

(2)

(3)

0x1000(4096)

......

Call by refer-
ence

Pointers are interesting to use as function inputs. Remember that functions use
the values of their inputs. The value of a pointer however is in fact the address of
another variable. Thus, the function can use the address to directly modify the
value of the variable pointed to! This technique is referred to as ‘call by reference’.

1 void triple (int *x){ // The function takes a pointer as input
2 (*x) = 3 * (*x); // Dereference the pointer to work
3 // on the pointed variable directly
4 }
5
6 int main (){
7 int x = 10; // Define ‘x’
8
9 printf ("x = %d", x); // Print : ‘x = 10’

10 triple (&x); // Call ‘triple ’ with the address of ‘x
’

11 printf ("x = %d", x); // Print : ‘x = 30’
12
13 return 0;
14 }

17

3 Good Programming Practices

The ordering is arbitrary. It is used for references purposes only.

(a) Be generous when writting comments! There is a saying: “a good piece of code is one you can
understand by only reading the comments”... Write comments! You will thank yourself later.

(b) The initialization of variables is optional. However, if it is not initialized, the variable does not have
any defaut value, but simply inherits the current value stored in memory at this address, which
can be anything! It is good practice to always initialize the variables you declare.

(c) It is good practice to write functions in a specific source file (say myFunctions.c) and to have a
corresponding header file with the prototypes, usually with the same name (so, myFunctions.h).
Then, it is sufficient to include the header file at the beginning of any source file were you want to
use your functions. It helps to stay organized!

1 # include " myFunctions .h"

(d) Prefer the use of #define instead of hardcoded values in your code. This improves the maintain-
ability and the readability of the code.

(e) Always use include guards in your header files. The problem of infinite inclusion may sound stupid
at first, but it is in fact almost unavoidable in more complex project! Therefore, better be safe and
ensure that files can be included only once.

(f) Some type conversions can be implicitly performed by the compiler. For example, if you pass an
int as input to a function expecting a char. However, it is considered good programming practice
to always use the cast operator whenever type conversions are necessary. Relying on the compiler
to do it for you is always dangerous.

18

	General Definitions
	Software
	Hardware

	C Programming Crash Course
	Basics
	Advanced Types and Keywords
	Strings
	C operators
	Preprocessor Programming
	Functions
	Addresses and Pointers

	Good Programming Practices

