
Institut für
Technische Informatik und
Kommunikationsnetze

Prof. Lothar Thiele

Embedded Systems - HS 2020

Lab 2
Date : 14.10.2020

Interrupts, Timers & Debugging

Goals of this Lab

• Learn the difference between polling and
interrupts

• Configure and implement hardware interrupts
• Learn how to debug code running on the
microprocessor

• Configure and use hardware timers
• Understand and implement pulse-width
modulation (PWM)

Introduction

Embedded systems can interact with their surrounding environment in many different ways. Whether it
is sensing or actuating, there are two basic mechanisms with which actions are initiated: event-triggered
and time-triggered. In this lab, we learn how to use interrupts and timers, which are the building blocks
to develop event-triggered and time-triggered functionality, respectively. Furthermore, we introduce basic
debugging techniques.
A template for Lab 2 is provided as a ZIP file on the lecture’s website. Table 1 provides an overview
of the project structure. The document DriverLib Userguide which is required for this lab is contained
in the lab_documents.zip file (lab_documents > launchpad > msp432driverlib-userguide.pdf)
which can be downloaded from the lecture’s website.

Task 1: Interrupts and Debugging

Table 1: Project source files and folders of the lab2 project. System startup code and linker files are
omitted. The last column shows whether a file is modified during this lab.

File/Folder Name Description Modified

lab2.h Header file –
libraries DriverLib library –
main.c Contains the main() function Task 1 & 2
task_1.c Template for Task 1 Task 1
task_2.c Template for Task 2 Task 2
uart.c/h UART interface initialization and communication –

1

Interrupts

Definition A hardware interrupt is an electronic signal that alerts the microprocessor of an event. An
interrupt can be triggered by either an internal peripheral (e.g. timer) or an external device (e.g. button).

Why Interrupts? In Lab 1, polling was introduced to detect when a button is pressed. When polling
is used, the microprocessor repeatedly checks whether the event has occurred. In the case of a button,
the value of the GPIO pin is read to determine whether it is high (released) or low (pressed). Once the
button is pressed, the microprocessor immediatelly detects it during its next check, since it is constantly
active and is doing nothing but checking this single condition. This behavior is represented by the left
diagram in Figure 1. Although polling has a quick reaction time, it consumes an overproportional amount
of energy since the system is always in the active state. Therefore, polling is only suitable for applications
where the arrival time of events is known and/or if a condition has to be checked with a high frequency.
Another alternative is to configure an interrupt on the button’s GPIO pin such that when a preconfigured
trigger condition is met, an interrupt is generated. With this approach, the microprocessor can enter a
low power sleep state and be woken up directly through the interrupt. The MSP432 can detect signal
changes (e.g. rising or falling edges) to generate such an interrupt. If a GPIO pin is configured to be pulled
up, for example, a falling edge would occur when the button is pressed as it pulls the pin to ground. The
behavior with interrupts can be seen in the right diagram in Figure 1. It should be noted that although
using interrupts can be energy-efficient, it does introduce a delay, since the transition from the sleep
state to the active state requires some time. Interrupts are thus better suited to handle asynchronous or
infrequent events.

check button

event

ACTIVE

IDLE
react

ACTIVE

IDLE

event

react

wake up

Figure 1: Detecting an event with polling (left) and with hardware interrupts (right).

System States Microprocessors have multiple states, such as active and sleep, which are essential
for power management. Depending on the application, the transition between these states can be time-
triggered or event-triggered. In both cases, an interrupt initiates the transition from the sleep to the
active state. The only difference is the interrupt source (peripheral). In the case of an event trigger, this
can be a GPIO pin. For a time trigger, a timer or a real-time clock is typically used. Figure 2 and Figure 3
show the generic state diagrams for these two systems. To enter the sleep state, it is sufficient to tell the
Power Control Module (PCM) to go into a low power mode; e.g. by calling PCM_gotoLPM3(), the chip
enters low power mode 3. Depending on the low power mode level, the microprocessor will turn off a set
of peripheral and internal functions to save energy. Then, it will halt (sleep) until an interrupt occurs.
When the interrupt is received, it will switch to the active state and execute the corresponding interrupt
service routine (ISR). Afterwards, it will continue with the program execution in the main() function.

active Polling

Figure 2: Polling: The system typically remains
in the active state to detect an event.

activesleep

Interrupt

PCM_gotoLPM3()

Figure 3: Interrupt: The system can remain in
the sleep state until an event occurs.

2

Basic Operation Once a correctly configured system is deployed, the interrupt flows as depicted in
Figure 4. First, an event needs to occur (i.e. a button is pressed) such that a signal change is detected.
The interrupt flag (IFG) register has a bit assigned to each configured interrupt peripheral. Each time the
interrupt occurs, the corresponding IFG bit is set. Before the microprocessor is informed about the event,
the signal must fulfill three conditions. First, the pin must be configured to trigger an interrupt. Secondly,
the corresponding interrupt must be enabled. If these conditions hold, the global interrupt enable (GIE)
register is tested. Only if global interrupts are enabled, the microprocessor will be preempted and the
according interrupt service routine (ISR; basically an assigned function in the program code) be executed.
This global switch is useful to temporarily turn off all1 interrupts in order to prevent the modification of a
global variable or to avoid preemption between instructions that belong together logically. The interrupt
vector table maps the interrupts to the correct ISR.

CPUTIMER_A

GPIO Port 1

…

0

1
0

0

P1IE

Pin 0

Pin 1

Pin 2

Pin 3
...

P1IFG

Interrupt Enable (IE)

GPIO_enableInterrupt(port,pin);
GPIO_disableInterrupt(port,pin);
Interrupt_enableInterrupt(interrupt);

enables individual interrupts
Global Interrupt Enable (GIE)

Interrupt_enableMaster();
enables ALL maskeable interrupts

Interrupt Flag Reg (IFR)

GPIO_getInterruptStatus();
GPIO_clearInterruptFlag();

bit set when interrupt occurs
Interrupt Flag Reg (IFR)

GPIO_getInterruptStatus(port,pin);
GPIO_clearInterruptFlag(port,pins);

Interrupt enable
for interrupt source

Global interrupt
enable

Interrupt enable
for GPIO pins

Interrupt
flag

IFG bit IE bit GIE bitIE bit

Figure 4: Both individual and global interrupts must be enabled for the microprocessor to detect an
interrupt.

Depending on the source of the interrupt, either a dedicated or a grouped interrupt is triggered. For
simple peripherals like a comparator, there is only one possible event that generates the interrupt: crossing
the comparator’s threshold. In the case of other peripherals, like GPIO ports, multiple pins could generate
the same interrupt. In these cases, it is necessary to query the pin’s interrupt vector register in order to
identify the interrupt’s exact source. Typically, this is done inside the ISR.
Once an ISR identifies the source of the interrupt, it can react in accordance. Typically, ISRs execute in a
privileged mode which can, among other things, mask (i.e. suppress) other interrupts. For this reason, they
should be as short as possible and only set application-specific flags to indicate to the microprocessor’s
main thread that it should execute the corresponding task in response to an interrupt.
Each interrupt type has a priority to uniquely define which interrupt is handled first in case multiple
interrupts occur at the same time. Furthermore, it is possible to allow nested interrupts, i.e. that one
interrupt interrupts the handling of another interrupt. However, it’s not recommended to use this feature
since it’s complex to program, debug and test software with nested interrupts.

Configuring an Interrupt By default, all interrupts are disabled. The following steps are necessary to
configure a GPIO interrupt on the MSP432.

1Actually, there are a few interrupts that bypass the GIE bit and are therefore not disabled if the GIE bit is set to zero.
These interrupts are also called non-maskable interrupts (NMI).

3

1. Configuring the GPIO pin as an input.
GPIO_setAsInputPinWithPullUpResistor()

2. Selecting the edge (clock signal) which will trigger the interrupt.
GPIO_interruptEdgeSelect()

3. Clearing the pin’s interrupt flag. This makes sure that no previous interrupts are handled. (This
step is not mandatory, but it’s good practice to do so.)
GPIO_clearInterruptFlag()

4. Setting the interrupt enable (IE) bit of the specific GPIO pin (enabling the interrupt in the periph-
eral).
GPIO_enableInterrupt()

5. Setting the interrupt enable (IE) bit of the corresponding interrupt source (enabling the interrupt
in the interrupt controller).
Interrupt_enableInterrupt()

6. Enabling interrupts globally (set global interrupt enable (GIE) bit).
Interrupt_enableMaster()

After these steps, any new event on the pin will generate an interrupt, preempt the microprocessor, and
start the execution of the corresponding ISR.

Defining an Interrupt Service Routine (ISR) The Interrupt Service Routine (ISR) is the part of code
which is executed if the processor detected the corresponding interrupt. In general, a programmer has
the flexibility to choose any arbitrary function to be an ISR. There are a few restrictions on the function;
since it cannot receive arguments or return values, it can only modify global variables.
The DriverLib provides predefined ISR’s that are already associated with an interrupt source. For example,
the predefined interrupt handler for Port 1 is void PORT1_IRQHandler(void).
Snippet 1 shows a sample program that uses an infinite loop (line 6) in the main thread and an ISR to
detect button presses. In the infinite loop, the program switches to the sleep state in order to save energy
while waiting for an interrupt to occur (line 7). When an interrupt is received, the processor executes the
corresponding ISR (line 15). For all possible interrupt sources, the DriverLib provides a corresponding
ISR which is already set up such that it is executed once the interrupt is received. Since the GPIO pins
are connected to a grouped interrupt, the first step inside the ISR is to figure out which pin actually
triggered the interrupt. For this, the port’s interrupt status register is queried by using the DriverLib
function GPIO_getEnabledInterruptStatus(GPIO_PORT) (line 16). By doing a bitwise AND with the
bitmask of a specific GPIO pin GPIO_PIN, the pin that triggered the interrupt can be determined (line
17). The DriverLib provides a bitmask for every pin. If the result is true, then the corresponding pin was
the source of the interrupt. Once the interrupt source is identified, an application-specific flag can be set
(line 18). A global variable is used to communicate this information between the ISR and the main thread
(line 1). This way, the main application thread can take the appropriate action (line 9). It is important
that the ISR clears the flag of every interrupt handled (line 19). If the flag is not cleared, future interrupts
from that source will not be distinguishable. Of course, the application-specific flag needs to be cleared
too after executing the associated task (line 10).

Debugging

Usually, a debug probe in the form of an additional device is connected to the microcontroller in order
to debug the microcontroller at runtime. The MSP-EXP432P401R Development Board, used in this lab,
features a built-in debug probe. The spatial separation of the debug probe together with the energy trace

4

1 volatile bool buttonFlag = false ;
2
3 void main () {
4 configureGpioAndInterrupt ();
5
6 while (1) {
7 PCM_gotoLPM3 (); // Go to low power mode and wait for interrupt
8 if(buttonFlag == true) {
9 togglePin (LED_PORT , LED_PIN);

10 buttonFlag = false ;
11 }
12 }
13 }
14
15 void BUTTON_PORT_IRQHandler (void) {
16 status = getEnabledInterruptStatus (BUTTON_PORT);
17 if(status & GPIO_PIN) {
18 buttonFlag = true;
19 clearInterrupt (BUTTON_PORT);
20 }
21 }

Snippet 1: Pseudocode example that uses a pin interrupt to toggle an LED.

component and the programmer from the MSP432 microcontroller is indicated by the dashed white line
on the MSP-EXP432P401R. In this lab, we use the Serial Wire Output (SWO) trace which is a set of
tools based on ARM hardware components.

Task 1.1: Interrupts with Buttons
The goal of this task is to setup interrupts such that pressing button S1 toggles the green LED and
pressing button S2 toggles the blue LED.

• Start the Code Composer Studio (CCS) from the Terminal by typing ccstudio and hitting enter.
• Import the template CCS project (lab2.zip) into the CCS by performing a right-click inside the

project explorer. Use the Select archive file option in the Import dialog.
• Make sure that only the task1() method is uncommented in the main function in main.c file.

Use the provided template task_1.c to implement the subtasks of task 1.
• Get an overview of the existing GPIO (GPIO_xxx) and Interrupt (Interrupt_xxx) methods. For
this, have a short look in the DriverLib Userguide (p. 117 and 181). A selection of relevant
methods are listed in the Section Configuring an Interrupt.

• First, configure the green and blue LEDs of LED2 as output (Placeholder 1). Also make sure that
they are turned off whenever the LaunchPad is reset (Placeholder 5). (If you can’t remember the
DriverLib commands from Lab1, look up the GPIO_xxx methods in the DriverLib Userguide.)

• Configure the GPIO pins that are connected to the buttons S1 and S2 of the Launchpad as input
with pull-up resistor (Placeholder 2).

• Setup the interrupts by selecting the edge and by clearing the interrupt flags. Select the edge such
that an interrupt is triggered when the button is released (Placeholder 3).

• Enable the interrupts for S1 and S2. For this, enable interrupts for (1) the corresponding GPIO
pins (peripheral), (2) the port (interrupt controller) and (3) globally (Placeholder 4).

• Implement the PORT1_IRQHandler interrupt service routine (ISR) such that the green or the
blue LED of LED2 (RGB LED) is toggled and the corresponding flag variable (button1Flag or
button2Flag) is set to true. In the template, we provide Pseudocode 1 in order to help you to
structure your code. In addition, we already assigned the content of Port1’s status register to the

5

variable status. Use the bit masks GPIO_PIN1 and GPIO_PIN4 provided by the DriverLib to figure
out which button was pressed. S1 should toggle the green LED whereas S2 should toggle the blue
LED.

• Compile and run (debug) your program.
• Press the buttons S1 and S2 and verify the resulting action (LEDs and UART). Verify that the
interrupt is triggered when the button is released, not when it is pressed. As in Lab 1, you can
use the terminal in the debug view of Code Composer Studio (CCS) to display the UART output
(baudrate: 115200).

Task 1.2: Breakpoints and Stepping Through Code
In this task, you are going to use the IDE’s debugger functionality to step through the code while it is
being executed on the Launchpad. Furthermore, you will learn how to work with breakpoints. We re-use
the code of Task 1.1 as a sample program.

• Start to debug the working program from Task 1.1. Do not press the Resume (Start) button yet.
• In the editor, set a breakpoint on the line which is responsible for toggling the green LED of LED2
in the task_1.c file. You can set a breakpoint by double clicking on the line number in the code
editor (see Figure 5).

• Now, start the execution of the program with the Resume (Start) button in the IDE.
• Press the push button S1 on the Launchpad. Why does the green LED not turn on?

• In the code editor, you see that the program execution is paused and the processor halted at the
line with the breakpoint. If you hover the mouse over a variable which is set prior to the line with
the breakpoint, you can see the current value of that variable. Hover over the counter variable for
counting the interrupts for S1 and note the value.

• Now click the Step Over button of the IDE (see Figure 6) multiple times and observe the program
execution in the program editor. Compare the value of the counter variable before and after the
incrementation of the counter variables. Also check the state of the LED on the LaunchPad.

• The execution can be resumed by pressing the Resume button in the IDE (see Figure 6).
• When you are finished with debugging the program, make sure to disable all breakpoints again
such that the program runs without suspending in the following tasks.

Task 1.3: Interrupt Trace [Optional Task]
In this task, you will record a trace of all interrupts that occur while the program is executed on the MSP-
EXP432P401R. The trace contains the source of the interrupts and the timestamps when the interrupts
happened. As a sample program, we use the program of Task 1.1.

• Again use the working program from Task 1.1.
• Start to debug the program, but do not yet press the Resume (Start) button.

6

Figure 5: Setting a breakpoint by double clicking the line number in the CCS editor.

Resume Terminate

Step Into Step Over Step Return

Suspend

Figure 6: Buttons for debugging.

• Start to collect an interrupt trace by selecting Tools > Code Analysis > Event Analysis
(hardware events and messaging) from the menubar (see Figure 7). When selecting Event
Analysis (hardware events and messaging), a configuration window will pop up2. You should select
Exception Profile and keep the other default configuration (e.g. SWO Trace). Also note that
COM Port should be valid, and just click OK (see Figure 8).
Note: The Tools menu is only available in the debug view of CCS.

Figure 7: Code Analysis Menu Option.
2If the configuration window does not pop up, close CCS and start it again by executing the ccstudio command in the

terminal

7

Figure 8: Event Analysis Configuration.

• Click Start Capture in the Event Analysis window to start capture the hardware events (also
interrupts here). Then, use the Resume button in the IDE to start the program. It is very possible
that your CCS as well as VM Virtual Box will crush several times.

• Now generate some interrupts by pressing the buttons of the Launchpad.
• Pause the execution of the program with the Suspend button in the IDE (see Figure 6).
• Select Exception Profile in the Event Analysis window (right bottom corner of the IDE). You
should now have a new plot that contains the recorded interrupt trace data (see Figure 9):

– Event Type All the timestamps and the type (e.g. enter, exit) of the interrupt events can be
viewed by hovering the mouse over the corresponding events. Usually, you need to zoom out
in order to see events.

– Exception Statistics Displays statistic informations of all events, e.g. name (PORT1), Oc-
curence Count (13), etc., see Figure 9.

Figure 9: Exemplary trace of interrupts.

8

Task 2: Timers and PWM

Timers

PCM

Power
Control

Manager

PSS

Power
Supply
System

CS

Clock
System

RTC_C

Real-Time
Clock

WDT_A

Watchdog
Timer

I/O Ports

P1 to P10
78 I/Os

I/O Ports

PJ
6 I/Os

Flash

256KB
128KB

RSTCTL

Reset
Controller

SYSCTL

System
Controller

AES256

Security
Encryption,
Decryption

CRC32

Precision
ADC

1 Msps,
SAR A/D

Comp_E0,
Comp_E1

Analog
Comparator

REF_A,

Voltage
Reference

TA0, TA1,
TA2,TA3

Timer_A
16 Bit
5 CCR

Timer32

2 x 32-bit
Timers

eUSCI_A0,
eUSCI_A1,
eUSCI_A2,
eUSCI_A3

(UART,
IrDA, SPI)

eUSCI_B0,
eUSCI_B1,
eUSCI_B2,
eUSCI_B3

(I C, SPI)2

Bus
Control
Logic

DMA

8 Channels

Capacitive Touch I/O 0,
Capacitive Touch I/O 1

Address

Data

LFXIN,
HFXIN

LFXOUT,
HFXOUT

DCOR

LPM3.5 Domain

P1.x to P10.x PJ .x

Backup
Memory

SRAM
6KB

CPU

MPU

NVIC, SysTick

FPB, DWT

ARM
Cortex-M4F

ITM, TPIU

J TAG, SWD

SRAM
(includes
Backup
Memory)

64KB
32KB

ROM
(Peripheral

Driver
Library)

32KB

Copyright © 2017 Texas Instruments Incorporated

Figure 10: Timer_A is an internal peripheral of the MSP432P401x.
(source: lab_documents.zip > launchpad > msp432p401r-datasheet.pdf, p. 3)

In order to start time-triggered actions after specific time intervals, microcontrollers usually feature one
or multiple types of timers. The different types differ for example in their power consumption, counter
register width (typically 16 or 32 bits) and feature set. For some types of timers, multiple identical
instances are available. In this lab, we only use Timer_A which is highlighted in Figure 10. Timer_A0
(abbreviated TA0) is the first instance (instance 0) of Timer_A.

Basic Operation The structure of a timer is depicted in Figure 11. Its main component is a counter.
A counter is a register whose value is incremented with every rising (or falling) edge of the clock input.
The timer can be configured to trigger an interrupt every time the counter register rolls over (i.e. when
it resets to 0 after reaching the highest counter value). Furthermore, it is possible to select different
clock sources and to divide the clock frequency by a constant factor. This is useful to achieve larger
intervals between roll-overs without increasing the size of the counter register. However, this reduces the
granularity since the counter value is incremented less frequently.

15 0

16-bit Counter
(TA0R)

Interrupt
(TA0ICG)

Divide
by 5-bits

(up to ÷ 64)

Enable
(TA0IE)

CCR0

CCR1

CCR2

Figure 11: The structure of a timer.

9

Time

0xFFFF

0x0

CCR0

Counter Value

TA0
Interrupt

CCR0
Interrupt

Figure 12: A timer in UP-mode and the corresponding interrupts.

Timer_A in the MSP432 can be in one of four modes:

• Halted: The timer is stopped and the counter value is not incremented.
• Continuous: The counter is continuously incremented and the counter value is reset to 0 only if
the counter register rolls over.

• Up: The Up-mode is visualized in Figure 12. This is the mode which is used in this lab. In this
mode, the counter value is continuously incremented up to a value defined in the first capture and
compare register (CCR0). The counter is reset to 0 each time the value in CCR0 is reached. In this
mode, two separate interrupts are generated which are only 1 cycle apart (if enabled). First the
CCR0 register generates an interrupt when the maximum value has been reached (CCR0 Interrupt).
One cycle later, the timer generates an interrupt because the timer is reset to 0 (TA0 Interrupt).

• Up/Down: The counter value is incremented up to a value defined in the first capture and compare
register (CCR0). Every time the counter reaches the value in the CCR0, the counting direction is
reversed and the counter is counting down. The counting direction is also reversed if the counter
reaches 0. The counter therefore alternately counts up and down.

Capture and Compare Features Most timers provide the following two features:

• Input capture: As depicted in Figure 13, the counter value is copied to a separate register when an
event at one of the CCR inputs occurs. The same event that causes the timer value to be captured
can also trigger new timer events such as a timer interrupt, sending a signal to a peripheral or
modifying a pin.

• Output compare: Figure 14 shows the output compare feature. At every incrementation of the
counter register, the counter value is compared to the compare register. Certain conditions (e.g.
equality) can trigger an event such as a timer interrupt, sending a signal to a peripheral or modifying
a pin.

Usually, one register of a timer can only be configured to provide a single functionality: capturing the
timer value or comparing a value. Such a register is therefore called Capture and Compare Register
(CCR). Oftentimes, a timer has multiple capture and compare registers which are labeled CCRx, where
x is the instance of the CCR. Each CCR register has its corresponding pin. In capture mode, this pin can
be used as an input. In compare mode, the pin represents an output and its behavior (compare output
mode) can be configured in many ways (for more details see Figure 17-12 in the MSP432 Reference
Document lab_documents.zip > launchpad > msp432p4xx-reference.pdf).

10

Capture/Compare
Register (CCRn)

Counter
Register

15 0TAR

Counter
Overflow Action
� Interrupt (TAICG)

Capture Input
� CCInA
� CCInB
� Software

Capture Actions
� Interrupt (CCICGn)
� Signal peripheral
� Modify pin (TAx.n)

Clock Input
� Clock
� GPIO Pin (TACLK)

Copying of
counter value

Figure 13: Input capture functionality of a
timer.

Compare Actions
� Interrupt (CCICGn)
� Signal peripheral
� Modify pin (TAx.n)

Capture/Compare
Register (CCRn)

Counter
Register

15 0

Clock Input
� Clock
� GPIO Pin (TACLK)

Counter
Overflow Action
� Interrupt (TAICG)

Comparing the

two registers

TAR

Figure 14: Output compare functionality of a
timer.

Configuring a Timer The following steps are required to configure and start a timer in output compare
mode:

1. Setting up the counter (e.g. in Up-mode):
Timer_A_configureUpMode()

• Selecting a clock source.
• Selecting a divider to reduce the clock frequency.
• Enabling/disabling interrupts when the counter rolls over (i.e. when it resets to 0).
• Clearing the counter value in the counter register (if required).

2. Setting up capture and compare registers (CCRs):
Timer_A_initCompare()

• Selecting the compare-to value (i.e. selecting the intervals).
• Configuring the output compare mode.
• Enabling/disabling the interrupt on compare.

3. Clearing interrupt flags (if any timer interrupt has been enabled):
Timer_A_clearCaptureCompareInterrupt() and/or
Timer_A_clearInterruptFlag()

4. Starting the timer:
Timer_A_startCounter()

Task 2.1: Periodic Execution
In this task, you will make use of the hardware timer Timer_A of the MSP432 to periodically generate
interrupts. The interrupt is used to toggle LED1.

• Make yourself familiar with the Timer (Timer_xxx) functions in the DriverLib Userguide on
page 312.

• Make sure that only the task2() method is uncommented in the main.c file.
• Use the upConfigA0 struct in the template task_2.c to configure Timer_A0 in Up-mode. The
available arguments are listed in the DriverLib Userguide (DriverLib method
Timer_A_configureUpMode()). Use the following settings:

– Use the SMCLK clock source to drive the timer.

11

– Determine the divider and the CCR0 value of Timer_A0 such that the timer generates one
interrupt every second. (Hint: SMCLK runs at a frequency of 3MHz.)

– Disable timer roll-over interrupts.
– Use the CCR0 compare interrupt to trigger the toggling of the LED (enable the interrupt of

the peripheral).
– Clear the value in the counter register.

CCR0 is special as it is used for setting up the timer in Up-mode. Therefore, it is configured inside
the same struct which is used to configure the Up-mode of the timer. CCR0 is the only register
that can be configured this way when using the DriverLib. For other CCRs, the compare mode
needs to be configured separately (e.g. with Timer_A_initCompare()).

• Configure LED1 as output (Placeholder 1).
• Configure Timer_A0 in Up-mode by using the DriverLib method Timer_A_configureUpMode()
(Placeholder 2). Use the previously defined struct upConfigA0 and pass it by reference, i.e. use
the & operator.

• Clear the interrupt flag of the CCR0 by using the DriverLib method Timer_A_clearCaptureCompareInterrupt
() (Placeholder 3).

• Enable the interrupt from the timer in the interrupt controller (set the interrupt enable (bit) of the
corresponding interrupt source (INT_TA0_0) with Interrupt_enableInterrupt()).

• Enable interrupts globally (Placeholder 3).
• Use the DriverLib method Timer_A_startCounter() to start the timer in Up-mode (Place-
holder 3).

• In the interrupt service routine TA0_0_IRQHandler, toggle the LED1 (Placeholder 5) and clear
the interrupt flag of CCR0 (Placeholder 9). For the second part, you can use the DriverLib method
Timer_A_clearCaptureCompareInterrupt().

• Build and run (debug) your program.
• Verify that LED1 is toggled every second.

Task 2.2: Pulse-Width Modulation Using a Timer
In this task, you will see how Pulse Width Modulation (PWM) works and how we can make use of
Timer_A on the MSP432 to generate a PWM signal (depicted in Figure 15).
The idea of Pulse Width Modulation (PWM) is to switch on and off a consumer at a high frequency. In
this task, we use an LED as a consumer. The amount of ON-time relative to the amount of OFF-time
(also called duty-cycle) determines how much power is delivered to the LED. Because the LED is switched
on and off at a high frequency, the human eye cannot distinguish between on and off and only perceives
a constant intensity level. The brightness of the LED corresponds to the average delivered power (Pavg)
and therefore to the duty-cycle. This means that it is possible to set the brightness of the LED by a
parameter in software. The same principle can also be used to drive other consumers such as motors.
Compared to the previous task, we do not use the timer to generate an interrupt, but we use the output of
the output compare functionality. By default, this output is connected to pin P2.4, however the template
task_2.c makes sure that the output of the CCR1 of the second instance of Timer_A (TA1) is mapped
to port P2.0 (red LED of LED2).

• Continue to use template task_2.c.
• Use the upConfigA1 struct in the template task_2.c to configure Timer_A1 in Up-mode. The
available arguments are listed in the DriverLib Userguide (DriverLib method
Timer_A_configureUpMode()). Use the following settings:

12

Power

Time

Time

Pavg

Pmax

0

0xFFFF

0x0

CCR1

CCR0

Counter Value

Figure 15: Generation of a PWM signal with a timer in UP-mode.

– Use the SMCLK clock source to drive the timer.
– No divider should be used (DIVIDER_1).
– Use PWM_CCR0 which is provided in the template as the value for CCR0. With this, the timer

is configured to have a period of 128 (PERIOD=128) clock cycles. Because the timer starts
counting at 0, the maximum counter value is equal to 127 (PWM_CCR0=127).

– Disable timer roll-over interrupts.
– Disable CCR0 compare interrupt.
– Clear the value in the counter register.

• Use the compareConfigA1 struct in the template task_2.c to configure the output compare
functionality of Timer_A1. The available arguments are listed in the DriverLib Userguide (DriverLib
method Timer_A_initCompare()). Use the following settings:

– Use the CCR1 as the compare register.
– Disable the corresponding CCR1 interrupt.
– Use the toggle-reset output mode.
– Initialize the CCR1 register with the value c1 = 125.

In the toggle-reset mode, the output is toggled whenever the counter reaches the value in the CCR1
and the output is reset (set to 0V) whenever the counter reaches the count-to value (CCR0). This
process is depicted in Figure 15. Further modes (which are not used in this lab) are listed in the
Output Modes Section of the MSP432P4xx Reference Manual (Section 17.2.5.1, p. 613).

• Configure the output compare functionality of Timer_A1 (Placeholder 4). For this, use the Driver-
Lib method Timer_A_initCompare() in addition with the previously defined struct
compareConfigA1. Make sure to pass the struct by reference, i.e. use the & operator.

• Configure the Timer_A1 in Up-mode by using the DriverLib method
Timer_A_configureUpMode() (Placeholder 4). Use the previously defined struct upConfigA1 and
pass it by reference, i.e. use the & operator.

• Use the DriverLib method Timer_A_startCounter() to start Timer_A1 in Up-mode (Place-
holder 4).

• Build and run (debug) the program.
• Observe the intensity of the red LED of LED2 (RGB LED).
• Set the compare value (CCR1) defined in the compareConfigA1 to c2 = 20.

13

• Verify that the brightness of the red LED of LED2 changes as expected.
• What is the relation between the value in CCR1, the duty-cycle and the intensity of the LED
(qualitative relation only)? Calculate the ON-time (in %) for both CCR1 values (c1 and c2).

Task 2.3: Breathing LED [Optional Task]
We can combine the two use cases of the timer learned in the last two tasks (Task 2.1 and Task 2.2)
such that the intensity of the LED changes over time. We use Timer_A1 to generate the PWM signal
and use Timer_A0 to periodically generate an interrupt. Each execution of the ISR decreases the CCR1
value of Timer_A1 by a small value until the value reaches 0. Then, the ISR increases the CCR1 again
until it reaches PWM_CCR0. This process is repeated in order to implement the breathing behavior of the
LED.

• Continue to use the template task_2.c.
• Change the period of Timer_A0 to 500 cycles (use the provided macro TA0_CCR0_BREATH). Use
the largest divider (DIVIDER_64).

• In every interrupt, update the pwmCompareVal variable (Placeholder 6). Depending on the current
direction (variable goUp), increase or decrease the compare value by COMPARE_VAL_INC_STEP.

• Invert the direction of update goUp such that the compare value repeatedly increases up to
PWM_CCR0 and decreases down to 0 again (Placeholder 7).

• Update the compare value of Timer_A1 with the current value in pwmCompareVal (Placeholder 8).
For this, you can use the DriverLib method Timer_A_setCompareValue().

• Build and run (debug) your program.
• Verify that the brightness of the LED changes over time.
• [BONUS] Modify the update of the CCR1 register such that the duty cycle values represent a
sine-shaped curve over time (Hint: You can use the sin() function and the M_PI macro for π).

14

