

Embedded Systems Lab 2 - HS 2020 14.10.2020

Zhongnan Qu

Lab structure

- Goal of today's lab:
 - Get to know hardware interrupts and hardware timers.
- Agenda:
 - Wednesday 16:15 18:00 Introduction (recorded) and questions
 - Friday 16:15 18:00 Questions & Answers
- Available assistants:
 - Zhongnan Qu TA
 - Michael Lustenberger SA
 - Luca Rufer SA

Lab structure

Interactions:

- Exercise Zoom: Questions can be asked throughout the lab in this room by raising your hand. Please feel free to write in the chat in case we oversee your question.
- Help Zoom: Student assistants are available throughout the session for 1-on-1 meetings under the Zoom Meeting ID 917 6971 5701.
- Matrix Chatroom: Questions that are relevant for everyone can be asked in the
 Matrix chatroom where the responsible assistants can answer as quickly as possible.
- In-person: Students can come to ETZ D96 to ask questions in person.

Goals of this Lab

- Configuration of hardware interrupts
- Interrupt vs. Polling
- Learn how to debug program running on a microprocessor
- Configuration of hardware timers
- Implementation of pulse-width modulation (PWM)

Hardware Interrupt

Definition

A hardware interrupt is an electronic signal that alerts the micro-processor of an event. An interrupt can be triggered by either an internal peripheral (e.g. timer) or an external device (e.g. button).

Polling vs. Interrupts

Polling

Interrupts

Setting up an Interrupt

- 1. Enable interrupt for GPIO pin
- Enable interrupt source (GPIO port)
- Globally enable interrupts
- Interrupt service routine (ISR):
 Special "function" which is
 executed when a specific interrupt
 is triggered

Hardware Timer

- Timer_A (TA): internal peripheral of the MSP432.
- 4 instances:TAO, TA1, TA2, TA3

Hardware Timer

- Counter: Main component, incremented on every input edge
- Divider: Divides the input clock signal
- CCR: Registers to control the timer's behavior.
- Counting modes:
 - Continuous
 - Up (used in this lab)
 - Up/Down
- Output: interrupt, modify pin, signal to peripheral

Capture and Compare Input Capture

If an event occurs, the current counter value is stored in the CCR register (and optionally another event is triggered).

Output Compare

Triggers an action if the counter value equals the CCR register value.

Pulse-width Modulation (PWM)

- Switch a load on and off at a high frequency
- Average transferred power can be configured with the duty-cycle in software

Tasks of Lab 2

- Task 1:
 - Interrupts
 - Debugging
- Task 2:
 - Timers
 - PWM

Introduction is over. Feel free to ask questions!

- The assistants are now available until 18:00 to answer questions.
 - Zoom: Either ask in this channel or use the Zoom Meeting ID 917 6971 5701 to talk individually with an assistant.
 - Matrix-Chatroom: Ask a question in the chatroom so other students can also profit from the response (or respond even quicker!)
 - **Email:** For individual questions, you can also reach me under zhongnanqu@ethz.ch.
- On **Friday from 16:15 18:00**, we will also be available for questions.

Happy coding!

Questions?

Zhongnan Qu ETZ G76 +41 44 632 70 21 zhongnanqu@ethz.ch