
Institut für
Technische Informatik und
Kommunikationsnetze

Prof. Lothar Thiele

Embedded Systems - HS 2020

Sample solution to Lab 3
Date : 28.10.2020

Tasks in a real-time operating system

Goals of this Lab
• Introduce a real-time operating system

(RTOS)
• Learn what tasks are and how to create them
• Get to know task states and priorities

• Implement inter-task communication using
queues

• Learn how to handle critical sections

1 Introduction

This lab introduces the concept of tasks in a real-time operating system. For this purpose, we use
FreeRTOS, which is designed to run applications with soft and hard real-time requirements on embedded
platforms. It allows an application to be split into independent tasks, which is important when dealing
with different real-time requirements. Conceptually, FreeRTOS is a real-time kernel taking care of task
handling and allowing embedded applications to use multitasking. In contrast to multi-processor plat-
forms, embedded platforms often contain only one processor which can run only one single task at a
time. In FreeRTOS, this task is defined as being in the Running state, illustrated in Figure 1. All other
tasks are in the Not Running state. The kernel decides when and which task needs to be moved into the
Running state and consequently determines a schedule for the application.

Running

Not Running

The task currently being executed.
This can only be one task at a time.

All tasks which are currently not
in the Running state.

Figure 1: Simplified task states diagram in FreeRTOS.

In the following, a basic application with multiple tasks will be created and the concepts of critical
sections, priorities and queues will be introduced. We provide two FreeRTOS documents for further
reading1: The book "Mastering the FreeRTOS Real Time Kernel" on which the lab is loosely based and
the "FreeRTOS Reference Manual". The documents can be downloaded for free from the FreeRTOS
website (https://www.freertos.org/). The lab as such is self-contained, but we suggest that you
have a look at the FreeRTOS Reference Manual to get a more in-depth understanding of the FreeRTOS

1https://lectures.tik.ee.ethz.ch/es/labs/lab_documents.zip

1

https://www.freertos.org/
https://lectures.tik.ee.ethz.ch/es/labs/lab_documents.zip

functions. For each function example in this lab, we provide a pointer to the corresponding chapter in
the FreeRTOS Reference Manual v9.0.0. Additionally, the book provides a good starting point for further
reading on FreeRTOS.

FreeRTOS task functions In FreeRTOS, tasks can be created with the xTaskCreate() function. The
declaration is shown in Snippet 1. The function takes multiple arguments which are explained throughout
this lab.

0 BaseType_t xTaskCreate (TaskFunction_t pvTaskCode , // Pointer to the task function
1 const char * const pcName , // Descriptive name of the task
2 uint16_t usStackDepth , // Stack size allocated for the task
3 void * pvParameters , // Task specific parameters
4 UBaseType_t uxPriority , // Priority of the task
5 TaskHandle_t * pxCreatedTask // Handle to the task
6);

Snippet 1: Declaration of xTaskCreate(). (c.f. FreeRTOS Reference Chapter 2.6)

pvTaskCode: This argument points to a function which contains the logic of the task. This function
must never exit. Thus, the task functionality should be encapsulated in an infinite loop. Snippet 2
shows an example prototype of such a task function.

pcName: This argument should be chosen to be a descriptive name for the task. This name is not used
by FreeRTOS, but it facilitates the debugging process.

usStackDepth: For each task, a stack will be preallocated. The size of the stack must be specified by
the developer depending on the task’s memory requirements. In this lab, we set usStackDepth to
a default value of 1000. In practice, the required stack size can be traced with FreeRTOS tools
and can then be set to a reasonably small value.

pvParameters: This argument allows users to pass additional information to the task function for
initialization, such as parameters which describe a more detailed behaviour of the task logic. For a
generic use, this is accomplished using a pointer. Thus, any arguments must be passed through a
pointer to a void object. A recap on how to do this can be found in Recap 1.

uxPriority: This argument can be used to assign a priority to the task. The role of priorities will be
explained in Task 2.

pxCreatedTask: This argument allows the user to receive a handle to the created task. Some FreeRTOS
functions require a handle to perform operations on a specific task during run-time, for example
to change the priority of a task or delete a task.

0 void vTaskFunction (void * pvParameters)
1 {
2 // Initialization can be done here ...
3 while (1)
4 {
5 // Task functionality comes here ...
6 }
7 }

Snippet 2: A task function prototype.

The scheduler can be started with the vTaskStartScheduler(), which is called from within main().
Usually, the function will never return and the application will run forever. Consequently, all FreeRTOS
configurations and task creations need to be finished before calling vTaskStartScheduler().

2

0 void vTaskStartScheduler (void)

Snippet 3: Declaration of vTaskStartScheduler(). (c.f. FreeRTOS Reference Chapter 2.31)

Recap 1: Type conversion and pointers
Sometimes, it is required to do a temporary type conversion in C, for example when a function’s
argument type should not be predefined to allow a generic use of the function. In C, a string is
realized with a pointer to a char array. The following code snippet shows how we cast a char pointer
to a void pointer and back.
// Type conversion with a string
char * string = "One line of characters .";
void * pvPointer = (void *) string ;
char * pcPointer = (char *) pvPointer ;

Notice that we did not convert anything in the sense of manipulating the content of the string. We
changed the data type, which only determines how the system should interpret the memory array,
but we did not change the values in memory. As a result, after we changed the data type back from
(void*) to (char*) we can work with pcPointer the same way we do with string.

If we would like to do a temporary type conversion of multiple variables and potentially of multiple
data types at once, we need to align them in memory. We can for example introduce a struct called
task_param_t containing all our variables. This struct can then be casted similarly to the above
example, except that we convert to/from (task_param_t*) instead of (char*). Again, we do not
change the struct’s values in memory.
// Declaring and defining the struct
typedef struct {

uint32_t value ;
int8_t anotherValue ;

} task_param_t ;

// Initialize the variable
task_param_t task_param = {

. value = 0,

. anotherValue = 42,
};

// Type conversion
void * pvStructPointer = (void *)& task_param ; // Create a void pointer directing to

// the memory address of the variable
task_param_t * psStructPointer = (task_param_t *) pvStructPointer ;
task_param_t param = * psStructPointer ; // Assign the value of psStructPointer

// to a new variable param

Project Structure For this lab, we provide you with template projects called lab3_task1 and lab3_task3
as a ZIP file (lab3.zip). Import the projects directly into your workspace using Code Composer Studio’s
"Import from Archive" feature. While the projects contain numerous files to separate different hardware
modules, you will only edit the main_freertos.c file. A more detailed summary of the functionality
implemented by the individual files is given in Table 1.

Task 1: Task Creation
If you haven’t done so, import the lab3_task1 project into Code Composer Studio and open it.

3

Table 1: Project source files and folders of the lab3 projects. System startup code and linker files are
omitted.

File/Folder Name Description

FreeRTOS FreeRTOS source and header files
FreeRTOSConfig.h FreeRTOS configuration header file
main_freertos.c Main program which needs to be modified
uart.{c,h} UART interface initialization and communication

Task 1.1: Creating a printing task
Given the template, write code creating a task that continuously prints out a string over UART.
The task should be created in main() with the name "TaskA" and a corresponding task function
vTaskAFunction() which you need to define. Do not forget to verify that the task has been cor-
rectly created using the return value of type BaseType_t.
From within the task function, the string "TaskA is running and running" should be printed using
uart_println(). After printing, you should wait for a given period using the vSimpleDelay() function.
Instead of hard coding the string into the task function, it should be defined during the creation of the
task by passing it as a task specific parameter. Set the usStackDepth to 1000, the uxPriority to 1
and the pxCreatedTask to NULL. Set Code Composer Studio’s UART terminal to a baudrate of 115200
and check the UART output. What can you see?

Solution for Task 1.1:
The full program is available on the lecture’s website.
We define a task function which contains the functionality of printing and waiting.

1 void vTaskAFunction (void * pvParameters)
2 {
3 char * message = (char *) pvParameters ;
4 uart_println (" Start TaskA .");
5
6 while (1) {
7 uart_println (message);
8 vSimpleDelay ();
9 }

10 }

Snippet 4: Task function of TaskA.

We can use the task function to create the task:

1 // The first task will be created and the string to be printed will be passed as a
parameter

2 uart_println (" Creating TaskA .");
3 char * pcParameters1 = " TaskA is running and running .";
4 result = xTaskCreate (vTaskAFunction , " TaskA ", 1000 , (void *) pcParameters1 , 1, &

xTaskAHandle);
5 if (result != pdPASS) {
6 uart_println (" Error creating TaskA task.");
7 return 0;
8 }
9

Snippet 5: Creating the task.

4

By calling vTaskStartScheduler(), we can then start the application.

Task 1.2: Creating a second concurrent task
Create a second task which prints out the string "TaskB is running and running" . Use the same settings
as for the first task. What do you observe? Can you explain why it might not work properly? An improved
version will be worked out in Task 2.1.

Solution for Task 1.2:

After implementing TaskB, the UART output prints both strings, but somehow the output is corrupted,
which is exemplified in the following listing. (Note: The actual output might differ.)

0 Creating TaskA .
1 Creating TaskB .
2 Start TaskA . Start TaskB .
3 TaskA is
4 0: TaskB irunning ands running an running .
5 d running .
6 TaskA i0: Tasks running aB is runningnd running . and running
7 .
8 TaskA0 : Ta is running skB is runnand running . ing and runn
9 ing .

10 TaskA0 : is running TaskB is rand running . unning and r
11 unning .
12 TaskA is running a0: TaskB isnd running . running and
13 running .

Notice that there are two ways to implement TaskB, albeit both methods will result in incorrect UART
output. Either each task has its own implementation of the task function or one task function is used for
both tasks and only the parameter is changed. In the solution code for Task 1, which is available on the
website, each task has its own task function. There is a significant difference between a task function
and a task instance. A task function (e.g. vTaskFunction()) is the implementation of a task, i.e. its
functionality. Using the task function, multiple task instances can be created and then executed.
Thus, reusing the vTaskAFunction for TaskB also yields the intended result.

0 xTaskCreate (vTaskAFunction , " TaskB ", 1000 , (void *)" TaskB is running and running .", 1, NULL);

Snippet 6: Task creation of TaskB with the same task function from TaskA.

A working example can be seen in the solution to Task 2, which uses one task function to create two
task instances.

Task 1.3: Handles and deleting a task
A task can be deleted with the vTaskDelete() function (c.f. FreeRTOS Reference Chapter 2.11), which
requires a task handle as an argument. A handle to each task can be obtained using the pxCreatedTask
argument when creating the task. If we want to delete a task from within its task function, we can simply
use NULL as the argument to vTaskDelete().
Change your program to do the following: Introduce a global counter in your code which is incremented in
TaskB after printing to UART. When this counter reaches 10, TaskB should delete TaskA using TaskA’s
handle. You need to create the required handles yourself. Finally, when the counter reaches 20, TaskB
should delete itself. Verify the correctness of your program by printing the value of the global counter to
UART at the beginning of each iteration and checking the UART output.

5

Solution for Task 1.3:
First, the global counter and the handle need to be added to the program, as seen in Snippet 7.

1 /* The counter which is used to check when a task should be deleted */
2 int counter = 0;
3
4 /* The handle to TaskA , which can be used to delete TaskA */
5 TaskHandle_t xTaskAHandle = NULL;

Snippet 7: Global definitions of counter and handle.

The next step is to add the handle to our xTaskCreate() function, shown in Snippet 8.

1 // The first task will be created and the string to be printed will be passed as a
parameter

2 uart_println (" Creating TaskA .");
3 char * pcParameters1 = " TaskA is running and running .";
4 result = xTaskCreate (vTaskAFunction , " TaskA ", 1000 , (void *) pcParameters1 , 1, &

xTaskAHandle);
5 if (result != pdPASS) {
6 uart_println (" Error creating TaskA task.");
7 return 0;
8 }
9

Snippet 8: xTaskCreate() with an additional argument to store the task handle.

Finally, we can use vTaskDelete() in our vTaskBFunction() as demonstrated in Snippet 9.

1 void vTaskBFunction (void * pvParameters)
2 {
3 char * message = (char *) pvParameters ;
4 uart_println (" Start TaskB .");
5
6 while (1) {
7 uart_println ("%d: ",counter);
8 uart_println (message);
9 if(counter == 10) {

10 vTaskDelete (xTaskAHandle);
11 }
12 else if(counter == 20) {
13 vTaskDelete (NULL);
14 }
15 counter ++;
16 vSimpleDelay ();
17 }
18 }

Snippet 9: Task function implementation for TaskB.

Task 2: Critical Sections and Priorities
FreeRTOS uses a scheduling algorithm called Fixed Priority Pre-emptive Scheduling with Time Slicing.
The FreeRTOS book explains the terms as follows:

Fixed Priority: Scheduling algorithms described as Fixed Priority do not change the priority assigned
to the scheduled tasks, but also do not prevent the tasks themselves from changing their own priority
or the one of other tasks.

6

Pre-emptive: Pre-emptive scheduling algorithms will immediately "pre-empt" the task currently in the
Running state if a new task that has a higher priority than the currently running one enters the
Ready state. Being pre-empted means being involuntarily (without explicitly yielding or blocking)
moved out of the Running state and into the Ready state to allow a different task to enter the
Running state.

Time Slicing: Time slicing is used to share processing time between tasks of equal priority, even when
the tasks do not explicitly yield or enter the Blocked state. Scheduling algorithms described as
using "Time Slicing" will select a new task to enter the Running state at the end of each time slice
if there are other Ready state tasks that have the same priority as the Running task. A time slice
is equal to the time between two RTOS tick interrupts.

Each task can be assigned a priority with the uxPriority argument of the xTaskCreate() function.
The FreeRTOS scheduler uses these priorities to schedule tasks. The task with the highest priority which
is ready to run will be executed. If two tasks have the same priority and are ready to run, time slicing is
used to share processing time between these tasks.

Mutex Sometimes, an operation on a shared resource should not be pre-empted as the correct func-
tionality of the program is otherwise not guaranteed. In our case, the tasks created in Task 1 have the
same priority and consequently time slicing pre-empts one task in order to also allow the other task to
run. When this happens during an UART transmission, the output will be corrupted.
A mutex can be used to guarantee exclusive access to a shared resource. This can be thought of as
a single token attributed to the shared resource. A task is only allowed to use the resource if it can
successfully obtain the token first. From that moment on, the token is not available for any other task.
When the task has finished using the resource, it must give the token back, thus enabling other tasks to
claim the resource. In FreeRTOS, three functions are used for mutual exclusion: The creation of a mutex
is done with xSemaphoreCreateMutex(), a specific token can be taken with xSemaphoreTake() and
returned with xSemaphoreGive() (c.f. FreeRTOS Reference Chapters 4.6, 4.13, 4.16).

0 // Function to create a new mutex and get its handle
1 SemaphoreHandle_t xSemaphoreCreateMutex (void);
2 // Function to take the mutex
3 xSemaphoreTake (SemaphoreHandle_t xSemaphore , // Handle to the mutex
4 TickType_t xTicksToWait); // Number of ticks to wait before
5 // function returns automatically (timeout)
6 // Function to return the mutex
7 xSemaphoreGive (SemaphoreHandle_t xSemaphore); // Handle to the mutex

Snippet 10: Methods declared in the header file semphr.h to create and use a mutex.

Task 2.1: Mutex
For this task, you can continue to use the previous project lab3_task1. Rewrite the uart_println_mutex()
function using a mutex such that the task cannot be interrupted during an ongoing UART transmis-
sion. First, declare a global SemaphoreHandle_t handle and initialize the handle in main() with the
xSemaphoreCreateMutex() function. For this, make sure to include semphr.h. Then, use xSemaphoreTake
and xSemaphoreGive to modify uart_println_mutex(). You can use FreeRTOS’s global definition
portMAX_DELAY as input for the xTicksToWait argument of xSemaphoreTake. Verify that your UART
output is not corrupted anymore. In which order are the tasks being executed?

Solution for Task 2.1:
First, we need to declare the mutex and define it in the main function.

7

1 /* The semaphore handle , which is used in uart_println_mutex () */
2 SemaphoreHandle_t xMutex ;

1 xMutex = xSemaphoreCreateMutex ();
2

Snippet 11: Mutex declaration and assignment.

Then, we change the uart_println_mutex() function to use a mutex.

1 void uart_println_mutex (const char* str , ...)
2 {
3 xSemaphoreTake (xMutex , portMAX_DELAY);
4
5 // ======= DO NOT EDIT BELOW THIS LINE =======
6 static char print_buffer [256];
7
8 va_list lst;
9 va_start (lst , str);

10 vsnprintf (print_buffer , 256 , str , lst);
11 str = print_buffer ;
12 while (* str)
13 {
14 while (!(EUSCI_A_CMSIS (UART_INTERFACE)->IFG & EUSCI_A_IFG_TXIFG));
15 EUSCI_A_CMSIS (UART_INTERFACE)->TXBUF = *str;
16 str ++;
17 }
18 while (!(EUSCI_A_CMSIS (UART_INTERFACE)->IFG & EUSCI_A_IFG_TXIFG));
19 EUSCI_A_CMSIS (UART_INTERFACE)->TXBUF = ’\r’;
20 while (!(EUSCI_A_CMSIS (UART_INTERFACE)->IFG & EUSCI_A_IFG_TXIFG));
21 EUSCI_A_CMSIS (UART_INTERFACE)->TXBUF = ’\n’;
22 // ======= DO NOT EDIT ABOVE THIS LINE =======
23
24 xSemaphoreGive (xMutex);
25 }

Snippet 12: Inclusion of mutex in uart_println_mutex().

After these changes, we can verify in the UART output seen on the console that TaskA is executed first
and prints its message before TaskB. This is because we have defined TaskA first and both tasks have
the same priority, which results in a round-robin scheduling of all tasks with the same priority in the order
in which they have been defined.

Task 2.2: Priorities
Change the priorities of your tasks such that the first task has a priority of 1 and the second task a
priority of 2. What can you observe?

Solution for Task 2.2:
Only TaskB runs after changing the priorities, which is explained in the following subsection.

Non-blocking delay Our task function has a major drawback. After the string is printed via UART,
the task waits for a while. In principle, the task is idle and during this time, the second task could print
its string. However, the vSimpleDelay() function is implemented as an empty for-loop that simply
continuously iterates the counter variable. From the scheduler’s perspective, the task is still in the Run-
ning state because it is processing the for-loop. FreeRTOS offers a better solution to wait for a given

8

time: the vTaskDelay() function, which is based on timers.

0 void vTaskDelay (TickType_t xTicksToDelay);

Snippet 13: A non-blocking delay function from FreeRTOS. (c.f. FreeRTOS Reference Chapter 2.9)

To fully understand how the function works, we first need to have a look at the more detailed task state
machine in Figure 2, which is an extension of the state machine in Figure 1.
vTaskDelay() changes the state of the calling task from Running state to Blocked state for a given
time period. Thus, the task will be in the Not Running superstate and another task, which is in the
Ready state, can be executed. How long the delayed task will be in the Blocked state is specified in ticks
by the xTicksToDelay argument. Ticks is a timing unit used internally by FreeRTOS. For convenience,
you can use the pdMS_TO_TICKS() function, which converts milliseconds to ticks. When the specified
delay time has passed, an event occurs which moves the task into the Ready state.

Running

Ready BlockedSuspended

Not Running

vTaskSuspend() Blocking API
function call

Event

vTaskResume()

vTaskSuspend()

vTaskSuspend()

Figure 2: The task state machine of FreeRTOS.

Task 2.3: Blocked state
Change the code such that both the lower priority and the higher priority task are able to execute and
the tasks print their string once every second. In which order do both tasks execute?

Solution for Task 2.3:
We exchange vSimpleDelay() with vTaskDelay(). Make sure to convert your delay time from mil-
liseconds to clock ticks using the pdMS_TO_TICKS() function.

1 vTaskDelay (pdMS_TO_TICKS (1000));
2

Snippet 14: Substitution of vSimpleDelay() with vTaskDelay().

The order of execution depends on the task priority. Since the priorities are set before the FreeRTOS
scheduler starts, it moves the task with the higher priority (TaskB) into the Running state first.

Task 3: Queues

9

Queues provide an easy way to communicate between tasks and are realized as First-In-First-Out (FIFO)
buffers in FreeRTOS. Each queue can maximally hold a predefined number of data items. These items
can be of any size as long as the item size is fixed before the creation of the queue. In FreeRTOS,
queues can be created with the xQueueCreate() function, where number of items (uxQueueLength)
and item size (uxItemSize) must be defined. The function returns a handle to the queue which must
be used to place items in the queue with xQueueSendToBack() and take items from the queue with
xQueueReceive(). The handle must be available to all tasks which want to use the queue.
The xTicksToWait argument of xQueueSendToBack() and xQueueReceive() specify a block time.
When a task tries to read from an empty queue, it will be kept in the Blocked state until either another
task writes to the queue or the block time expires. Similarly, when the queue is full and a task tries to
write to the queue, it will be kept in the Blocked state until either another task reads from the queue or
the block time expires. In case of a timeout, an error code (pdFALSE) will be returned. When either of
these events happen, the task will be automatically moved to the Ready state .

0 QueueHandle_t xQueueCreate (UBaseType_t uxQueueLength , // Number of items in the queue
1 UBaseType_t uxItemSize // Size of item in bytes
2);
3
4 BaseType_t xQueueSendToBack (QueueHandle_t xQueue , // Queue handle
5 const void * pvItemToQueue , // Pointer to the item to be send
6 TickType_t xTicksToWait // Ticks until moved to Ready state
7);
8
9 BaseType_t xQueueReceive (QueueHandle_t xQueue , // Queue handle

10 void * const pvBuffer , // Copy of the item to be received
11 TickType_t xTicksToWait // Ticks until moved to Ready state
12);

Snippet 15: Methods for handling queues in FreeRTOS. (c.f. FreeRTOS Reference Chapters 3.3, 3.16,
3.22)

Task 3.1: Inter-Task communication
For this task, you can use the new template project file lab3_task3.
Write a program with two tasks. Both tasks should declare a local uint32_t variable. The first task
(SquareTask) should initialize the local variable with the value 4. The second task (DecrementTask)
should initialize it with 0. The tasks should follow a routine which is illustrated in Figure 3.

Queuesy = x * x y = x - 1

y x

x y

DecrementTaskSquareTask

Figure 3: Routine of the application.

The SquareTask routine should:

(a) Communicate the value of its local variable to the DecrementTask via a queue.

(b) Wait for a value to be received.

(c) Square the received value and update the local variable with the result.

10

(d) Repeat from (a).

The DecrementTask routine should:

(a) Wait for a value to be received.

(b) Decrement the received value by one and update the local variable with the result.

(c) Communicate the value of the local variable to the SquareTask via a queue.

(d) Repeat from (a).

Each task should do the following after receiving a value:

• Print its name and the current value of its local variable.
• Check if the value exceeds 10’000. If this is the case, the task should delete itself.

The overall goal of this task is to create the above mentioned functionality without using global variables.
For simpler debugging, you can subdivide the task into two steps:

• Start by implementing the required queue handles as global variables. Then, implement the task
routines and test if the UART output resembles the desired functionality.

• Avoid the global variables by passing the queue handles as function parameters. Verify that your
solution still works.

Solution for Task 3.1:
We need to create two queues. One is for sending values from the SquareTask to the DecrementTask,
the other is for sending them in the reverse direction. Since both tasks only send something when they
previously received a value, the tasks wait for each other and it is sufficient to have a queue length of
one. The size of each item depends on the variable type which will be used in the queue. In this case,
we make use of a uint32_t (4 bytes).

1 QueueHandle_t xSq2DecrHandle = xQueueCreate (1, sizeof (uint32_t));
2 QueueHandle_t xDecr2SqHandle = xQueueCreate (1, sizeof (uint32_t));
3

Snippet 16: Definition and declaration of the two queues.

Since we want to avoid global queue handles, we have to make the handles accessible to the tasks.
This can be achieved by passing them as task parameters. First, we define a struct containing two
QueueHandle_t.

1 typedef struct {
2 QueueHandle_t sq2decr ;
3 QueueHandle_t decr2sq ;
4 } qhandles_params_t ;

Snippet 17: Definition of the struct which is handed over during task creation.

We can initialize our task parameters with the previously created queue handles and use them when
creating each task. Note that it is sufficient to use the same parameter for both tasks, since each task
needs both handles.
Finally, we can implement both tasks. Note that the ordering of xQueueSendToBack() and xQueueReceive()
is important since we need to start by sending something in the SquareTask function; otherwise the ap-
plication would never start and remain in a dead-lock.

11

1 qhandles_params_t qhandles_params = {
2 . sq2decr = xSq2DecrHandle ,
3 . decr2sq = xDecr2SqHandle ,
4 };
5 void * pvParameters = (void *)& qhandles_params ;
6
7 // Create the task used to send data via UART
8 uart_println_mutex (" Creating SquareTask .");
9 result = xTaskCreate (vSquareTaskFunction , " SquareTask ", 2000 , pvParameters , 1, NULL);

10 if (result != pdPASS) {
11 uart_println_mutex (" Error creating SquareTask task.");
12 return 0;
13 }
14
15 uart_println_mutex (" Creating DecrementTask .");
16 result = xTaskCreate (vDecrementTaskFunction , " DecrementTask ", 2000 , pvParameters , 1,

NULL);
17 if (result != pdPASS) {
18 uart_println_mutex (" Error creating DecrementTask task.");
19 return 0;
20 }
21

Snippet 18: Task creation by passing the queues directly as an argument.

12

1 void vSquareTaskFunction (void * pvParameters)
2 {
3 uart_println_mutex (" Start square task.");
4 // Convert our parameter from (void *) to the qhandles_params_t struct .
5 qhandles_params_t handles = *((qhandles_params_t *) pvParameters);
6
7 uint32_t var =4;
8 while (1) {
9 // Send the value to the DecrementTask

10 xQueueSendToBack (handles .sq2decr ,(void *)&var , portMAX_DELAY);
11 // Blocking wait until we receive from the DecrementTask . This will overwrite our

local variable
12 xQueueReceive (handles .decr2sq ,(void *)&var , portMAX_DELAY);
13 uart_println_mutex (" Value : %d - SquareTask ",var);
14 if(var > 10000)
15 vTaskDelete (NULL);
16 var = var * var;
17 }
18 }
19
20 /**
21 * The task initalizes a variable with 0,
22 * receives the value from the SquareTask and decrements the value before sending
23 * it back to the SquareTask
24 * @param pvParameters : qhandles_params_t struct containing the queue handles
25 */
26 void vDecrementTaskFunction (void * pvParameters)
27 {
28 uart_println_mutex (" Start decrement task.");
29 // Convert our parameter from (void *) to the qhandles_params_t struct .
30 qhandles_params_t handles = *((qhandles_params_t *) pvParameters);
31
32 uint32_t var =0;
33 while (1) {
34 // Blocking wait until we receive from the SquareTask . This will overwrite our local

variable
35 xQueueReceive (handles .sq2decr ,(void *)&var , portMAX_DELAY);
36 uart_println_mutex (" Value : %d - DecrementTask ",var);
37 if(var > 10000)
38 vTaskDelete (NULL);
39 var = var - 1;
40 // Send the value to the SquareTask
41 xQueueSendToBack (handles .decr2sq ,(void *)&var , portMAX_DELAY);
42 }
43 }

Snippet 19: Implementation of SquareTask and DecrementTask.

0 Creating SquareTask .
1 Creating DecrementTask .
2 Start square task.
3 Start decrement task.
4 Value : 4 - DecrementTask
5 Value : 3 - SquareTask
6 Value : 9 - DecrementTask
7 Value : 8 - SquareTask
8 Value : 64 - DecrementTask
9 Value : 63 - SquareTask

10 Value : 3969 - DecrementTask
11 Value : 3968 - SquareTask
12 Value : 15745024 - DecrementTask

Snippet 20: Expected UART output of the application. Note that we use uart_println_mutex to
make sure the output is printed in the correct order.

13

	Introduction

