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Goals of this Lab

In this last lab session, you will combine your knowl-
edge from previous Embedded Systems labs in an
interactive sensor application. At the end of this ses-
sion, you will be able to:

• write your own FreeRTOS tasks from scratch.
• combine individual tasks and data queues to

build a FreeRTOS embedded application.
• understand how interrupts are handled in the

context of FreeRTOS.

Introduction

In this lab, you will program an interactive FreeRTOS sensing application to review and apply the concepts
learned in previous labs. While we provide you with an implementation of the functionality for most of
the application’s tasks with the project template, you are going to implement one of them on your own
and combine all of them to build the final application.

Sensor Hardware The MSP432 LaunchPad itself does not include any sensors. To build an interactive
application, you therefore get a sensor extension board (also called BoosterPack1) for this lab. More
specifically, you are going to use the SENSOR-BOOSTERXL board that includes two motion and three
ambient sensors. The focus in this lab will be on using the BMI160 accelerometer. All relevant docu-
mentation of the sensor booster pack and the datasheets of the individual sensors can be found in the
boosterpack_sensors directory of the Supplementary Material (lab_documents.zip) for the labs on
the course website. Make sure to connect the sensor extension board as described in its user guide before
starting with the lab.

Application Functionality and Structure The FreeRTOS application you are going to implement in
this lab consists of four tasks, three queues as well as one interrupt service routine that handles two
different interrupts. After system and task initialization, the application reads new accelerometer sensor
values using a Sensor task and stores them in the sensor data queue. The Processing task reads this
data and calculates the LaunchPad’s attitude from it. In this lab, the LaunchPad’s attitude is its rotation
with respect to an inertial reference frame (i.e. the desk’s surface). Mathematically, the 2-dimensional
attitude is defined as the tuple {θx, θy}. Angle θx refers to the rotation between the inertial reference
plane (~x, ~y) and LaunchPad’s ~xs-axes, while angle θy refers to the rotation between corresponding ~ys-
axes. The definitions of these angles are also illustrated in Figure 2. This will be useful to implement the
Processing task functionality in Task 2.3. If the resulting attitude changes more than 5◦ in any direction,

1More information about the BoosterPack ecosystem can be found at http://www.ti.com/boosterpacks.
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Figure 1: High-level data flow of the application you are going to implement in this lab. Components
provided to you in the project template are highlighted. The data types in the task boxes or below the
queue symbols indicate which data structures you are going to use for task arguments or queues. Below
each task and queue, the variable name for the respective task and queue handles are given.
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Figure 2: The LaunchPad’s 2-dimensional attitude is defined by the angles θx and θy, referring to the
rotation between the inertial reference plane (~x, ~y) and the LaunchPad’s ~xs- and ~ys-axes, respectively. For
the calculation of these angles later in this lab, we assume that no other force than earth’s gravitational
pull is applied to the LaunchPad.

the new attitude is added to two output queues, the Print and LED queues. The Print task prints the
new attitude to the UART interface, while the LED task switches the on-board LED2 from green to red
if the LaunchPad was tilted beyond a critical angle of 30◦. The last component is an interrupt handler,
which stores or resets the accelerometer’s sensor offset values when the buttons S1 or S2 are pressed,
respectively. The interaction of the tasks and queues, as well as their arguments, data types, and already
declared handler variables are shown in Figure 1. The Sensor, Print and LED tasks and all required data
structures and defines are already provided in the project template. You are going to implement the
remaining parts of the application step-by-step in this lab.

Project Structure For this lab, we provide you with a template project named lab4 as a Zip file
(lab4.zip). Import this project directly into your workspace using Code Composer Studio. While the
project contains numerous files to separate different hardware modules, you will only edit the app.c,
gpio.c, main_freertos.c and interrupt.c files and look up some predefined data structures and
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Table 1: Project source files and folders of the lab4 project. System startup code and linker files are
omitted. The last column shows whether a file will be modified during this lab.

File/Folder Name Description Modified in

FreeRTOS FreeRTOS source and header files -
libraries MSP432 DriverLib and Bosch BMI160 sensor library code -
app.c Application tasks are implemented in this file Task 2
app.h Definitions and data structures for all tasks -
FreeRTOSConfig.h FreeRTOS configuration header file -
gpio.c GPIO initialization and interrupt setup Task 3
gpio.h GPIO definitions -
interrupt.c Interrupt service routines Task 3
interrupt.h Definitions for interrupts -
main_freertos.c Main program initializing the FreeRTOS tasks and queues Task 1, 2
sensor.c/h I2C interface code for the sensor library -
uart.c/h UART interface initialization and communication -

Table 2: Task functionality and parameter overview.

Task Task Handle Parameters (Queue Handle) Function Name

Sensor xSensorTaskHandle output (xSensorQueueHandle) prvSensorTask
Processing xProcessingTaskHandle input (xSensorQueueHandle)

output 1 (xPrintQueueHandle)
output 2 (xLedQueueHandle)

prvProcessingTask

Print xPrintTaskHandle input (xPrintQueueHandle) prvPrintTask
LED xLedTaskHandle input (xLedQueueHandle) prvLedTask

constants in the corresponding header files. A more detailed summary of the functionality implemented
by the individual files is given in Table 1. For reference, when implementing the tasks and queues, the
task handle names, required parameters, and task function names are listed in Table 2. For more details
on functions, data structures and definitions, we refer you to the documentation in the corresponding
source and header files.

General Remarks If you reset the application while it accesses the accelerometer, the program locks up
during sensor initialization upon restart because the sensor is unresponsive (this can occasionally happen).
As a consequence, both LEDs remain dark and you will likely find the processor executing an infinite loop
inside a DriverLib function called I2C_isBusBusy. A power cycle of the LaunchPad typically solves this
issue: simply unplug the USB connection, wait some seconds for buffer capacitances to discharge, and
replug it again.
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Task 1: Combining Tasks to Form a FreeRTOS Application
To get started with today’s lab, download the lab4.zip project template from the course webpage and
import it into your workspace using Code Composer Studio.
Open main_freertos.c and scroll to the main function. It only contains some startup code to initialize
the GPIO and UART peripherals, followed by two long comments summarizing the tasks to implement in
this file and a UART print function call. When running this application (the template is a valid C program
that compiles and runs), nothing happens beyond printing that initialization is complete. In contrary to
the printed message, none of the tasks and queues described above are initialized or executed.
In this first task, you will extend the main function to create the queues and the tasks that are already
provided by the template.

Task 1.1: Task Parameters and Priorities
Before starting with any implementation, you should have a closer look at the app.h header file. All task
and queue related data structures and constants are already defined there.

(a) Locate the definitions for the task priorities, named app###_TASK_PRIORITY, where ### is the
name of the task. In which order do you expect FreeRTOS to start the tasks? Assume that the
tasks block after initialization (e.g. on a queue read).

(b) How many data elements is the print queue going to store?

Solution for Task 1.1:

(a) The task priorities are increasing in the following order: Sensor, Processing, LED, Print. FreeRTOS
will first run the Print task and then continue with the next lower priority task as soon as it
encounters a blocking queue read.

(b) The appPRINT_QUEUE_LENGTH macro defines a queue length of a single element.

Task 1.2: Creating Data Queues
In the main function, add the necessary code to create the three queues shown in Figure 1. All required
constants and data structures have been defined in app.h and are already included. Store the returned
queue handles in the corresponding variables x###QueueHandle declared at the beginning of the file and
check each queue handler for errors during creation by verifying that it is a valid handler.

Recap 1: Creating Queues in FreeRTOS
For creating a new FreeRTOS queue, use the xQueueCreate(...) function:
QueueHandle_t xQueueCreate ( UBaseType_t uxQueueLength , // Max number of queue items

UBaseType_t uxItemSize // Size of an item in bytes
);

This function returns a valid queue handle if the queue was created. If there is not enough memory
available to allocate the queue, a NULL value is returned. The function sizeof() can be used to
determine the size of an arbitrary data structure.
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Solution for Task 1.2:
A sample implementation for Task 1.2 is shown in Snippet 1. Notice that we compare each handle against
NULL to verify that it corresponds to a valid task.

1 BaseType_t result = pdPASS ;
2
3 // Create Sensor data queue
4 xSensorQueueHandle = xQueueCreate ( appSENSOR_QUEUE_LENGTH , sizeof ( sensor_data_t ));
5 if ( xSensorQueueHandle == NULL)
6 {
7 uart_println (" Error creating Sensor data queue .");
8 return 0;
9 }

10
11 // Create Print data queue
12 xPrintQueueHandle = xQueueCreate ( appPRINT_QUEUE_LENGTH , sizeof ( attitude_data_t ));
13 if ( xPrintQueueHandle == NULL)
14 {
15 uart_println (" Error creating Print data queue .");
16 return 0;
17 }
18
19 // Create LED data queue
20 xLedQueueHandle = xQueueCreate ( appLED_QUEUE_LENGTH , sizeof ( attitude_data_t ));
21 if ( xPrintQueueHandle == NULL)
22 {
23 uart_println (" Error creating LED data queue .");
24 return 0;
25 }
26

Snippet 1: Sample solution code for Task 1.2.

Task 1.3: Create Existing Tasks
Now that the queues and their handles have been defined, you can create the tasks that make use of these
queues. Create the Sensor, LED and Print tasks for which we already provide you with the necessary
functions that implement the logic in app.c (prv###Task). The Processing task is skipped for now and
is going to be created as part of Task 2.
For each task, first create the required task argument variables (of type ###_task_param_t) before you
create the actual task. All required data structures and constants are already available from the app.h
header; check their detailed documentation in the source code. Once again, do not forget to check for
errors after the creation of each task.

Recap 2: Creating Tasks in FreeRTOS
For creating a FreeRTOS task, use the xTaskCreate(...) function:
BaseType_t xTaskCreate ( TaskFunction_t pvTaskCode , // Pointer to the task function

const char * const pcName , // Task name
uint16_t usStackDepth , // Stack size to allocate
void * pvParameters , // Task specific parameters
UBaseType_t uxPriority , // Priority of the task
TaskHandle_t * pxCreatedTask // Handle to the task

);

This function returns pdPASS if the task was successfully created and stores the task handle at
the memory location specified by pxCreatedTask. In case of insufficient memory to create a task,
errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY is returned.
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Solution for Task 1.3:
A sample implementation for Task 1.3 is shown in Snippet 2.

1 // Create the task used to read the motion sensors
2 sensor_task_param_t sensor_task_param = {
3 . outDataQueue = xSensorQueueHandle ,
4 };
5 result = xTaskCreate ( prvSensorTask ,
6 " Sensor ",
7 appDEFAULT_TASK_STACK_SIZE ,
8 & sensor_task_param ,
9 appSENSOR_TASK_PRIORITY ,

10 & xSensorTaskHandle );
11 if ( result != pdPASS )
12 {
13 uart_println (" Error creating Sensor task.");
14 return 0;
15 }
16
17 // Create the task used to send data via UART
18 print_task_param_t print_task_param = {
19 . inDataQueue = xPrintQueueHandle ,
20 };
21 result = xTaskCreate ( prvPrintTask ,
22 " Print ",
23 appPRINT_TASK_STACK_SIZE ,
24 & print_task_param ,
25 appPRINT_TASK_PRIORITY ,
26 & xPrintTaskHandle );
27 if ( result != pdPASS )
28 {
29 uart_println (" Error creating Print task.");
30 return 0;
31 }
32
33 // Create the task used to indicate the current angle using the LED
34 led_task_param_t led_task_param = {
35 . inDataQueue = xLedQueueHandle ,
36 };
37 result = xTaskCreate ( prvLedTask ,
38 "LED",
39 appDEFAULT_TASK_STACK_SIZE ,
40 & led_task_param ,
41 appLED_TASK_PRIORITY ,
42 & xLedTaskHandle );
43 if ( result != pdPASS )
44 {
45 uart_println (" Error creating LED task.");
46 return 0;
47 }
48

Snippet 2: Sample solution code for Task 1.3.

Task 1.4: Testing Start Sequence of Tasks
Compile and run your application to test your implementation of the previous two tasks. Before resuming
the program execution at main, open a serial port terminal to display the output written to the UART.
Use a baudrate of 115200 and the default settings of 8 data bits, one stop bit and no parity or flow
control.
Resume the task execution and observe the UART output. Each task writes a message to the UART
when it is started for the first time. In which order are the tasks being started? Does this match your
expectations from Task 1.1?
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Solution for Task 1.4:
The tasks are starting in the expected order of decreasing priority: Print, LED, Sensor. There is no
Processing task output, as it is not created at this point.

Task 2: Adding a new FreeRTOS Task
In this task, you are going to implement the missing Processing task step-by-step and integrate it into
the application. This will lead to the (almost) feature-complete application described in the introduction,
missing only the button functionality.

Task 2.1: Create a new task function
As you have learned in the last lab, the logic of FreeRTOS tasks is implemented in a function that takes
a single void pointer argument and has no return value. To start with the new FreeRTOS task, create
an empty function named prvProcessingTask following exactly this prototype. Implement this function
in the beginning of the file app.c, right below the comment summarizing this and subsequent steps of
this task.

Solution for Task 2.1:
The complete implementation of the prvProcessingTask function is given in Snippet 3 at the end of
this task.

Task 2.2: Processing task arguments
Next, you will read the necessary task parameters passed as arguments.

(a) What information needs to be passed as argument to the Processing task so that it can implement
the described functionality? Hint: Check the application description in the introduction again as
well as the overview in Figure 1.

(b) The necessary data structure that holds the processing task arguments is already defined in the
app.h header. Add the necessary code at the beginning of the prvProcessingTask function to
copy the parameters to local variables. Recall the pointer type conversion from Lab 3.

Solution for Task 2.2:

(a) The task needs to know the input Sensor queue to read the sensor data from and the two output
Print and LED queues to write the processed data to. The handles for these queues are passed as
an argument using the processing_task_param_t structure defined in the app.h header file.

(b) The complete implementation of the prvProcessingTask function is given in Snippet 3 at the
end of this task.

Task 2.3: Implementing the Task Logic
Now you are going to add the actual task logic described in the introduction:

(a) After reading the task argument and before the task’s main loop, print the message "Processing
task starting..." over the UART to indicate that the task is starting.
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(b) Create an infinite main loop to continuously wait for new sensor data, process it to calculate
the LaunchPad’s attitude, and forward the result to the Print and LED queues if it has changed
significantly. To do so, implement the following procedure inside the loop:

(i) Perform a blocking read on the Sensor queue to wait for new sensor data.
(ii) Compensate for offsets in the acceleration sensor data by subtracting the calibration values

stored in the calibration_acc variable. This global variable is already defined and initialized
at the beginning of app.c. You do not need to worry about updating the calibration value at
this point (this is part of Task 3).

(iii) Allocate two variables for the tilt angles θx and θy that define the LaunchPad’s attitude. For
now, initialize them with a constant value, for example θx = −5.0 and θy = +15.0 degrees.
Later in this task, you will derive the formula to calculate these values from the sensor data.

(iv) Store the calculated θx, θy and the timestamp of the original sensor readings in a combined
attitude structure of type attitude_data_t.

(v) Forward the attitude to the Print and LED tasks if and only if it has changed significantly from
the last forwarded value. A change is significant if at least one of the angles has changed more
than the threshold defined as appANGLE_SIGNIFICANT_CHANGE macro (value in degrees).

At this point, the application can be tested in Task 2.5 without considering actual sensor data.
However, the constant attitude values are printed at most once, since they never change. Switching
back to this constant initialization of θx and θy might help in case you need to debug your
application in Task 2.5.

(c) Lastly, replace the constant initialization of the LaunchPad’s attitude, i.e. the tilt angles θx and θy,
with the actual calculation based on the sensor data and store θx and θy in degrees. Recall that:

• The definition of θx and θy are illustrated in Figure 2.
• The sensor outputs the resulting acceleration vector, expressed in the sensor axes ( ~xs, ~ys, ~zs).

In other words, when the Launchpad is stationary, the sensor measures −~g, where ~g is the
acceleration of the gravity (we assume the accelerometer measures only earth’ gravitational
pull).

Hints:

• The math.h2 header is included and a PI constant defined – you can make use of trigonometric
functions right away.

• How do you compute the norm of ~g from the sensor data?
• How do you compute the angle between a vector and a plane?

Solution for Task 2.3:
A sample implementation of the full Processing task is given in Snippet 3.

Task 2.4: Create and start the new task
Go back to the main_freertos.c file and create the Processing task you just implemented at the end
of the main function. The necessary data structures and constants are defined in the app.h header.

Solution for Task 2.4:
The code to create the Processing task is shown in Snippet 4.

2Details about functions declared in the math.h header are found at http://www.cplusplus.com/reference/cmath/.
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1 void prvProcessingTask (void* pvParameters )
2 {
3 // Data structures
4 sensor_data_t sensor_data ;
5 attitude_data_t attitude_data ;
6 processing_task_param_t param ;
7
8 // Get the task parameters
9 param = *(( processing_task_param_t *) pvParameters );

10
11 // Low level init
12 // --- not required ---
13
14 // Print task start
15 uart_println (" Processing task starting ...");
16
17 // Comparison variables ( invalid angle value to update on first run)
18 attitude_data_t attitude_last = {
19 . theta_x = -1000 , . theta_y = -1000 , .time = 0,
20 };
21
22 // Enter main sensing loop
23 while (1)
24 {
25 // Wait for new sensor data to be sent
26 xQueueReceive ( param . inDataQueue , (void *)& sensor_data , portMAX_DELAY );
27
28 // Offset compensation
29 float acc_x = ( float )( sensor_data . acc_x - calibration_acc .x);
30 float acc_y = ( float )( sensor_data . acc_y - calibration_acc .y);
31 float acc_z = ( float )( sensor_data . acc_z - calibration_acc .z);
32
33 // Basic angle calculation for gravity vector
34 float norm = sqrtf ( acc_x * acc_x + acc_y * acc_y + acc_z * acc_z );
35 float theta_x = asinf ( acc_x /norm); // in radian
36 float theta_y = asinf ( acc_y /norm); // in radian
37
38 attitude_data . theta_x = 180 * theta_x / PI; // in degree
39 attitude_data . theta_y = 180 * theta_y / PI; // in degree
40 attitude_data .time = sensor_data .time;
41
42 // Check if angles changed more than specified value
43 if (abs( attitude_data . theta_x - attitude_last . theta_x ) >= appANGLE_SIGNIFICANT_CHANGE ||
44 abs( attitude_data . theta_y - attitude_last . theta_y ) >= appANGLE_SIGNIFICANT_CHANGE )
45 {
46 // Send updated value
47 xQueueSendToBack ( param . outLedQueue , (void *)& attitude_data , 0);
48 xQueueSendToBack ( param . outPrintQueue , (void *)& attitude_data , 0);
49 attitude_last = attitude_data ;
50 }
51 }
52
53 // Delete task before reaching end
54 vTaskDelete (NULL);
55 }

Snippet 3: Sample implementation of the Processing task logic.

Task 2.5: Testing the Full Application
Compile and run your code to test your application. Again, use the terminal to check the UART output:
you should now see all tasks starting in decreasing order of priority, now also including the Processing task.
Following the task initialization, new attitude data is displayed whenever the board’s attitude changed
more than 5◦. The resulting output should be similar to the sample shown in Snippet 5. If you tilt the
board beyond 30◦ in either direction, the LED2 color should change from green to red.
What is the reason that all tasks, including the lowest priority sensor task, are executed before the first
attitude value is printed to UART?
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1 // Create the task used to process sensor data
2 processing_task_param_t processing_task_param = {
3 . inDataQueue = xSensorQueueHandle ,
4 . outLedQueue = xLedQueueHandle ,
5 . outPrintQueue = xPrintQueueHandle ,
6 };
7 result = xTaskCreate ( prvProcessingTask ,
8 " Processing ",
9 appDEFAULT_TASK_STACK_SIZE ,

10 & processing_task_param ,
11 appPROCESSING_TASK_PRIORITY ,
12 & xProcessingTaskHandle );
13 if ( result != pdPASS )
14 {
15 uart_println (" Error creating Processing task.");
16 return 0;
17 }
18

Snippet 4: Sample solution code for Task 2.4.

0 Queues and tasks initialized .
1 Print task starting ...
2 LED task starting ...
3 Processing task starting ...
4 Sensor task starting ...
5 time: 3546 -- theta_x : 2002 theta_y : 492
6 time: 18674 -- theta_x : -3400 theta_y : 1465

Snippet 5: Expected UART output of the application. The time value is the accelerometer internal times-
tamp of when the sensor values are read, the angles θx and θy are displayed in millidegrees (1× 10−3◦).

Solution for Task 2.5:
The tasks are started in decreasing priority order. Because all queues are empty at the beginning, they
block after initialization, waiting for new data to read from their input queue. At this point FreeRTOS
switches to the next lower priority tasks, which again blocks after initialization, waiting for data to arrive
in the incoming data queue. Only the lowest priority Sensor does not block and starts reading the first
sensor data. As soon as it writes a new sensor value to the sensor data queue, it is pre-empted by the
Processing task that was in a blocked state and was not able to resume before, and similarly with the
LED and Print tasks as soon as the Processing task adds new results to the corresponding queues.

Task 3: Interrupt Handling in FreeRTOS (Optional)
Finally, you will integrate two button interrupts to add on-demand sensor calibration. For this, you can
use interrupts to a) store the current sensor readings as offset values for subsequent calculations (see
Task 2.3) using the left button (S1) and b) reset the offset values to zero with the right button (S2).
Interrupts in the context of FreeRTOS are configured and handled exactly the same way as in a bare-
metal implementation (covered in Lab 2). Some restrictions apply to FreeRTOS API calls from within
the interrupt service routine, but in today’s lab you will not make use of them inside the interrupt service
routine. For more details, we refer interested readers to Chapter 6 of the FreeRTOS tutorial book3.

Task 3.1: Configure and Enable Button Interrupts
Open gpio.c, where you find the GPIO initialization function. Add the necessary code at the end of the

3The FreeRTOS tutorial book is available at http://www.freertos.org/Documentation/RTOS_book.html.
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gpio_init function to setup and enable the interrupts for the buttons S1 and S2. All required constants
are already defined in the gpio.h header.

Recap 3: Interrupt Configuration
Remember to clear the corresponding interrupt flag before enabling an interrupt. You must not
only enable the interrupt in the GPIO peripheral module, but also enable interrupts for the spe-
cific module using the Interrupt_enableInterrupt(...) DriverLib function. In addition, there
are dedicated processor instructions for enabling and disabling interrupts globally, called inside the
Interrupt_enableMaster() and Interrupt_disableMaster() DriverLib functions.

Solution for Task 3.1:
The code to setup the interrupts is shown in Snippet 6.

1 // Interrupt setup
2 GPIO_interruptEdgeSelect ( BUTTON_S1_PORT , BUTTON_S1_PIN , GPIO_HIGH_TO_LOW_TRANSITION );
3 GPIO_clearInterruptFlag ( BUTTON_S1_PORT , BUTTON_S1_PIN );
4 GPIO_enableInterrupt ( BUTTON_S1_PORT , BUTTON_S1_PIN );
5
6 GPIO_interruptEdgeSelect ( BUTTON_S2_PORT , BUTTON_S2_PIN , GPIO_HIGH_TO_LOW_TRANSITION );
7 GPIO_clearInterruptFlag ( BUTTON_S2_PORT , BUTTON_S2_PIN );
8 GPIO_enableInterrupt ( BUTTON_S2_PORT , BUTTON_S2_PIN );
9

10 Interrupt_enableInterrupt ( INT_PORT1 );
11

Snippet 6: Sample solution code for Task 3.1.

Task 3.2: Handling the Button Interrupts
The interrupt service routine for GPIO port 1 already exists in the interrupt.c source file. Add the
necessary code to check for the button S1 and S2 interrupts and handle them. You should store new
calibration offsets when button S1 is pressed, and reset the offsets on a press to button S2. Use the
vAppStoreCalibration() and vAppResetCalibration() inline functions implemented in app.h. All
required functions and constants are defined in the app.h and gpio.h headers; make sure to include
them at the beginning of the interrupt.c file.

Recap 4: Interrupt Service Routines
Typically, interrupt service routines are shared with multiple interrupt sources (in this task GPIO pins
of the same port). Check the interrupt flags of the corresponding peripheral to find out which source
(e.g. GPIO pin) triggered the interrupt. Do not forget to clear the corresponding interrupt flag after
handling an interrupt.

Solution for Task 3.2:
The code of the interrupt service routine (ISR) is shown in Snippet 7. Notice that evaluating both cases
unconditionally (no else statement) ensures that both flags are cleared even if both buttons are pressed
simultaneously.
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1 // MSP432F401R Launchpad button S1 (left)
2 if ( status & BUTTON_S1_PIN )
3 {
4 vAppStoreCalibration ();
5 // Clear flag of processed interrupt
6 GPIO_clearInterruptFlag ( BUTTON_S1_PORT , BUTTON_S1_PIN );
7 }
8 // MSP432F401R Launchpad button S2 ( right )
9 if ( status & BUTTON_S2_PIN )

10 {
11 vAppResetCalibration ();
12 // Clear flag of processed interrupt
13 GPIO_clearInterruptFlag ( BUTTON_S2_PORT , BUTTON_S2_PIN );
14 }
15

Snippet 7: Sample solution code for Task 3.2.

Task 3.3: Test Offset Calibration
Compile and run the application to test your interrupts. Follow these steps to test the calibration func-
tionality:

(a) Tilt the board more than 30◦ and hold the board in that position. The LED2 should have switched
to red at this point.

(b) Press button S1 to store the current sensor readings as a new calibration offset. The LED2 should
turn to green and the UART output jump close to zero, as the current accelerometer readings are
used as reference.

(c) Now move the board back to the default position by putting it back on the table. With the new
calibration, the LED should now have switched to red again and the UART output values should
differ significantly from zero.

(d) Press button S2 to reset the calibration offsets to zero. LED2 should turn back to green and UART
output jump to a value reasonably close to zero.

If buttons are used to calibrate the offset when the board is in a leveled position, the accuracy of the
calculated angle can actually be improved.
With this task, you have successfully completed the labs of the Embedded Systems lecture. Now you
know all the basics to realize your own application idea using the MSP432 LaunchPad and FreeRTOS.
If you want to dig deeper into the topic, we recommend to have a look at the code of the Sensor task
used in today’s lab, and check the extensive collection of demo projects for the MSP432 LaunchPad in
the TI Resource Explorer inside Code Composer Studio. Happy Coding!

Solution for Task 3.3:
There is no specific solution for this task. Make sure that the application behavior matches the description
in the task and debug the interrupt setup and service routines in case you suspect that there are some
errors. A fully working version of the project is provided in lab4_solution.zip.
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