
10 - 1

Remember: What you got some time ago …

10 - 2

What we told you: Be careful and please do not …

10 - 3

Return the boards at the

embedded systems exam!

© Lothar Thiele
Computer Engineering and Networks Laboratory

Embedded Systems

10. Architecture Synthesis

10 - 5

Lecture Overview

1. Introduction to Embedded Systems

2. Software Development

3. Hardware-Software Interface

4. Programming Paradigms

5. Embedded Operating Systems

6. Real-time Scheduling

7. Shared Resources

8. Hardware Components

9. Power and Energy

10. Architecture Synthesis

Software

Hardware

Hardware-
Software

10 - 6

•Performance

•Power Efficiency •Flexibility

Application-specific integrated circuits (ASICs)

Application-specific instruction set processors (ASIPs)

Microcontroller

DSPs (digital signal processors)

General-purpose processors

Programmable hardware

FPGA (field-programmable gate arrays)

Implementation Alternatives

10 - 7

Architecture Synthesis

Determine a hardware architecture that efficiently executes a given algorithm.

 Major tasks of architecture synthesis:

 allocation (determine the necessary hardware resources)

 scheduling (determine the timing of individual operations)

 binding (determine relation between individual operations of the algorithm and
hardware resources)

 Classification of synthesis algorithms:

 heuristics or exact methods

 Synthesis methods can often be applied independently of granularity of
algorithms, e.g. whether operation is a whole complex task or a single
operation.

10 - 8

10 - 9

Specification Models

10 - 10

Specification

 Formal specification of the desired functionality and the structure (architecture)
of an embedded systems is a necessary step for using computer aided design
methods.

 There exist many different formalisms and models of computation, see also the
models used for real-time software and general specification models for the
whole system.

 Now, we will introduce some relevant models for architecture level (hardware)
synthesis.

10 - 11

Task Graph or Dependence Graph (DG)

A dependence graph is a directed graph G=(V,E) in which E V V
is a partial order.

If (v1, v2) E, then v1 is called an immediate predecessor of v2 and
v2 is called an immediate successor of v1.

Suppose E* is the transitive closure of E. If (v1, v2) E*, then v1 is
called a predecessor of v2 and v2 is called a successor of v1.

Nodes are assumed to be a
„program“ described in
some programming
language, e.g. C or Java; or
just a single operation.

Sequence
constraint

10 - 12

Dependence Graph

 A dependence graph describes order relations for the execution of single
operations or tasks. Nodes correspond to tasks or operations, edges correspond
to relations („executed after“).

 Usually, a dependence graph describes a partial order between operations and
therefore, leaves freedom for scheduling (parallel or sequential). It represents
parallelism in a program but no branches in control flow.

 A dependence graph is acyclic.

 Often, there are additional quantities associated to edges or nodes such as

 execution times, deadlines, arrival times

 communication demand

10 - 13

Dependence Graph and Single Assignment Form

given basic block:
x = a + b;

y = c - d;

z = x * y;

y = b + d;

single assignment
form:

x = a + b;

y = c - d;

z = x * y;

y1 = b + d;

+ -

+*

dependence graph
a b c d

z

x
y

y1

10 - 14

Example of a Dependence Graph

10 - 15

Marked Graph (MG)

 A marked graph consists of

 nodes (actors)

 edges

 number of initial tokens (or marking) on edges

 The marking is often represented in form of a vector:

actor token

),,(delAVG

Vv

VVAAvva ji ,),(

10 - 16

10 - 17

Marked Graph

 The token on the edges correspond to data that are stored in FIFO queues.

 A node (actor) is called activated if on every input edge there is at least one

token.

 A node (actor) can fire if it is activated.

 The firing of a node vi (actor operates on the first tokens in the input queues)
removes from each input edge a token and adds a token to each output edge.
The output token correspond to the processed data.

 Marked graphs are mainly used for modeling regular computations, for example
signal flow graphs.

10 - 18

Marked Graph

Example (model of a digital filter with infinite impulse response IIR)

 Filter equation:

)3()2()1()()(lydlyclyblualy

 Possible model as a marked graph:

1

2 43 5

89

6 7

output y

input u fork

d c ba

x

y

w

x+w y

nodes 3-5:

node 2: x=0

10 - 19

Implementation of Marked Graphs

 There are different possibilities to implement marked graphs in hardware or
software directly. Only the most simple possibilities are shown here.

 Hardware implementation as a synchronous digital circuit:

 Actors are implemented as combinatorial circuits.

 Edges correspond to synchronously clocked shift registers (FIFOs).

clock

10 - 20

Implementation of Marked Graphs

 Hardware implementation as a self-timed asynchronous circuit:

 Actors and FIFO registers are implemented as independent units.

 The coordination and synchronization of firings is implemented using a handshake
protocol.

 Delay insensitive direct implementation of the semantics of marked graphs.

ack

FIFO

rdy rdy

ack

ack

rdy

ack

rdy FIFOactor

actor

10 - 21

Implementation of Marked Graphs

 Software implementation with static scheduling:

 At first, a feasible sequence of actor firings is determined which ends in the
starting state (initial distribution of tokens).

 This sequence is implemented directly in software.

 Example digital filter:
feasible sequence: (1, 2, 3, 9, 4, 8, 5, 6, 7)
program: while(true) {

t1 = read(u);

t2 = a*t1;

t3 = t2+d*t9;

t9 = t8;

t4 = t3+c*t9;

t8 = t6;

t5 = t4+b*t8;

t6 = t5;

write(y, t6);}

10 - 22

Implementation of Marked Graphs

 Software implementation with dynamic scheduling:

 Scheduling is done using a (real-time) operating system.

 Actors correspond to threads (or tasks).

 After firing (finishing the execution of the corresponding thread) the thread
is removed from the set of ready threads and put into wait state.

 It is put into the ready state if all necessary input data are present.

 This mode of execution directly corresponds to the semantics of marked
graphs. It can be compared with the self-timed hardware implementation.

10 - 23

Models for Architecture Synthesis

 A sequence graph is a dependence graph with a single start node
(no incoming edges) and a single end node (no outgoing edges).
VS denotes the operations of the algorithm and ES denotes the dependence relations.

 A resource graph models resources and bindings.
VT denote the resource types of the architecture and GR is a bipartite graph. An edge

represents the availability of a resource type vt for an operation vs.

 Cost function

 Execution times are assigned to each edge
and denote the execution time of operation on resource type .

10 - 24

Models for Architecture Synthesis - Example

Example sequence graph:

 Algorithm (differential equation):

int diffeq(int x, int y, int u, int dx, int a) {

int x1, u1, y1;

while (x < a) {

x1 = x + dx;

u1 = u - (3 * x * u * dx) - (3 * y * dx);

y1 = y + u * dx;

x = x1;

u = u1;

y = y1;

}

return y;

}

10 - 25

Models for Architecture Synthesis - Example

 Corresponding sequence graph:

x x x x +

x x +

-

-

nop

nop

<

0

1 2

3

4

5

6

7

8

9

10

11

12

10 - 26

Models for Architecture Synthesis - Example

 Corresponding resource graph
with one instance of a
multiplier (cost 8) and one
instance of an ALU (cost 3):

multiplier

VS VTER

c(r1) = 8

c(r2) = 3

10 - 27

Allocation and Binding

10 - 28

Models for Architecture Synthesis - Example

 Corresponding resource graph
with 4 instances of a
multiplier (cost 8) and two
instance of an ALU (cost 3):

multiplier

VS VTER

c(r1) = 8

c(r2) = 3

4

2

10 - 29

Models for Architecture Synthesis - Example

 Example binding ((r1) = 4, (r2) = 2):

10 - 30

Scheduling

10 - 31

10 - 32

Models for Architecture Synthesis - Example

Example:

(v1) = (v10) = 1

(v2) = (v11) = 2

(v3) = 3

(v6) = (v4) = 4

(v7) = 5

(v8) = (v5) = 6

(v9) = 7

(v12) = 8

(v0) = 1
L = (v12) - (v0) = 7

10 - 33

Multiobjective Optimization

10 - 34

Multiobjective Optimization

 Architecture Synthesis is an optimization problem with more than one objective:

 Latency of the algorithm that is implemented

 Hardware cost (memory, communication, computing units, control)

 Power and energy consumption

 Optimization problems with several objectives are called “multiobjective
optimization problems”.

 Synthesis or design problems are typically multiobjective.

10 - 35

Multiobjective Optimization

 Let us suppose, we would like to select a typewriting device. Criteria are

 mobility (related to weight)

 comfort (related to keyboard size and performance)

2020

10 - 36

Multiobjective Optimization

writing comfort

weight

10

5

1

0.1 202 104

Pareto-optimal

dominated

better

10 - 37

Pareto-Dominance

:

dominated by solution k

dominate solution k

10 - 38

Pareto-optimal Set

 A solution is named Pareto-optimal, if it is not Pareto-dominated by any other
solution in X.

 The set of all Pareto-optimal solutions is denoted as the Pareto-optimal set and
its image in objective space as the Pareto-optimal front.

•f2

•Pareto-optimal = not dominated

•dominated

f1

objective space Z:

10 - 39

Architecture Synthesis without Resource Constraints

10 - 40

Synthesis Algorithms

Classification

 unlimited resources:

 no constraints in terms of the available resources are defined.

 limited resources:

 constrains are given in terms of the number and type of available resources.

Classes of synthesis algorithms

 iterative algorithms:

 an initial solution to the architecture synthesis is improved step by step.

 constructive algorithms:

 the synthesis problem is solved in one step.

 transformative algorithms:

 the initial problem formulation is converted into a (classical) optimization problem.

10 - 41

Synthesis/Scheduling Without Resource Constraints

The corresponding scheduling method can be used

 as a preparatory step for the general synthesis problem

 to determine bounds on feasible schedules in the general case

 if there is a dedicated resource for each operation.

10 - 42

ASAP Algorithm

ASAP = As Soon As Possible

10 - 43

The ASAP Algorithm - Example

Example:

w(vi) = 1

10 - 44

ALAP Algorithm

ALAP = As Late As Possible

10 - 45

ALAP Algorithm - Example

Example:

x x

x

x +

x

x

+

-

-

nop

nop

<

0

1 2

3

4

5

6

7 8

9

10

11

12

Lmax = 7

w(vi) = 1

10 - 46

Scheduling with Timing Constraints

There are different classes of timing constraints:

 deadline (latest finishing times of operations), for example

 release times (earliest starting times of operations), for example

 relative constraints (differences between starting times of a pair of operations), for
example

10 - 47

10 - 48

Scheduling with Timing Constraints

We will model all timing constraints using relative constraints. Deadlines and
release times are defined relative to the start node v0.

Minimum, maximum and equality constraints can be converted into each other:

 Minimum constraint:

 Maximum constraint:

 Equality constraint:

10 - 49

Weighted Constraint Graph

Timing constraints can be represented in form of a weighted constraint graph:

10 - 50

Weighted Constraint Graph

 In order to represent a feasible schedule, we have one edge corresponding to
each precedence constraint with

where w(vi) denotes the execution time of vi.

 A consistent assignment of starting times (vi) to all operations can be done by
solving a single source longest path problem.

 A possible algorithm (Bellman-Ford) has complexity O(|VC| |EC|) (“iterative
ASAP”):

10 - 51

Weighted Constraint Graph - Example

Example:

min.
time

4max.
time

3

w(v1) = w(v3) = 2 w(v2) = w(v4) = 1

10 - 52

Architecture Synthesis with Resource Constraints

10 - 53

Scheduling With Resource Constraints

dependencies are respected

there are not more than the available

resources in use at any moment in

time and for any resource type

10 - 54

List Scheduling

List scheduling is one of the most widely used algorithms for scheduling under
resource constraints.

Principles:

 To each operation there is a priority assigned which denotes the urgency of being
scheduled. This priority is static, i.e. determined before the List Scheduling.

 The algorithm schedules one time step after the other.

 Uk denotes the set of operations that (a) are mapped onto resource vk and (b)
whose predecessors finished.

 Tk denotes the currently running operations mapped to resource vk .

10 - 55

List Scheduling

resource types

10 - 56

List Scheduling - Example

Example:

10 - 57

List Scheduling - Example

Solution via list scheduling:

 In the example, the solution is
independent of the chosen priority
function.

 Because of the greedy selection principle,
all resource are occupied in the first
time step.

 List scheduling is a heuristic algorithm:
In this example, it does not yield the minimal
latency!

10 - 58

List Scheduling

Solution via an optimal method:

 Latency is smaller than with
list scheduling.

 An example of an optimal
algorithm is the transformation
into an integer linear program as
described next.

10 - 59

Integer Linear Programming

Principle:

Synthesis Problem

Integer Linear Program (ILP)

Solution of ILP

Solution of Synthesis Problem

transformation into ILP

optimization of ILP

back interpretation

10 - 60

Integer Linear Program

 Yields optimal solution to synthesis problems as it is based on an exact
mathematical description of the problem.

 Solves scheduling, binding and allocation simultaneously.

 Standard optimization approaches (and software) are available to solve integer
linear programs:

 in addition to linear programs (linear constraints, linear objective function) some
variables are forced to be integers.

 much higher computational complexity than solving linear program

 efficient methods are based on (a) branch and bound methods and (b)
determining additional hyperplanes (cuts).

10 - 61

10 - 62

Integer Linear Program

 Many variants exist, depending on available information, constraints and
objectives, e.g. minimize latency, minimize resources, minimize memory. Just an
example is given here!!

 For the following example, we use the assumptions:

 The binding is determined already, i.e. every operation vi has a unique execution
time w(vi).

 We have determined the earliest and latest starting times of operations vi as li and
hi, respectively. To this end, we can use the ASAP and ALAP algorithms that have
been introduced earlier. The maximal latency Lmax is chosen such that a feasible
solution to the problem exists.

10 - 63

Integer Linear Program

10 - 64

10 - 65

10 - 66

Integer Linear Program

Explanations:

 (1) declares variables x to be binary .

 (2) makes sure that exactly one variable xi,t for all t has the value 1, all others are 0.

 (3) determines the relation between variables x and starting times of operations .
In particular, if xi,t = 1 then the operation vi starts at time t, i.e. (vi) = t.

 (4) guarantees, that all precedence constraints are satisfied.

 (5) makes sure, that the resource constraints are not violated. For all resource
types vk VT and for all time instances t it is guaranteed that the number of active
operations does not increase the number of available resource instances.

10 - 67

Integer Linear Program

Explanations:

 (5) The first sum selects all operations that are mapped onto resource type vk. The
second sum considers all time instances where operation vi is occupying resource
type vk :

10 - 68

Architecture Synthesis for Iterative Algorithms and
Marked Graphs

10 - 69

Remember … : Marked Graph

Example (model of a digital filter with infinite impulse response IIR)

 Filter equation:

)3()2()1()()(lydlyclyblualy

 Possible model as a marked graph:

1

2 43 5

89

6 7

output y

input u fork

d c ba

x

y

w

x+w y

nodes 3-5:

node 2: x=0

10 - 70

Iterative Algorithms

 Iterative algorithms consist of a set of indexed equations that are evaluated for
all values of an index variable l:

Here, xi denote a set of indexed variables, Fi denote arbitrary functions and dji

are constant index displacements.

 Examples of well known representations are signal flow graphs (as used in signal
and image processing and automatic control), marked graphs and special forms
of loops.

10 - 71

Iterative Algorithms

Several representations of the same iterative algorithm:

 One indexed equation with constant index dependencies:

 Equivalent set of indexed equations:

10 - 72

Iterative Algorithms

Extended sequence graph GS = (VS, ES, d): To each edge (vi, vj) ES there is associated
the index displacement dij. An edge (vi, vj) ES denotes that the variable
corresponding to vj depends on variable corresponding to vi with displacement dij.

Equivalent marked graph:

u x1 x2 x3

y

0

3 2

10 0 0

u x1 x2 x3

y

10 - 73

Iterative Algorithms

 Equivalent signal flow graph:

 Equivalent loop program:

while(true) {

t1 = read(u);

t5 = a*t1 + d*t2 + c*t3 + b*t4;

t2 = t3;

t3 = t4;

t4 = t5;

write(y, t5);}

z-1

u
y

z-1 z-1

a bcd

10 - 74

Iterative Algorithms

 An iteration is the set of all operations necessary to compute all variables xi[l]
for a fixed index l.

 The iteration interval P is the time distance between two successive iterations of
an iterative algorithm. 1/P denotes the throughput of the implementation.

 The latency L is the maximal time distance between the starting and the
finishing times of operations belonging to one iteration.

 In a pipelined implementation (functional pipelining), there exist time instances
where the operations of different iterations l are executed simultaneously.

10 - 75

Iterative Algorithms

 Implementation principles

 A simple possibility, the edges with dij > 0 are removed from the extended
sequence graph. The resulting simple sequence graph is implemented using
standard methods.

Example with unlimited resources:

0 1 2 22
execution

times w(vi)

t
one iteration

one physical iteration

L = 7

P = 7

no pipelining

10 - 76

Iterative Algorithms

Implementation principles

 Using functional pipelining: Successive iterations overlap and a higher throughput
(1/P) is obtained.

Example with unlimited resources (note data dependencies across iterations!)

• 4 resources
• functional pipelining

u x1 x2 x3

y

0

3 2

10 0 0
0 1 2 22

tone iteration

L = 7
one physical iteration

P = 2

10 - 77

Iterative Algorithms

Solving the synthesis problem using integer linear programming:

 Starting point is the ILP formulation given for simple sequence graphs.

 Now, we use the extended sequence graph (including displacements dij).

 ASAP and ALAP scheduling for upper and lower bounds hi and li use only edges
with dij = 0 (remove dependencies across iterations).

 We suppose, that a suitable iteration interval P is chosen beforehand. If it is too
small, no feasible solution to the ILP exists and P needs to be increased.

10 - 78

Integer Linear Program

10 - 79

Iterative Algorithms

Eqn.(4) is replaced by:

Proof of correctness:

dij

i j

t
P

i

j

dij P

10 - 80

Iterative Algorithms

Eqn. (5) is replaced by

Sketch of Proof: An operation vi starting at (vi) uses the corresponding resource at
time steps t with

Therefore, we obtain

10 - 81

Dynamic Voltage Scaling

If we transform the DVS problem into an integer linear program optimization: we
can optimize the energy in case of dynamic voltage scaling.

Shows how one can consider binding in an ILP.

As an example, let us model a set of tasks with dependency constraints.

 We suppose that a task vi VS can use one of the execution times wk(vi) k K and
corresponding energy ek(vi). There are |K| different voltage levels.

 We suppose that there are deadlines d(vi) for each operation vi.

 We suppose that there are no resource constraints, i.e. all tasks can be executed in
parallel.

10 - 82

Dynamic Voltage Scaling

10 - 83

Dynamic Voltage Scaling

10 - 84

Dynamic Voltage Scaling

Explanations:

 The objective functions just sums up all individual energies of operations.

 Eqn. (1) makes decision variables yik binary.

 Eqn. (2) guarantees that exactly one implementation (voltage) k K is
chosen for each operation vi .

 Eqn. (3) implements the precedence constraints, where the actual
execution time is selected from the set of all available ones.

 Eqn. (4) guarantees deadlines.

10 - 85

Chapter 8

 Not covered this semester.

 Not covered in exam.

 If interested: Read

10 - 86

Remember: What you got some time ago …

10 - 87

What we told you: Be careful and please do not …

10 - 88

Return the boards at the

embedded systems exam!

