Embedded Systems

3. Hardware Software Interface

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Eidgenodssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Do you Remember ?

Where we are. ...

1. Introduction to Embedded Systems :

\

2. Software Development
/ 3. Hardware-Software Interface <

,_{,,--——4. Programming Paradigms [
Software S ~yHardware-

/ Softwar
. Real-time Scheduling J Software

!
1
!

. Embedded Operating Systems

5

6

7. Shared Resources /
8. Hardware Components ;
9

Hardware < . Power and Energy /

|- 10. Architecture Synthesis

ALALALtARARS (P

—

N H e

High-Level Physical View

SH S

ON power domain Power switched by nRF51 (VCC)
) :

e
Y

' ARY) =)

‘ 10DOF IMU
i e & W - 3-axis accelerometer
M el = > RE power - 3-axis gyro

: NS e : - 3-axis magnetomer
N b amplifier :
3 p : - Pressure sensor

12C

Pu PWM
but}cx EUQRT Motor driver
12C
: SPI/12C/GPIO/PWM
\ , WKup/OW/GPIO
+5V Power supplies : . EEPROM
and battery charger Charge/VBAT/VCC Expansion port
USB Data
}“USB port to STM32

Crazyflie 2.0 system architecture

High-Level Physical View

Always ON power domain

Power switched by nRF51 (

—

RF power

amplifier

10DOF IMU

- 3-axis accelerometer
- 3-axis gyro

- 3-axis magnetoy/
- Pressure senso

12C

and battery charger

Power supplies

{UART

Wkup/OW/GPIO

12C

2

?

bitcrazeiser WU

/

Motgr driver

/

SPINI2C/GPIO/PWM

Expansion port

Push
button
+5V
HUSB port

USB Data
to STM32

Charge/WVBAT/VCC

Crazyflie 2.0 system architecture

/

! EEPROM

What you will learn ...

Hardware-Software Interfaces in Embedded Systems

= Storage
= SRAM / DRAM / Flash
= Memory Map
= |nput and Output
= UART Protocol
= Memory Mapped Device Access
= SPI Protocol
= Interrupts

= (Clocks and Timers
= Clocks
= Watchdog Timer
= System Tick
= Timer and PWM

Storage

Remember... ?

Always ON power domain Power switched by nRF51 (

e——
10DOF IMU
F - 3-axis accelerometer
- 3-axis gyro
RF power - 3-axis magnetoy/
amplifier : - Pressure senso

12C

Push : 7
button QUQRT Motgr driver
12C /
: SPI/12C/GPIO/PWM /
, Wkup/OW/GPIO I
+5V Power supplies 5 . EEPROM
and battery charger Charge/VBAT/VCC Expansion port

USB Data
HUSB port —— "o1um3)

Crazyflie 2.0 system architecture

MSP432P401R (ES-Lab)

LFXIN, LFXOUT,
HFEXIN HFXOUT P1.xto P10.x PJ.x

4 DCOR » 4

LPM3.5 Domain

F 3

| |
: sl || Capacitive Touch /0 0, T —
| Capacitive Touch /O 1
PSS |
PCM cs | rTc c WDT_A E:ﬁ:‘gp :
Power Power [v /O Ports I/0 Ports
Control Supply Clock | Real-Time Watchdog sram |!
Manager System System Clock Timer skg |1| P1toP10 PJ
DMA & | || 78v0s 6 1/0s
8 Channels | I
Address = - = - - = -
s | 0ata § & 3 % § % __§J % ¢} R Q| X B3

r————-—- == Control

|
I l r__ =
' I SRAM
| ; (includes — AES256
: ARM | Flash Backup (P%rlpheral RSTCTL SYSCTL
Cortex-M4F river X »
| | 256KB sl Library) Reset System Eﬁj ““”,,{;’h CRC32 P
| 128KB GAKB Controller || Controlier ryption, et
| 32KB Decryption e
32KB 3
! | 2
| MPU I .
°
- I B B B D 3
I'| NwIC, SysTick | | 2
| . N T T
I FPB, DWT | i B i i g g L=
: eUSCI_AD, s : eonves T C
| I Precision Comp_EQ, T';?z $::13 Timer32 eUSCI_AT1, Eﬁgg:—gg ESE SINTWNMISN]
IT™, TPIU I ADC Comp_E1 REF_A. : eUSCI_A2 cUeci B2, . 2
| - A3 SUSCIB3
| I 1 Msps Analog Voltage Timer_A 2 % 32-bit eUSCI_A3 eUSCI_B3
JTAG, SWD I SAR AD Comparator ||| Reference 16 Bit
| P 5 CCR Timers (UART, Fc, SPI
| IDA, SPI) ("C. sP1)
| IS | — t T

Copyright @ 2017 Texas Instruments Incorporated 3-10

Storage
SRAM / DRAM / Flash

-11

Static Random Access Memory (SRAM)

= Single bit is stored in a bi-stable circuit

= Static Random Access Memory is used for
= caches
= register file within the processor core
= small but fast memories

" Read:

1. Pre-charge all bit-lines to average voltage

2. decode address (n+m bits)

3. select row of cells using n single-bit word lines (WL)

4. selected bit-cells drive all bit-lines BL (2™ pairs)

5. sense difference between bit-line pairs and read out
= Write:

= select row and overwrite bit-lines using strong signals

WL

Vdd

n+m

P~

||}—

BL

bit-cell array

2" row X 2™M-col

(n~m to minmize
overall latency)

4 2m diff pairs

e

Ysense amp and mux/

11

3-12

Dynamic Random Access (DRAM)

Single bit is stored as a charge in a capacitor

= Bit cell loses charge when read, bit cell drains
over time

= Slower access than with SRAM due to small
storage capacity in comparison to capacity of
bit-line.

= Higher density than SRAM (1 vs. 6 transistors
per bit)

DRAMs require periodic refresh of charge
= Performed by the memory controller
= Refresh interval is tens of ms
= DRAM is unavailable during refresh

row enable

l / capacitor

bitline

RAS 4 :
bit-cell array

2" row X 2M-col

(n~m to minmize
overall latency)

m 4 om
7 \sense amz‘and mux/
1
A DRAM die comprises
CAS of multiple such arrays

(RAS/CAS = row/column address select)

3-13

DRAM - Typical Access Process

1. Bus Transmission 2. Precharge and Row Access
DRAM
DRAM Column Decoder
Column Decoder || L
[[Data In/Out == Sense Amps
Data In/Out [=* Sense Amps Buffers /LI/\LI\
Buffers o MEMORY] {
MEMORY ... Bit Lines... CPU BUS | CONTROLLER _ :
CPU BUS CONTROLLER S % m—
3 [X S| £ Memor
ol 8 \\:> o [y
S Memory Q| g Array
Q| E Array g £
2| =2 S
> I
s e

DRAM - Typical Access Process

3. Column Access

CPU

DRAM

Column Decoder

BUS

MEMORY
CONTROLLER

Data In/Out [=* Sense Amps
Buffers | i ——
... Bit Lines...

= .

© »

Q| &

° Memory

Qf 2 Array

3| 2

3 =

c

4. Data Transfer and Bus Transmission

CPU

DRAM

Column Decoder

BUS

MEMORY <

CONTROLLER

Data In/Out == Sense Amps
Buffers =
... Bit Lines...
]

5

©)

Qf 2

S = Memory

Q| 2 Array

3| 2

3 =

s

-15

Flash Memory

Electrically modifiable, non-volatile storage
Principle of operation:
= Transistor with a second “floating” gate
= Floating gate can trap electrons

= This results in a detectable change in
threshold voltage

Erasing Programming (=writing) Reading
to logical “1” to logical “0”

+5V
I +12V I
[1]
GND
ov “12V -:l—
Turn on low Vt or High Vt?

“Quantum tunneling” “Hot-electron injection”
Drains charge from FG traps charge in FG Detect |, to read O or 1

oV

Open 12V

Programming via hot electron injection

12V

drain-source resistance

F 3

et LT EREEEEER LR R EREE LY R R L LT T T T
.
.

w ..
\
\
=~ % = 'ﬁggate
Vih Vin voltage
erased Viead programmed

NAND and NOR Flash Memory

NAND NOR
Bit line
- Word line) Contact
Word line - —
Cell 5 T
Array My o7 |
& UnitCell j '
Size — Unit Cell :
Source line = ﬂ Source liné a
Cross- L1 O O —
section - - -ﬁ-
Small Cell Size, High Density Fast random access
Features| Low Power
= Mass Storage > Code Storage

-17

Example: Reading out NAND Flash

Selected word-line (WL) : Target voltage (Viarget)
Unselected word-lines : Vread is high enough to have a low resistance in all
v transistors in this row
SSL :al- :Sl- :E{ Vread
H+HETHETVread . .
Unselected WLs .'] :] :] i drain-source resistance
15 1 1 rea A
O Ha ”a “g il S— S—
IIL! III_! |||.! Vread \
Unselected WLs ,,j ,,,j ,,,.] i \ gate
L B — = VRV
"j ||n “:] Vread Vth Vth Vread VOltage
”: ” j : : :] Vread erased Vtarget programmed
H H HtTVread
csL 5 b g V’Ead
||_| ||_l ||_l rea
=0V

Storage
Memory Map

-19

Example: Memory Map in MSP432 (ES-Lab)

Available memory:

"= The processor used in the lab (MSP432P401R) has built in 256kB flash memory,
64kB SRAM and 32kB ROM (Read Only Memory).

Address space:

" The processor uses 32 bit addresses. Therefore, the addressable memory space is
4 GByte (= 232 Byte) as each memory location corresponds to 1 Byte.

* The address space is used to address the memories (reading and writing), to
address the peripheral units, and to have access to debug and trace information
(memory mapped microarchitecture).

" The address space is partitioned into zones, each one with a dedicated use. The
following is a simplified description to introduce the basic concepts.

-20

Example: Memory Map in MSP432 (ES-Lab)

OxFFFF_FFFF

Memory map: Debug/Trace

Peripherals
OxEO00_0000

OxDFFF_FFFF

Unused
hexadecimal 0xC000_0000
representation OXBFFF_FFFF
of a 32 bit Unused

. 0xA000 0000
binary number;\ -
h diit O0x9FFF_FFFF
€ac Igl Unused
corresponds 0x8000_0000
to 4 bit OX7FFF_FFFF
Unused

0x6000_0000

Ox5FFF_FFFF

00111111 ... 1111\ Peripherals

0x4000_0000

0010 OOOO cenn OOOO \OXSFFFFFFF

SRAM
diff. = 0001 1111 1111 —>
0x2000_0000
229 different addresses Ox1FFF_FFFF
capacity = 22° Byte = Code
512 MByte 0x0000_0000

Example: Memory Map in MSP432 (ES-Lab)

OxFFFF_FFFF

Memory map:
OxE000_0000
OxDFFF_FFFF
hexadecimal 0xC000_0000
representation OxBFFF_FFFF
of a 32 bit
. 0xA000 0000
binary number;\ -
L. O0x9FFF_FFFF
each digit
corresponds 0x8000_0000
to 4 bit OX7FFF_FFFF
0x6000_0000
O0x5FFF_FFFF
00111111 ...

0010 0000

1111
0x4000_0000
0000 \ Ox3FFF_FFFF

diff. = 0001 1111

22° different addresses

capacity = 22° Byte =

512 MByte

1111 >

0x2000_0000
Ox1FFF_FFFF

0x0000_0000

Debug/Trace
Peripherals

Unused

Unused

Unused

Unused

ADDRESS RANGE PERIPHERAL
0x4000_0000 to 0x4000_03FF Timer_AD
0x4000_0400 to 0x4000_07FF Timer_A1
0x4000_0800 to Ox4000_0BFF Timer_A2
0x4000_0C00 to 0x4000_0FFF Timer_A3
0x4000_1000 to 0x4000_13FF eUSCI_AD
0x4000_1400 to 0x4000_17FF elUSCI_A1
0x4000_1800 to Ox4000_1BFF eUSCI_A2
0x4000_1C00 to 0x4000_1FFF eUSCI_A3

000
Ox4000_4400 to 0x4000_47FF RTC_C
0x4000_4800 to Ox4000_4BFF WDT_A
0x4000_4C00 to 0x4000_4FFF Port Module

Peripherals

SRAM

Table 6-21. Port Registers (Base Address: 0x4000_4C00)

Code

REGISTER NAME ACRONYM | OFFSET from base address
Port 1 Input P1IN 000h
Port 2 Input P2IM 001h
Port 1 Output P1OUT 002h
Port 2 Qutput P20UT 003h

Example: Memory Map in MSP432 (ES-Lab)

OxFFFF_FFFF

Memory map:
OxE000_0000
OxDFFF_FFFF
hexadecimal 0XC000_0000
representation OXBFFF_FFFF
of a 32 bit

0xA000_0000

binar ;
y.nl-,lmbe'.' \ Ox9FFF_FFFF
each digit -

corresponds 0x8000_0000
to 4 bit OX7FFF_FFFF

0x6000_0000

Ox5FFF_FFFF

00111111 1111
0x4000_0000
0010 0000 0000 QWFUFFF

diff. =0001 1111 1111 —>
0x2000_0000
22° different addresses Ox1FFF_FFFF

capacity = 22° Byte =
512 MByte 0x0000_0000

Debug/Trace
Peripherals

Table 6-21. Port Registers (Base Address: 0x4000_4C00)

Unused

Unused

REGISTER NAME ACRONYM |OFFSET
Port 1 Input P1IN 000h
Port 2 Input P2IN 001h
Port 1 Output P1OUT 002h
Port 2 Output P20OUT 003h

Unused

Schematic of LaunchPad as used in the Lab:

Unused

Peripherals

A_LFOT 4 P1.0/JUCADSTE
S BUTTOMA P1.1/UCAOCLK
-~ _BCI UART RX P1.2/UCAORXDIUCA l;. M
3 _BCIUART TXO 7 | pq'310CAOTXDIUGADSIMO
4 BUTTON2 & | byl CBOSTE

elo Rl L2 P1.5UCBICLK
e :I:'TI‘II'.I I J2.15 L P1.6/UCBOSIMO/UCBOSDA
S _SPTMISn _J2.14 P1.7/UCEBOSOMIUCBOSCL

SRAM

LED1 is connected to Port 1, Pin O

Code

How do we toggle LED1 in a C program?

Example: Memory Map in MSP432 (ES-Lab)

OxFFFF_FFFF

Memory map:
OxE000_0000
OxDFFF_FFFF
hexadecimal 0xC000_0000
representation OxBFFF_FFFF
of a 32 bit
. 0xA000 0000
binary number;\ -
L. O0x9FFF_FFFF
each digit
corresponds 0x8000_0000
to 4 bit OX7FFF_FFFF

00111111...1111
0010 0000 0000

0x6000_0000
Ox5FFF_FFFF

\ 0x4000_0000

\\\\\\fXSFFFFFFF
diff. =0001 1111 1111 —>

22° different addresses

capacity = 22° Byte =
512 MByte

0x2000_0000
Ox1FFF_FFFF

0x0000_0000

Debug/Trace
Peripherals

Unused

Unused

Many necessary elements are missing in the
sketch below, in particular the configuration of
the port (input or output, pull up or pull down
resistors for input, drive strength for output).
See lab session.

Unused

Unused

Peripherals

SRAM

Code

//declare plout as a pointer to an 8Bit integer
volatile uint8 t* plout;

//P1OUT should point to Port 1 where LED1 is connected
plout = (uint8 t*) 0x40004C02;

//Toggle Bit 0 (Signal to which LED1 is connected)
*plout = *plout ©~ 0x01;

/

V4
~ ¢ XOR

Example: Memory Map in MSP432 (ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number; ~—___
each digit
corresponds
to 4 bit

0011 1111.... 1111\

OxFFFF_FFFF

0xE000_0000
O0xDFFF_FFFF

0xC000_0000
OxBFFF_FFFF

0xA000_0000
Ox9FFF_FFFF

0x8000_0000
Ox7FFF_FFFF

0x6000_0000

Ox5FFF_FFFF

0x4000_0000

0010 OOOO cenn OOOO \OXSFFFFFFF

diff. = 0001 11111111 —
22° different addresses

capacity = 22° Byte =
512 MByte

0x2000_0000
Ox1FFF_FFFF

0x0000_0000

Debug/Trace
Peripherals

Unused

Unused

Unused

Unused

Peripherals

SRAM

Code

0x1FFF_FFFF

0x0210_0000

0x0200_0000

0x0110_0000

0x0100_0000

0x0040_0000

0x0000_0000

Reserved

ROM Region

Reserved

SRAM Region

Reserved

Flash Memory
Region

Ox003F_FFFF

0x0020_4000
0x0020_0000

0x0004_0000

0x0000_0000

Reserved

Information Memory

Reserved

Main Memory

Ox3FFFF address difference = 4 * 216 different addresses —
256 kByte maximal data capacity for Flash Main Memory

Used for program, data and non-volatile configuration.

3-

25

Example: Memory Map in MSP432 (ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number; ~—___
each digit
corresponds
to 4 bit

00111111 ...1111
0010 0000 oooo\

OxFFFF_FFFF

0xE000_0000
O0xDFFF_FFFF

0xC000_0000
OxBFFF_FFFF

0xA000_0000
Ox9FFF_FFFF

0x8000_0000
Ox7FFF_FFFF

0x6000_0000

Ox5FFF_FFFF

0x4000_0000

\\\\\\fXSFFFFFFF
diff. =0001 1111 1111 —>

22° different addresses

capacity = 22° Byte =
512 MByte

0x2000_0000
Ox1FFF_FFFF

0x0000_0000

Debug/Trace
Peripherals

Unused

Unused

Unused

Unused

Peripherals

SRAM

0x1FFF_FFFF

0x0210_0000

0x0200_0000

0x0110_0000

0x0100_0000

0x0040_0000

0x0000_0000

Reserved

ROM Region

Reserved

SRAM Region

Reserved

Flash Memory
Region

Code

* Ox FFFF address difference = 21® different addresses —
64 kByte maximal data capacity for SRAM Region

e Used for program and data.

0x010F_FFFF

0x0101_0000

0x0100_0000

Reserved

SRAM Region

-26

Input and Output

-27

Device Communication

Very often, a processor needs to exchange information with other processors or
devices. To satisfy various needs, there exists many different communication

protocols, such as
= UART (Universal Asynchronous Receiver-Transmitter)
= SPI (Serial Peripheral Interface Bus)
= J2C (Inter-Integrated Circuit)
= USB (Universal Serial Bus)

= As the principles are similar, we will just explain a representative of an
asynchronous protocol (UART, no shared clock signal between sender and
receiver) and one of a synchronous protocol (SP/, shared clock signal).

Remember?

low power CPU
e enabling power to the rest of the system

* battery charging and voltage
measurement

* wireless radio (boot and operate)
* detect and check expansion boards

Push

{UART

higher performance CPU

sensor reading and motor control

flight control

telemetry (including the battery voltage)
additional user development

USB connection

button

PWM

Motor driver

12C

UART:

+5V P

uUSB port ——

e« communication protocol (Universal
= Asynchronous Receiver/Transmitter)

* exchange of data packets to and from
interfaces (wireless, USB)

EEPROM

ere=yrme—e.0 System architecture

-29

Input and Output
UART Protocol

-30

UART

= Serial communication of bits via a single signal, i.e. UART provides parallel-to-
serial and serial-to-parallel conversion.

= Sender and receiver need to agree on the transmission rate.
" Transmission of a serial packet starts with a start bit, followed by data bits and

finalized using a stop bit:

Start
bit

Idle state

v

T\v/XXXXXXXX/‘Q """""

First
data bit

.

6-9 data bits

1-2 stop
bits

Last
data bit Idle state

v

synchronisation

Start

.......

Extra ‘parity’ Earliest possible
bit could be new Start bit

= There exist many variations of this simple scheme.

inserted here \

for detecting single bit errors

-31

UART

* The receiver runs an internal clock whose frequency is an exact multiple of the
expected bit rate.

= When a Start bit is detected, a counter begins to count clock cycles e.g. 8 cycles
until the midpoint of the anticipated Start bit is reached.

= The clock counter counts a Midpoint of
further 16 cycles, to the i | Ted Do o
middle of the first Data bit, e l D:tI;S :)it \
and so on until the Stop bit. | [St |

Incoming : l :
data : :

Receiver Clock,

running at multiple of H”“HH””H||HI||H "||||||"Illl”l””“l”HH“HH \

expected bit rate

UART with MSP432 (ES-Lab)

QTNSTRUMENTS LED
5 o Red, Green
E 2 Nlll::! ‘:
§ Lt
v ,f-; S ESD‘ EnergyTrace+
75-:\," é Protection /V Current
4 P Plaaseety
a
x
: v
2 LDO Power
gpssie 5V,33V Switch
_________________________ Power, UART, JTA
host PC
Crystal Target Device 40-pin LaunchPad
48 MHz MSP432P401R standard headers

}

User Interface
Buttons and LEDs

UART with MSP432 (Lab)

LFXIMN, LFXOUT,
HFXIN HFXOUT P1.x to P10.x PJ.x
'y DCOR 4 +
| LPM3.5 Domain | 2 x
- = Capacitive Touch 10 0,
| I Capacitive Touch /O 1
PCM PSS [
cs | rc c WOT A Ef;nk;p I
Power Power [v O Ports 110 Ports
Cantrol Supply Clock Real-Time Watchdog SRAM |
Manager System System Il Clock Timer skg || P1to P10 PJ
DA | | T8 0= 6 1/0s
8 Channels | |
Address - F - —_——— —
Bus Data || - £ 11 11 11 11]|

r——=—=-=-=-= | Caontral
CPU | Logic

|
' I SRAM
. ROM
: ARM o Flash ‘Q;L“k‘f]? (Peripheral | | RsTeTL || svscrL AES258
Cortex-MAF I Driver :
| - 256KB Memory) Library) Reset System ooty CRG32
I 128KB BAKD Contraller || Controller Fobeal i
Ccryption
I KB 32KB
l |
| MPU |
l |
I Nvic, sysTick | |
| | | | | | | |
| FPB, DWT I R H 1 1
I eUSCI_AD,
| I Precision Comp_EO0, TTAADE li; Timer32 elUsCIl_A1, Eﬂgg: gﬂ
| IT™, TPIU I ADC Comp_E1 REF_A, ' eUSCI_A2, e e R,
I : 1 Msps, Analog Voltage Timer_A 2 x 32-bit SUSELAS elSC1 B3
|| e swo SARAID | | Comparator ||| Reference Jont Timers (UART, (FC. SPI)
a I IDA, SPI) :
------ I L L

Copyright © 2017 Texas Instruments Incorpomted

Input and Output
Memory Mapped Device Access

-35

Memory-Mapped Device Access

eUSCI_AO Registers (Base Address: 0x4000_1000)

REGISTER NAME OFFSET * Configuration of Transmitter and Receiver must
eUSCI_AD Control Word 0 00h match; otherwise, they can not communicate.
eUSCI_AD Control Word 1 02h * Examples of configuration parameters:

eUSCI_AD Baud Rate Control 06h L.)

sUSCI_AO Modulation Control 08h * transmission rate (baud rate, i.e., symbols/s)
eUSCI_AD Status 0Ah LSB or MSB first

eUSCI_AD Receive Buffer 0Ch - * number of bits per packet in our case: bit/s
eUSCI_AD Transmit Buffer OEh) .

eUSCI_AD Auto Baud Rate Control | 10h * parity bit

eUSCI_AO IrDA Control 12h * number of stop bits

6USCL A Interrupt Enable 1An * interrupt-based communication

eUSCI_AO Interrupt Flag 1Ch

eUSCI_AO Interrupt Vector 1EN * clock source

buffer for received bits and bits that should be transmitted

Transmission Rate

JCSSELx

UCLK
ACLK

0o
01

SMCLK

CAZEN clock subsampling

Receive Baud-Rate Generator
UCOBRx

;16

SMCLK

clock
source

data to be
transmitted

Prescaler/Divider
10 | BRCLH E=
11 Modulator

Receive Clock

Transmit Clock

4 {a

UCBRFx UCBRSx UCOS16

UCPEN UCPAR UCMSE UCTEIT

®—{ = Transmit Shift Register

= R n ®_parallel-to-serial

UCIREN

. J—

Transmit Buffer UCAxTXBUF

\[-\2
UCMODEx UCSPB

L IrDA Encoder

is
UCIRTXPLx

Transmit State Machine L P Set UCTXIFG
—l UCTXBRK
= | m UCTXADDR

CAxTXD

serial
output

Clock subsampling:

The clock subsampling block

is complex, as one tries to

match a large set of transmission
rates with a fixed input frequency.

Clock Source:

SMCLK in the lab setup = 3MHz

Quartz frequency = 48 MHz, is
divided by 16 before connected to
SMCLK

Example:

Transmission rate 4800 bit/s
16 clock periods per bit (see 3-26)

Subsampling factor =
3*1076 / (4.8%1073 * 16) = 39.0625

Software Interface

Part of C program that prints a character to a UART terminal on the host PC:

static const eUSCI UART Config uartConfig = m
{

EUSCI_A UART CLOCKSOURCE_ SMCLK, // SMCLK Clock Source

39, // BRDIV = 39 , integral part

1, // UCxXBRF = 1 , fractional part * 16 data structure uartConfig

0, j; UCxBRS = 0 L contains the configuration

EUSCI A UART NO PARITY No Parity

T ' . of the UART

EUSCI_A UART LSB FIRST, // LSB First

EUSCI_A UART ONE STOP BIT, // One stop bit

EUSCI_A UART MODE, // UART mode

EUSCI_A UART OVERSAMPLING BAUDRATE GENERATION}; // Oversampling Mode
GPIO setAsPeripheralModuleFunctionInputPin (GPIO PORT P1, —

GPIO_PIN2 | GPIO_PINB, GPIO_PRIMARY_MODULE_FUNCTION) ; //Configure CPU signals use uartConflg to Write to
UART initModule (EUSCI A0 BASE, &uartConfig); // Configuring UART Module AQ . .
- - ‘ eUSCI_AO configuration
UART enableModule (EUSCI A0 BASE) ; // Enable UART module A0 . g
registers
UART transmitData (EUSCI A0 BASE,'a'); // Write character ‘a’ to UART\\
\ start UART

\base address of A0 (0x40001000), where AO is the instance of the UART peripheral

Software Interface

Replacing UART transmitData(EUSCI_AO_BASE,'a') by a direct access to registers:

volatile uintl6 t* wucalifg = (uintl6 t*) 0x4000101C; declare pointers to UART
volatile uintl6é t* wucaOtxbuf = (uintl6é t*) 0x4000100E; configuration registers

// Initialization of UART as before
T «~— Wait until transmit buffer is empt
while (! ((*ucalOifg >> 1) & 0x0001)); PYY

H 'y
*ucaltxbuf = (char) 'g'; // Write to transmit buffer write character ‘g’ to the

transmit buffer

shift 1 bit to the right

Table 22-18. UCAXIFG Register Description \
Bit Field Type Reset Description | % O L f >> 1 O O O Ol
15-4 Reserved R Oh Reserved - ((*ucal1 g) & X) .
1 UCTXIFG RW 1h Transmit interrupt flag. UCTXIFG is set when UCAXTXBUF empty. . . (') gy
0b = No interrupt pending expression is ‘1’ if bit
1b = Interrupt pending
' UCTXIFG = 0 (buffer not empty). ,

Input and Output
SPI Protocol

-40

SPI (Serial Peripheral Interface Bus)

= Typically communicate across short distances

" Characteristics:
= 4-wire synchronized (clocked) communications bus
= supports single master and multiple slaves
= always full-duplex: Communicates in both directions simultaneously
= multiple Mbps transmission speeds can be achieved |,

_ . . SCLK » SCLK
= transfer datain 4 to 16 bit serial packets (SEL. MO g L
aster < ave
= Bus wiring: SS b SS

= MOSI (Master Out Slave In) — carries data out of master to slave
= MISO (Master In Slave Out) — carries data out of slave to master
= Both MOSI and MISO are active during every transmission

SS (or CS) — signal to select each slave chip
= System clock SCLK — produced by master to synchronize transfers

SPI (Serial Peripheral Interface Bus)

. }
More detailed circuit diagram:. hifregiwer || MOSI on <hift regioter
= detail bet latch msb (SDO, SO) (SDI,S1)| lacch msb Isb
etails vary between o Dle7 D{-Mlso < —5 ol 5
H i
filfferent venfiors and A (SDI,SI) (SDO, SO) A
implementations >
S5CLK
clock (5CK)
SPl master — » 5Pl slave
55 (CS)

Timing diagram:

system clock SCLK | ’ |

_ N —

writing data output: \/ - I

MOSI or MISO e ! \'1. | ! l
reading data input S oy |

| in the middle of bit: VYWY YO ‘x’
-'Vv'xv‘ XVI\H’H’V\A‘M%K«\J ”\f\/\v

3-42

SPI (Serial Peripheral Interface Bus)

Two examples of bus configurations:

SCLK » SCLK
MQSI » MOSI| SPI
Sp| MISO e MISO Slave MICROCONTROLLER
Master SS1 » 55 _
SS2 = e
gey | scKl o 0 ol ...
' > SI((:)L;(I SP| SLAVE 1 SLAVE 2 SLAVE N
MISO Slave —{Cs __1Cs cs
» SS SCLK SCLK SCLK
MOS| DIN DOUT DIN DOUT —wee— |DIN DOUT
| SCLK
—» MOSI SPI
MISO Slave
— | §§
Master and multiple independent Master and multiple daisy-chained
slaves slaves
http://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/SPI_three_slaves http://www.maxim-ic.com/appnotes.cfm/an_pk/3947

.svg/350px-SPI_three_slaves.svg.png

Interrupts

- 44

Interrupts

A hardware interrupt is an electronic alerting signal sent to the CPU from another
component, either from an internal peripheral or from an external device.

The Nested Vector
Interrupt Controller
(NVIC) handles the
processing of
interrupts

LFXIN, LFXOUT,
HFXIN HFXOUT

P1.x to P10.x PJ.x
'y

F 3

AN

ITM, TPIU

JTAG, SWD

|
I
I
|
I
FPB, DWT I
I
I
|
I
I

—_—_———_— —_— — =

r'y DCOR
| LPM3.5 Domain | L
MSP 432 ES-Lab = = Capacitive Touch 1/ 0,
) Il Capacitive Touch I/0 1
PSS |
PCM cs | rrcc WDT_A packup
mary ||
/0 Ports /O Ports
Power Power clock | || Real-Ti Watchdo I
Control Supply oc eal-lime aichdog SRAM
Manager System System | Clock Timer SKB || P1toP10 PJ
DMA | || 7810s 6 1/0s
8 Channels | |
13- 1]
Bus I
r-r———-——-=-=- | Control
| CPU I Logic
' | SRAM
' — Flash (nchudes panoeral | | rstert || svsem
| C ARMmF | Backup (%nr%;ra
ortex-
| ﬂ 256KB Memory) Library) Reset System CRC32
128KB Controller Controller
I 64KB
| I 30KB 32KB

Precision
ADC

1 Msps,
SAR AID

Comp_ED,
Comp_E1

Analog
Comparator

REF_A,

Voltage
Reference

TAD, TA1,
TA2 TA3

Timer_A
16 Bit
5CCR

Timer32

2 x 32-bit
Timers

eUSCI_AO,

susciat. || [SUSE-BY

eUSCI_A2, eUSCI_B2,

eUSCI_A3 eUSCI B3
(UART, :

IrDA, SPI) (FC. SPY)

Copyright @ 2017 Texas Instruments Incorporated

-45

Interrupts

main() {

//Init

initClocks () ;

while (1) {
background
or LPMx

ISR1

get data
process

ISR2
set a flag

System Initialization

¢ The beginning part of main() is usually dedicated
to setting up your system

Background

4 Most systems have an endless loop that runs
‘forever’ in the background

¢ In this case, ‘Background’ implies that it runs at a
lower priority than ‘Foreground’

¢ In MSP432 systems, the background loop often
contains a Low Power Mode (LPMx) command —
this sleeps the CPU/System until an interrupt
event wakes it up

Foreground

Interrupt Service Routine (ISR) runs in response
to enabled hardware interrupt

4 These events may change modes in Background —
such as waking the CPU out of low-power mode

¢ ISR’s, by default, are not interruptible

4 Some processing may be done in ISR, but it’s
usually best to keep them short

-46

Processing of an Interrupt (MSP432 ES-Lab)

Timer_AO

L

L=

Nested Vector

Interrupt Controller
(NVIC)

|/O Port P1

CPU

&

[

peripheral unit

eUSCI_AO

interrupt handling

The vector interrupt controller (NVIC)
= enables and disables interrupts .

= allows to individually and globally .
mask interrupts (disable reaction to
interrupt), and

= registers interrupt service routines
(ISR), sets the priority of interrupts.

Interrupt priorities are relevant if

several interrupts happen at the same time

the programmer does not mask interrupts
in an interrupt service routine (ISR) and
therefore, preemption of an ISR by another
ISR may happen (interrupt nesting).

Processing of an Interrupt

1. Aninterrupt occurs 2. It sets a flag bit P

in a register
...currently executing code]
§§ J . e | IFG register

——t=—=- > interrupt occurs

next_line_of code

e UART

e GPIO j

e Timers

e ADC \/

* When an interrupt signal is received, a

« Most peripherals can generate corresponding bit is set in an IFG register.
interrupts to provide status and Thereis an such an IFG register for each
information. interrupt source.

* Interrupts can also be generated from * Assome interrupt sources are only on for a
GPIO pins. short duration, the CPU registers the interrupt

signal internally.

Processing of an Interrupt

1. Aninterrupt occurs 2. It sets a flag bit

in a register P
\ _..currently executing code ,
e | IFG register

----- > interrupt occurs

next_line_of code

UART

GPIO) >
Timers

e ADC _/—

Etc.

3. CPU/NVIC acknowledges interrupt by:
e current instruction completes
* saves return-to location on stack
* mask interrupts globally
* determines source of interrupt
e calls interrupt service routine (ISR)

Processing of an Interrupt

1. Aninterrupt occurs 2. It sets a flag bit

in a register P
\ _..currently executing code ,
e | IFG register

——t=—=- > interrupt occurs

next_line_of code

UART >
Gpi0 | ,
interrupt

Timers
e ADC \/- vector

Etc. table

N

3. CPU/NVIC acknowledges interrupt by: pointer to ISR

e current instruction completes

. Timer_AO
* saves return-to location on stack v

|/O Port P1

A 4

Nested Vector

L) Interrupt Controller <:> CPU

(NVIC)

* mask interrupts globally

* determines source of interrupt

eUSCI_AD

e calls interrupt service routine (ISR)

peripheral unit interrupt handling

Processing of an Interrupt

1. Aninterrupt occurs 2. It sets a flag bit

in a register P
\ _..currently executing code ,
e | IFG register

——t=—=- > interrupt occurs

next_line_of code

UART
GPIO j
Timers
e ADC \/

e Etc.

3. CPU/NVIC acknowledges interrupt by: 4. Interrupt Service Routine (ISR):
* current instruction completes * save context of system
e saves return-to location on stack * run your interrupt’s code
* mask interrupts globally > * restore context of system

* determines source of interrupt (automatically) un-mask interrupts and

* callsinterrupt service routine (ISR) continue where it left off

Processing of an Interrupt

Detailed interrupt processing flow:

IFG bit IE bit
Interrupt Interrupt “Individual” “Global”
Source ‘Flag’ Int Enable Int Enable
GPIO > o
TIMER_A - o CPU
> .-.”/e
get the interrupt status — globally allow / dis-
of the selected pin L — allow the processor
: : to react to interrupts
Interrupt Flag Reg (IFG) : '
bit set when int occurs; e.g. : Global Interrupt Enable
clears the interrupt status GPIO_getInterruptStatus(); Enables ALL maskable interrupts
on the selected pin Gl LR é Interrupt_enableMaster();

Interrupt Enable (IE); e.g. Interrupt_disableMaster();

enable interrupt 5 - 0
. . . _enableinterrupt),
in the peripheral unit GPIO_disablelnterrupt():

enable interrupt in the interrupt controller =~ Interrupt_enablelnterrupt(); 359

Example: Interrupt Processing

= Port 1, pin 1 (which has a switch connected to it) is configured as an input with interrupts enabled
and port 1, pin O (which has an LED connected) is configured as an output.

= When the switch is pressed, the LED output is toggled.

clear interrupt
flag and enable
interrupt in
periphery

enable interrupts
in the controller
(NVIC)

enter low power
mode LPM3

~

\

int main(void)

{

GPIO setAsOutputPin (GPIO PORT P1, GPIO PINO);

GPIO setAsInputPinWithPullUpResistor (GPIO PORT P1l, GPIO PINI);

\\‘ GPIO clearInterruptFlag (GPIO PORT P1l, GPIO PINI);

GPIO enablelInterrupt (GPIO PORT P1, GPIO PINI);

N Interrupt enableInterrupt (INT PORT1) ;

Interrupt enableMaster () ;

— while (1) PCM gotoLPM3();

-53

Example: Interrup

= Port 1, pin 1 (which has a swit

t Processing

ch connected to it) is configured as an input with interrupts enabled

and port 1, pin O (which has an LED connected) is configured as an output.

= When the switch is pressed, the LED output is toggled.

predefined name of ISR
attached to Port 1

get status (flags) of
interrupt-enabled
pins of port 1

/

e

clear all current flags
from all interrupt-
enabled pins of port 1

void PORT1 IRQHandler (void)

{
uint32 t status;

— status = GPIO getEnabledInterruptStatus (GPIO PORT P1l);

‘//, GPIO clearInterruptFlag (GPIO PORT P1l, status);

/// i1f (status & GPIO PINI)
{

GPIO toggleOutputOnPin (GPIO PORT P1l, GPIO PINO);

check, whether pin 1

was flagged

-54

Polling vs. Interrupt

Similar int main (void)
. . {
fu.nctlona//ty uint8 t new, old;
with polling:
GPIO setAsOutputPin (GPIO PORT P1, GPIO PINO);
GPIO setAsInputPinWithPullUpResistor (GPIO PORT P1, GPIO PINI);
old = GPIO getInputPinValue (GPIO PORT P1, GPIO PINI);
— while (1)
{
new = GPIO getInputPinValue (GPIO PORT P1l, GPIO PIN1);
continuously get the if (Inew & old)
signal at pinl and - {
}
old = new;
- }
}

Polling vs. Interrupt

What are advantages and disadvantages?

» We compare polling and interrupt based on the utilization of the CPU by using a
simplified timing model.
= Definitions:
= ytilization u: average percentage, the processor is busy
= computation c: processing time of handling the event
= overhead h: time overhead for handling the interrupt
= period P: polling period
= jnterarrival time T: minimal time between two events
= deadline D: maximal time between event arrival and finishing event processing with D < T.

polling interrupt events
I Tt
C— ¢ — V 7 R, h=h +l; <D <D V
1 €N =Ny N, S =

Polling vs. Interrupts

For the following considerations, we suppose that the interarrival time between
events is T. This makes the results a bit easier to understand.

Some relations for interrupt-based event processing :
= The average utilizationisu,=(h+c)/T.

" As we need at least h+c time to finish the processing of an event, we find the
following constraint: h+c <D <T.

Some relations for polling-based event processing:

= The average utilizationisu,=c/P.

" We need at least time P+c to process an event that arrives shortly after a polling
took place. The polling period P should be larger than c. Therefore, we find the
following constraints: 2c<c+P<D<T

Polling vs. Interrupts

Design problem: D and T are given by application requirements. h and c are given by
the implementation. When to use interrupt and when polling when considering the
resulting system utilization? What is the best value for the polling period P?

Case 1: If D < c + min(c, h) then event processing is not possible.

Case 2: If 2c £ D < h+c then only polling is possible. The maximal period P = D-c leads
to the optimal utilization u, = c /(D-c).

Case 3: If h+c < D < 2c then only interrupt is possible with utilizationu,=(h+c)/T.
Case 4: If c + max(c, h) < D then both are possible with u,=c/(D-c)oru;=(h+c)/T.

Interrupt gets better in comparison to polling, if the deadline D for processing
interrupts gets smaller in comparison to the interarrival time T, if the overhead h gets
smaller in comparison to the computation time c, or if the interarrival time of events
is only lower bounded by T (as in this case polling executes unnecessarily).

-58

Clocks and Timers

-59

Clocks and Timers
Clocks

-60

Clocks

Microcontrollers usually have many different clock sources that have different

"= frequency (relates to precision)

= energy consumption

= stability, e.g., crystal-controlled clock vs. digitally controlled oszillator

As an example, the MSP432 (ES-Lab) has the following clock sources:

S voqueneypreciion | cument | comment

LFXTCLK

HFXTCLK

DCOCLK
VLOCLK
REFOCLK
MODCLK
SYSOSC

32 kHz

48 MHz

3 MHz
9.4 kHz
32 kHz
25 MHz
5 MHz

0.0001% / °C
... 0.005% / °C

0.0001% / °C
... 0.005% / °C

0.025% / °C
0.1% /°C
0.012% / °C
0.02% / °C
0.03% /°C

150 nA

550 A

N/A

50 nA
0.6 pA
50 pA
30 pA

external crystal

external crystal

internal
internal
internal
internal

internal

-61

Clocks and Timers MSP432 (ES-Lab)

LFXIN, LFXOUT,
HFXIN HFXOUT

| ry DCOR

P1i.x to P10.x PJ.x

F F 3

J L I LPM3.5 Domain I .
| Capacifive Touch /O 0,
: Il capacitive Touch /0 1
PSS |
PCM cs | rrc_c WDT_A padkup |
Power Power I v /0 Ports /O Ports
Control Supply Clock Real-Time Watchdog SRAM |
Manager System System | Clock Timer 6KB || P1toP10 PJ
DMA I || 7810s 6 1/0s
8 Channels I |
Address i - = - = = -
Bus Data
r—-—=—=-=-=-= | Control
| CPU I Logic
' |) SRAM
. ROM
: ARM Flash B | | Petphera | | RsTCTL || svscTu | | AES296
Cortex-M4F [Driver ,
| B 256KB Memory) Library) Reset System Er?{fcﬁitgn CRC32
128KB Controller Confroller rypuon,
| B64KB Decryption
I 32KB 32KB
')
| MPU |
' |
I chl SysTick |)
' |
| FPB, DWT | I - B
[eUSCI_AD,
| I Precision Comp_EO, 13;]2 Eﬁ; Timer32 eUSCI_A1, zﬂgg:_g?
| IT™, TPIU I ADC Comp_E1 REF_A, ’ eUSCI_AZ2, eUSCI B2,
I : eUSCI_A3 vy
Ul stac.swo | | hsps, Analog Referon: v ~LdE PUSeLEs
| : SAR A/D Comparator ennce 5 GCR Timers (UART, FC. SPl
3 I IrDA, SPI) ("C. SPI)
| —— T 1

Copyright @ 2017 Texas Instruments Incorporated

Clocks and Timers MSP432 (ES-Lab)

LFXIN, LFXOUT,
HFXIN HFXOUT

P1xto P10.x

F

PJ.x
&

DMA

8 Channels

ARM
Cortex-M4F

MPU

NVICl SysTick

FPB, DWT

ITM, TPIU

JTAG, SWD

Bus
Confrol
Logic

/

LPM3.5 Domain

Il

|
| : Capacifive Touch /O 0,
: Il capacitive Touch /0 1
s |
PCM cs il rrc_c WDT_A padkup |
P i 10 Ports IO Ports
Power ower | '
Cantrol Supply s | G] " Frmar® sram P1to P10 PJ
Manager System ystem L imer I to
° Y | BKB || 78 vos 6 110s
l |
Address = = - — - - = -
AVSS2 l ‘ ‘ e
Avss3 |20 ¢ ! o - |
leonli@an| | ieen|1@6n|l10u.] | | FX GND |
15 | I I T T I I -1 | T
ol o I R D U0 L 0 U
Dvsss |82 | 1 | 1 | ! 1 [:
:_ GNDJ‘ ‘ GND J‘ : o : |
—————————————————— = L
PJLOLFXIN [T I L 5% I—‘Cii'
PJ.1/LFXOUT } | | o .
85 L 2 2E_£é___J I N:
PJ.2HFXOUT |- — I
PJ.3/HFXIN : PP | [
L - - - - - p ______
I I eUSCI_AO, I
Precision Comp_EO, REF A bl Timera2 eUSCI_AT, ooy
ADC Comp_E1 A, = eUSCI_A2, cUSCI B2,
Volt Timer_A eUSCI_A3 eUSCI_B3
1 Msps, Analog oflage 16 Bt 2 x 32-bit =
SAR A/D Comparator Reference 5 CC:E Timers (UART, FC. SPl
IrDA, SPI) ("C. SPI)
I L 1L

Copyright @ 2017 Texas Instruments Incorporated

Clocks

From these basic clocks, several internally available clock signals are derived.
They can be used for clocking peripheral units, the CPU, memory, and the various

timers.
E(; ; SR SFLA ACLK unconditional request
Example MSP432 (ES-Lab): |-==| & — .
= only some of the oo []
clock generators are) _—
D_ 0 MCLEK unconditional request
shown (LFXT, HFXT, =1 L -
D CO) HFXTDRIVE Im up tli:flzrﬁ
. . calibration DCOCLK "]
= dividers and clock ogo | | [oco
10 l ' HSMCLK unconditional request
Sources for the DCOR ZZZ;ZEE:Z DCO BIAS :;ﬂ%m;ﬁmtimalreuu&m
internally available -
clock signals can be S
set by software T

Clocks and Timers
Watchdog Timer

-65

Watchdog Timer

Watchdog Timers provide system fail-safety:

= |f their counter ever rolls over (back to zero), they reset the processor. The goal
here is to prevent your system from being inactive (deadlock) due to some

unexpected fault.

= To prevent your system from continuously resetting itself, the counter should be

reset at appropriate intervals.
CPU

Watchdog Timer (WDT_A)

WDT_A_holdTimer();

WDT_A clearTimer();

overflow

reset counter to O

_—_1

|
up ¢ counter

reset <[«

<_—_—

A

A

If the count completes without a restart,
the CPU is reset.

clock input, e.g.,
SMCLK, ACLK

- 66

Clocks and Timers
System Tick

-67

SysTick MSP432 (ES-Lab)

= SysTick is a simple decrementing 24 bit counter that is part of the NVIC
controller (Nested Vector Interrupt Controller). Its clock source is MCLK and it
reloads to period-1 after reaching O.

" |t's a very simple timer, mainly used for periodic interrupts or measuring time.

int main(void) {

GPIO setAsOutputPin (GPIO PORT P1, GPIO PINO);
SysTick enableModule () ;
SysTick setPeriod(1500000) ; if MCLK has a frequency of 3 MHz,

i

SysTick enableInterrupt () ; an interrupt is generated every 0.5 s.
Interrupt enableMaster();

—

while (1) PCM gotoLPMO(); <—— go tolow power mode LPO after executing the ISR

void SysTick Handler (void) {
MAP GPIO toggleOutputOnPin (GPIO PORT P1, GPIO PINO); }

- 68

SysTick MSP432 (ES-Lab)

Example for measuring the execution time of some parts of a program:

int main(void) {

int32 t start, end, duration;

SysTick enableModule () ;
SysTick setPeriod (0x01000000);
SysTick disableInterrupt ()

if MCLK has frequency of 3 MHz,
the counter rolls over every ~5.6 seconds
as (224 /(3 10%) =5.59

start = SysTick getValue();

// part of the program whose duration is measured

the resolution of the duration is one
end = SysTick getValue () ; microsecond; the duration must not be
duration = ((start - end) & OxOOFFFFFF) / 3; longer than ~6 seconds; note the use of
modular arithmetic if end > start;
o overhead for calling SysTick_getValue()
) is not accounted for;

Clocks and Timers
Timer and PWM

-71

Timer

Usually, embedded microprocessors have several elaborate timers that allow to
= capture the current time or time differences, triggered by hardware or software

events,

= generate interrupts when a certain time is reached (stop watch, timeout),

= generate interrupts when counters overflow,

= generate periodic interrupts, for example in order to periodically execute tasks,
= generate specific output signals, for example PWM (pulse width modulation).

clock input

»

counter
register

interrupt on

each pulse of the

overflow /
roll-over

clock increments the

counter register

OXEFFF

OxFFFE

OxFFFDl

0x0002

0x0001

0x0000

/

v

example 16 bit /
counter register

interrupt on roll over

Timer

capture
clock input counter interrupt on
> . >
register roll-over
capture capture captu re»
> .
event register actions

the value of counter register is stored in
capture register at the time of the capture
event (input signals, software)

the value can be read by software

at the time of the capture, further actions
can be triggered (interrupt, signal)

Typically, the mentioned functions are realized via capture and compare registers:

compare
clock input counter interrupt on
> . >
register roll-over
compare compare
register actions

the value of the compare register can be
set by software

as soon as the values of the counter and
compare reqgister are equal, compare
actions can be taken such as interrupt,
signaling peripherals, changing pin values,
resetting the counter register

-73

Timer

= Pulse Width Modulation (PWM) can be used to change the average power of a
signal.

" The use case could be to change the speed of a motor or to modulate the light
intensity of an LED.

OXEEEE | counter one compare register
register /is used to define the

/ / period

another compare register
I — is used to change the
duty cycle of the signal

0x0000

»

output signal I I I I I I I I I I

Timer Example MSP432 (ES-Lab)

Example: Configure Timer in “continuous mode”. Goal: generate periodic interrupts.

TXCLK (external)
ACLK

SMCLK ——
inverted TXCLK

15

Divide

(up to + 64)

—P>

16-bit Counter

y

Enable | _ Interrupt

/

clock sources

CCRO

(®)
(@)
~
[T

0
@)
~
N

0
@)
~
w

()
@)
)
=

()
@)
~
o

VS A

()
@)
~
(o))

T3 1T 1T T 7T

¢

J

\

7 configurable
compare or
capture
registers

-75

Timer Example MSP432 (ES-Lab)

Example: Configure Timer in “continuous mode”. Goal: generate periodic interrupts.

OxFFFF |— — — — — — /

0x0000

Timer Clock *

Timer X FFFE X FFFF * 0 X Xj" X FFFE X FFFF * 0

£ < '
)

Interrupt

Timer Example MSP432 (ES-Lab)

Example: Configure Timer in “continuous mode”. Goal: generate periodic interrupts,

but with configurable periods.

int main (void) {

const Timer A ContinuousModeConfig continuousModeConfig = {

TIMER A CLOCKSOURCE ACLK,

TIMER A CLOCKSOURCE DIVIDER 1,
TIMER A TAIE INTERRUPT DISABLE,
TIMER A DO CLEAR};

clock source is ACLK (32.768 kHz);
- divideris 1 (count frequency 32.768 kHz);
no interrupt on roll-over;

configure continuous mode
/ of timer instance AO

Timer A configureContinuousMode (TIMER A0 BASE, &continuousModeConfigqg);

Timer A startCounter (TIMER A0 BASE,

TIMER A CONTINUOUS MODE) ;

\ start counter AO in

while (1) PCM gotoLPMO (); }

continuous mode

so far,
nothing
happens

only the
counter is
running

Timer Example MSP432 (ES-Lab)

Example:

= For a periodic interrupt, we need to add a compare register and an ISR.
= The following code should be added as a definition:

#define PERIOD 32768

= The following code should be added to main():

const Timer A CompareModeConfig compareModeConfig = {
TIMER A CAPTURECOMPARE REGISTER 1,]
TIMER A CAPTURECOMPARE INTERRUPT ENABLE,| g3 first interrupt is generated after about one
0, second as the counter frequency is 32.768 kHz
PERIOD};

Timer A initCompare (TIMER AO BASE, &compareModeConfig);

Timer A enableCaptureComparelnterrupt (TIMER A0 BASE, TIMER A CAPTURECOMPARE REGISTER 1) ;
Interrupt enablelnterrupt (INT TAO N);

Interrupt enableMaster () ;

w
N
0]

Timer Example MSP432 (ES-Lab)

Example:

= For a periodic interrupt, we need to add a compare register and an ISR.

= The following Interrupt Service Routine (ISR) should be added. It is called if one of
the capture/compare registers CCR1 ... CCR6 raises an interrupt

void TAO_N_TIRQHandler (void) { the register TAOIV contains the interrupt flags for
the registers; after being read, the highest priority
switch (TAOIV) /interrupt (smallest register number) is cleared

case 0x0002: //flag for register CCRI1 automatically.
TAOCCR1 = TAOCCR1 + PERIOD;

// do something every PERIOD

default: break; the register TAOCCR1 contains the compare
} value of compare register 1.

other cases in the switch statement may be used
to handle other capture and compare registers

-79

Timer Example MSP432 (ES-Lab)

Example: This principle can be used to generate several periodic interrupts with
one timer.

TAOCCR2 TAOCCR2

|
TAOCCR1 | TAOCCR1 |
OXFFFF —— — — — — — g — — — — g —— h— — — —— -

TAOCCR2
TAOCCR1

;

