
© Lothar Thiele
Computer Engineering and Networks Laboratory

Embedded Systems

3. Hardware Software Interface

3 - 2

Do you Remember ?

3 - 3

Where we are …

1. Introduction to Embedded Systems

2. Software Development

3. Hardware-Software Interface

4. Programming Paradigms

5. Embedded Operating Systems

6. Real-time Scheduling

7. Shared Resources

8. Hardware Components

9. Power and Energy

10. Architecture Synthesis

Software

Hardware

Hardware-
Software

3 - 4

3 - 5

High-Level Physical View

3 - 6

High-Level Physical View

3 - 7

What you will learn …

Hardware-Software Interfaces in Embedded Systems

 Storage

 SRAM / DRAM / Flash

 Memory Map

 Input and Output

 UART Protocol

 Memory Mapped Device Access

 SPI Protocol

 Interrupts

 Clocks and Timers

 Clocks

 Watchdog Timer

 System Tick

 Timer and PWM

3 - 8

Storage

3 - 9

Remember … ?

3 - 10

MSP432P401R (ES-Lab)

3 - 11

Storage
SRAM / DRAM / Flash

3 - 12

Static Random Access Memory (SRAM)
 Single bit is stored in a bi-stable circuit

 Static Random Access Memory is used for

 caches

 register file within the processor core

 small but fast memories

 Read:

1. Pre-charge all bit-lines to average voltage

2. decode address (n+m bits)

3. select row of cells using n single-bit word lines (WL)

4. selected bit-cells drive all bit-lines BL (2m pairs)

5. sense difference between bit-line pairs and read out

 Write:

 select row and overwrite bit-lines using strong signals

3 - 13

Dynamic Random Access (DRAM)

Single bit is stored as a charge in a capacitor

 Bit cell loses charge when read, bit cell drains
over time

 Slower access than with SRAM due to small
storage capacity in comparison to capacity of
bit-line.

 Higher density than SRAM (1 vs. 6 transistors
per bit)

DRAMs require periodic refresh of charge

 Performed by the memory controller

 Refresh interval is tens of ms

 DRAM is unavailable during refresh

(RAS/CAS = row/column address select)

3 - 14

DRAM – Typical Access Process

1. Bus Transmission 2. Precharge and Row Access

3 - 15

DRAM – Typical Access Process

3. Column Access 4. Data Transfer and Bus Transmission

3 - 16

Flash Memory

Electrically modifiable, non‐volatile storage

Principle of operation:

 Transistor with a second “floating” gate

 Floating gate can trap electrons

 This results in a detectable change in
threshold voltage

3 - 17

NAND and NOR Flash Memory

Fast random access

3 - 18

Example: Reading out NAND Flash

Selected word-line (WL) : Target voltage (Vtarget)

Unselected word-lines : Vread is high enough to have a low resistance in all
transistors in this row

3 - 19

Storage
Memory Map

3 - 20

Example: Memory Map in MSP432 (ES-Lab)

Available memory:

 The processor used in the lab (MSP432P401R) has built in 256kB flash memory,
64kB SRAM and 32kB ROM (Read Only Memory).

Address space:

 The processor uses 32 bit addresses. Therefore, the addressable memory space is
4 GByte (= 232 Byte) as each memory location corresponds to 1 Byte.

 The address space is used to address the memories (reading and writing), to
address the peripheral units, and to have access to debug and trace information
(memory mapped microarchitecture).

 The address space is partitioned into zones, each one with a dedicated use. The
following is a simplified description to introduce the basic concepts.

3 - 21

Example: Memory Map in MSP432 (ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number;
each digit
corresponds
to 4 bit

0011 1111 …. 1111
0010 0000 …. 0000

diff. = 0001 1111 …. 1111

229 different addresses

capacity = 229 Byte =
512 MByte

3 - 22

Example: Memory Map in MSP432 (ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number;
each digit
corresponds
to 4 bit

0011 1111 …. 1111
0010 0000 …. 0000

…

…

diff. = 0001 1111 …. 1111

229 different addresses

capacity = 229 Byte =
512 MByte

from base address

3 - 23

Example: Memory Map in MSP432 (ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number;
each digit
corresponds
to 4 bit

0011 1111 …. 1111
0010 0000 …. 0000

Schematic of LaunchPad as used in the Lab:

LED1 is connected to Port 1, Pin 0

How do we toggle LED1 in a C program?

diff. = 0001 1111 …. 1111

229 different addresses

capacity = 229 Byte =
512 MByte

3 - 24

Example: Memory Map in MSP432 (ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number;
each digit
corresponds
to 4 bit

0011 1111 …. 1111
0010 0000 …. 0000

…

//declare p1out as a pointer to an 8Bit integer

volatile uint8_t* p1out;

//P1OUT should point to Port 1 where LED1 is connected

p1out = (uint8_t*) 0x40004C02;

//Toggle Bit 0 (Signal to which LED1 is connected)

*p1out = *p1out ^ 0x01;

Many necessary elements are missing in the
sketch below, in particular the configuration of
the port (input or output, pull up or pull down
resistors for input, drive strength for output).
See lab session.

diff. = 0001 1111 …. 1111

229 different addresses

capacity = 229 Byte =
512 MByte

^ : XOR

3 - 25

Example: Memory Map in MSP432 (ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number;
each digit
corresponds
to 4 bit

0011 1111 …. 1111
0010 0000 …. 0000

• 0x3FFFF address difference = 4 * 216 different addresses
256 kByte maximal data capacity for Flash Main Memory

• Used for program, data and non-volatile configuration.

diff. = 0001 1111 …. 1111

229 different addresses

capacity = 229 Byte =
512 MByte

3 - 26

Example: Memory Map in MSP432 (ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number;
each digit
corresponds
to 4 bit

0011 1111 …. 1111
0010 0000 …. 0000

• 0x FFFF address difference = 216 different addresses
64 kByte maximal data capacity for SRAM Region

• Used for program and data.

diff. = 0001 1111 …. 1111

229 different addresses

capacity = 229 Byte =
512 MByte

3 - 27

Input and Output

3 - 28

Device Communication

Very often, a processor needs to exchange information with other processors or
devices. To satisfy various needs, there exists many different communication
protocols, such as

 UART (Universal Asynchronous Receiver-Transmitter)

 SPI (Serial Peripheral Interface Bus)

 I2C (Inter-Integrated Circuit)

 USB (Universal Serial Bus)

 As the principles are similar, we will just explain a representative of an
asynchronous protocol (UART, no shared clock signal between sender and
receiver) and one of a synchronous protocol (SPI , shared clock signal).

3 - 29

Remember?
low power CPU

• enabling power to the rest of the system

• battery charging and voltage
measurement

• wireless radio (boot and operate)

• detect and check expansion boards

higher performance CPU

• sensor reading and motor control

• flight control

• telemetry (including the battery voltage)

• additional user development

• USB connection

UART:

• communication protocol (Universal
Asynchronous Receiver/Transmitter)

• exchange of data packets to and from
interfaces (wireless, USB)

3 - 30

Input and Output
UART Protocol

3 - 31

UART

 Serial communication of bits via a single signal, i.e. UART provides parallel-to-
serial and serial-to-parallel conversion.

 Sender and receiver need to agree on the transmission rate.

 Transmission of a serial packet starts with a start bit, followed by data bits and
finalized using a stop bit:

 There exist many variations of this simple scheme. for detecting single bit errors

6-9 data bits 1-2 stop
bits

3 - 32

UART

 The receiver runs an internal clock whose frequency is an exact multiple of the
expected bit rate.

 When a Start bit is detected, a counter begins to count clock cycles e.g. 8 cycles
until the midpoint of the anticipated Start bit is reached.

 The clock counter counts a
further 16 cycles, to the
middle of the first Data bit,
and so on until the Stop bit.

3 - 33

UART with MSP432 (ES-Lab)

host PC

3 - 34

UART with MSP432 (Lab)

3 - 35

Input and Output
Memory Mapped Device Access

3 - 36

Memory-Mapped Device Access

• Configuration of Transmitter and Receiver must
match; otherwise, they can not communicate.

• Examples of configuration parameters:

• transmission rate (baud rate, i.e., symbols/s)

• LSB or MSB first

• number of bits per packet

• parity bit

• number of stop bits

• interrupt-based communication

• clock source

buffer for received bits and bits that should be transmitted

in our case: bit/s

3 - 37

Transmission Rate

clock
source

clock subsampling
……

serial
output

parallel-to-serial

data to be
transmitted

Clock subsampling:

• The clock subsampling block
is complex, as one tries to
match a large set of transmission
rates with a fixed input frequency.

Clock Source:

• SMCLK in the lab setup = 3MHz

• Quartz frequency = 48 MHz, is
divided by 16 before connected to
SMCLK

Example:

• Transmission rate 4800 bit/s

• 16 clock periods per bit (see 3-26)

• Subsampling factor =
3*10^6 / (4.8*10^3 * 16) = 39.0625

3 - 38

Software Interface

Part of C program that prints a character to a UART terminal on the host PC:

...

static const eUSCI_UART_Config uartConfig =

{

EUSCI_A_UART_CLOCKSOURCE_SMCLK, // SMCLK Clock Source

39, // BRDIV = 39 , integral part

1, // UCxBRF = 1 , fractional part * 16

0, // UCxBRS = 0

EUSCI_A_UART_NO_PARITY, // No Parity

EUSCI_A_UART_LSB_FIRST, // LSB First

EUSCI_A_UART_ONE_STOP_BIT, // One stop bit

EUSCI_A_UART_MODE, // UART mode

EUSCI_A_UART_OVERSAMPLING_BAUDRATE_GENERATION}; // Oversampling Mode

GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P1,

GPIO_PIN2 | GPIO_PIN3, GPIO_PRIMARY_MODULE_FUNCTION); //Configure CPU signals

UART_initModule(EUSCI_A0_BASE, &uartConfig); // Configuring UART Module A0

UART_enableModule(EUSCI_A0_BASE); // Enable UART module A0

UART_transmitData(EUSCI_A0_BASE,'a'); // Write character ‘a’ to UART

...

data structure uartConfig
contains the configuration
of the UART

use uartConfig to write to
eUSCI_A0 configuration
registers

start UART

base address of A0 (0x40001000), where A0 is the instance of the UART peripheral

3 - 39

Software Interface

Replacing UART_transmitData(EUSCI_A0_BASE,'a') by a direct access to registers:

...

volatile uint16_t* uca0ifg = (uint16_t*) 0x4000101C;

volatile uint16_t* uca0txbuf = (uint16_t*) 0x4000100E;

...

// Initialization of UART as before

...

while (!((*uca0ifg >> 1) & 0x0001));

*uca0txbuf = (char) 'g'; // Write to transmit buffer

...

declare pointers to UART
configuration registers

wait until transmit buffer is empty

write character ‘g’ to the
transmit buffer

!((*uca0ifg >> 1) & 0x0001)

shift 1 bit to the right

expression is ‘1’ if bit
UCTXIFG = 0 (buffer not empty).

3 - 40

Input and Output
SPI Protocol

3 - 41

SPI (Serial Peripheral Interface Bus)

 Typically communicate across short distances

 Characteristics:

 4-wire synchronized (clocked) communications bus

 supports single master and multiple slaves

 always full-duplex: Communicates in both directions simultaneously

 multiple Mbps transmission speeds can be achieved

 transfer data in 4 to 16 bit serial packets

 Bus wiring:

 MOSI (Master Out Slave In) – carries data out of master to slave

 MISO (Master In Slave Out) – carries data out of slave to master

 Both MOSI and MISO are active during every transmission

 SS (or CS) – signal to select each slave chip

 System clock SCLK – produced by master to synchronize transfers

3 - 42

SPI (Serial Peripheral Interface Bus)

More detailed circuit diagram:

 details vary between
different vendors and
implementations

Timing diagram:

system clock SCLK

writing data output:

reading data input
in the middle of bit:

MOSI or MISO

3 - 43

SPI (Serial Peripheral Interface Bus)

Two examples of bus configurations:

Master and multiple independent
slaves
http://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/SPI_three_slaves
.svg/350px-SPI_three_slaves.svg.png

Master and multiple daisy-chained
slaves
http://www.maxim-ic.com/appnotes.cfm/an_pk/3947

3 - 44

Interrupts

3 - 45

Interrupts

A hardware interrupt is an electronic alerting signal sent to the CPU from another
component, either from an internal peripheral or from an external device.

The Nested Vector
Interrupt Controller
(NVIC) handles the
processing of
interrupts

MSP 432 [ES-Lab]

3 - 46

Interrupts

. . .

MSP432

3 - 47

Processing of an Interrupt (MSP432 ES-Lab)

The vector interrupt controller (NVIC)

 enables and disables interrupts

 allows to individually and globally
mask interrupts (disable reaction to
interrupt), and

 registers interrupt service routines
(ISR), sets the priority of interrupts.

Timer_A0

I/O Port P1

eUSCI_A0

peripheral unit

…

Nested Vector
Interrupt Controller

(NVIC)
CPU

interrupt handling

Interrupt priorities are relevant if

 several interrupts happen at the same time

 the programmer does not mask interrupts
in an interrupt service routine (ISR) and
therefore, preemption of an ISR by another
ISR may happen (interrupt nesting).

3 - 48

Processing of an Interrupt

• Most peripherals can generate
interrupts to provide status and
information.

• Interrupts can also be generated from
GPIO pins.

• When an interrupt signal is received, a
corresponding bit is set in an IFG register.

• There is an such an IFG register for each
interrupt source.

• As some interrupt sources are only on for a
short duration, the CPU registers the interrupt
signal internally.

IFG register

3 - 49

Processing of an Interrupt

IFG register

3. CPU/NVIC acknowledges interrupt by:

• current instruction completes

• saves return-to location on stack

• mask interrupts globally

• determines source of interrupt

• calls interrupt service routine (ISR)

3 - 50

Processing of an Interrupt

IFG register

3. CPU/NVIC acknowledges interrupt by:

• current instruction completes

• saves return-to location on stack

• mask interrupts globally

• determines source of interrupt

• calls interrupt service routine (ISR)

interrupt
vector
table

pointer to ISR

3 - 51

Processing of an Interrupt

IFG register

3. CPU/NVIC acknowledges interrupt by:

• current instruction completes

• saves return-to location on stack

• mask interrupts globally

• determines source of interrupt

• calls interrupt service routine (ISR)

4. Interrupt Service Routine (ISR):

• save context of system

• run your interrupt’s code

• restore context of system

• (automatically) un-mask interrupts and

• continue where it left off

3 - 52

Processing of an Interrupt

Detailed interrupt processing flow:

(IFG)

Interrupt_enableInterrupt();

Interrupt_enableMaster();
Interrupt_disableMaster();

globally allow / dis-
allow the processor
to react to interrupts

enable interrupt
in the peripheral unit

enable interrupt in the interrupt controller

get the interrupt status
of the selected pin

clears the interrupt status
on the selected pin

…

3 - 53

Example: Interrupt Processing

 Port 1, pin 1 (which has a switch connected to it) is configured as an input with interrupts enabled
and port 1, pin 0 (which has an LED connected) is configured as an output.

 When the switch is pressed, the LED output is toggled.

int main(void)

{

•...

•GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);

•GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P1, GPIO_PIN1);

•GPIO_clearInterruptFlag(GPIO_PORT_P1, GPIO_PIN1);

•GPIO_enableInterrupt(GPIO_PORT_P1, GPIO_PIN1);

•Interrupt_enableInterrupt(INT_PORT1);

•Interrupt_enableMaster();

•while (1) PCM_gotoLPM3();

}

enter low power
mode LPM3

enable interrupts
in the controller
(NVIC)

clear interrupt
flag and enable
interrupt in
periphery

3 - 54

Example: Interrupt Processing

 Port 1, pin 1 (which has a switch connected to it) is configured as an input with interrupts enabled
and port 1, pin 0 (which has an LED connected) is configured as an output.

 When the switch is pressed, the LED output is toggled.

check, whether pin 1
was flagged

get status (flags) of
interrupt-enabled
pins of port 1

predefined name of ISR
attached to Port 1

void PORT1_IRQHandler(void)

{

uint32_t status;

status = GPIO_getEnabledInterruptStatus(GPIO_PORT_P1);

•GPIO_clearInterruptFlag(GPIO_PORT_P1, status);

•if(status & GPIO_PIN1)

•{

• GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);

•}

•}

clear all current flags
from all interrupt-
enabled pins of port 1

3 - 55

Polling vs. Interrupt

Similar
functionality
with polling:

int main(void)

{

uint8_t new, old;

•...

•GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);

•GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P1, GPIO_PIN1);

•old = GPIO_getInputPinValue(GPIO_PORT_P1, GPIO_PIN1);

•while (1)

•{

•new = GPIO_getInputPinValue(GPIO_PORT_P1, GPIO_PIN1);

•if (!new & old)

•{

•GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);

•}

•old = new;

•}

}

continuously get the
signal at pin1 and
detect falling edge

3 - 56

Polling vs. Interrupt

What are advantages and disadvantages?

 We compare polling and interrupt based on the utilization of the CPU by using a
simplified timing model.

 Definitions:
 utilization u: average percentage, the processor is busy

 computation c: processing time of handling the event

 overhead h: time overhead for handling the interrupt

 period P: polling period

 interarrival time T: minimal time between two events

 deadline D: maximal time between event arrival and finishing event processing with D ≤ T.

polling

c c

P

interrupt

c h2h1 h =h1 + h2

events
≥ T

≤ D ≤ D

3 - 57

Polling vs. Interrupts

For the following considerations, we suppose that the interarrival time between
events is T. This makes the results a bit easier to understand.

Some relations for interrupt-based event processing :

 The average utilization is ui = (h + c) / T .

 As we need at least h+c time to finish the processing of an event, we find the
following constraint: h+c ≤ D ≤ T .

Some relations for polling-based event processing:

 The average utilization is up = c / P .

 We need at least time P+c to process an event that arrives shortly after a polling
took place. The polling period P should be larger than c. Therefore, we find the
following constraints: 2c ≤ c+P ≤ D ≤ T

3 - 58

Polling vs. Interrupts
Design problem: D and T are given by application requirements. h and c are given by
the implementation. When to use interrupt and when polling when considering the
resulting system utilization? What is the best value for the polling period P?

Case 1: If D < c + min(c, h) then event processing is not possible.

Case 2: If 2c ≤ D < h+c then only polling is possible. The maximal period P = D-c leads
to the optimal utilization up = c / (D-c) .

Case 3: If h+c ≤ D < 2c then only interrupt is possible with utilization ui = (h + c) / T .

Case 4: If c + max(c, h) ≤ D then both are possible with up = c / (D-c) or ui = (h + c) / T .

Interrupt gets better in comparison to polling, if the deadline D for processing
interrupts gets smaller in comparison to the interarrival time T, if the overhead h gets
smaller in comparison to the computation time c, or if the interarrival time of events
is only lower bounded by T (as in this case polling executes unnecessarily).

3 - 59

Clocks and Timers

3 - 60

Clocks and Timers
Clocks

3 - 61

Clocks
Microcontrollers usually have many different clock sources that have different

 frequency (relates to precision)

 energy consumption

 stability, e.g., crystal-controlled clock vs. digitally controlled oszillator

As an example, the MSP432 (ES-Lab) has the following clock sources:

frequency precision current comment

LFXTCLK 32 kHz 0.0001% / °C
… 0.005% / °C

150 nA external crystal

HFXTCLK 48 MHz 0.0001% / °C
… 0.005% / °C

550 µA external crystal

DCOCLK 3 MHz 0.025% / °C N/A internal

VLOCLK 9.4 kHz 0.1% / °C 50 nA internal

REFOCLK 32 kHz 0.012% / °C 0.6 µA internal

MODCLK 25 MHz 0.02% / °C 50 µA internal

SYSOSC 5 MHz 0.03% / °C 30 µA internal

3 - 62

Clocks and Timers MSP432 (ES-Lab)

3 - 63

Clocks and Timers MSP432 (ES-Lab)

3 - 64

Clocks

From these basic clocks, several internally available clock signals are derived.

They can be used for clocking peripheral units, the CPU, memory, and the various
timers.

Example MSP432 (ES-Lab):

 only some of the
clock generators are
shown (LFXT, HFXT,
DCO)

 dividers and clock
sources for the
internally available
clock signals can be
set by software

3 - 65

Clocks and Timers
Watchdog Timer

3 - 66

Watchdog Timer

Watchdog Timers provide system fail-safety:

 If their counter ever rolls over (back to zero), they reset the processor. The goal
here is to prevent your system from being inactive (deadlock) due to some
unexpected fault.

 To prevent your system from continuously resetting itself, the counter should be
reset at appropriate intervals.

CPU Watchdog Timer (WDT_A)

reset

reset counter to 0

clock input, e.g.,
SMCLK, ACLK

If the count completes without a restart,
the CPU is reset.

WDT_A_clearTimer();

up counter

•WDT_A_holdTimer();
pause counting up

overflow

3 - 67

Clocks and Timers
System Tick

3 - 68

SysTick MSP432 (ES-Lab)

 SysTick is a simple decrementing 24 bit counter that is part of the NVIC
controller (Nested Vector Interrupt Controller). Its clock source is MCLK and it
reloads to period-1 after reaching 0.

 It’s a very simple timer, mainly used for periodic interrupts or measuring time.

int main(void) {

...

GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);

SysTick_enableModule();

SysTick_setPeriod(1500000);

SysTick_enableInterrupt();

Interrupt_enableMaster();

while (1) PCM_gotoLPM0();

}

void SysTick_Handler(void) {

MAP_GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0); }

if MCLK has a frequency of 3 MHz,
an interrupt is generated every 0.5 s.

go to low power mode LP0 after executing the ISR

3 - 69

SysTick MSP432 (ES-Lab)

Example for measuring the execution time of some parts of a program:
int main(void) {

int32_t start, end, duration;

...

SysTick_enableModule();

SysTick_setPeriod(0x01000000);

SysTick_disableInterrupt();

start = SysTick_getValue();

... // part of the program whose duration is measured

end = SysTick_getValue();

duration = ((start - end) & 0x00FFFFFF) / 3;

...

}

if MCLK has frequency of 3 MHz,
the counter rolls over every ~5.6 seconds
as (224 / (3 106) = 5.59

the resolution of the duration is one
microsecond; the duration must not be
longer than ~6 seconds; note the use of
modular arithmetic if end > start;
overhead for calling SysTick_getValue()
is not accounted for;

3 - 70

3 - 71

Clocks and Timers
Timer and PWM

3 - 72

Timer

Usually, embedded microprocessors have several elaborate timers that allow to

 capture the current time or time differences, triggered by hardware or software
events,

 generate interrupts when a certain time is reached (stop watch, timeout),

 generate interrupts when counters overflow,

 generate periodic interrupts, for example in order to periodically execute tasks,

 generate specific output signals, for example PWM (pulse width modulation).

counter
register

clock input interrupt on
overflow /
roll-over

each pulse of the
clock increments the
counter register

0x0000

0x0001

0x0002

0xFFFD

0xFFFE

0xFFFF

interrupt on roll over
example 16 bit
counter register

3 - 73

Timer

Typically, the mentioned functions are realized via capture and compare registers:

counter
register

clock input interrupt on
roll-over

counter
register

clock input interrupt on
roll-over

capture
register

compare
register

capture
event

capture
actions

• the value of counter register is stored in
capture register at the time of the capture
event (input signals, software)

• the value can be read by software

• at the time of the capture, further actions
can be triggered (interrupt, signal)

compare
actions

• the value of the compare register can be
set by software

• as soon as the values of the counter and
compare register are equal, compare
actions can be taken such as interrupt,
signaling peripherals, changing pin values,
resetting the counter register

capture compare

3 - 74

Timer

 Pulse Width Modulation (PWM) can be used to change the average power of a
signal.

 The use case could be to change the speed of a motor or to modulate the light
intensity of an LED.

counter
register

0x0000

0xFFFF one compare register
is used to define the
period

another compare register
is used to change the
duty cycle of the signal

output signal

3 - 75

Timer Example MSP432 (ES-Lab)

Example: Configure Timer in “continuous mode”. Goal: generate periodic interrupts.

TXCLK (external)
ACLK

SMCLK
inverted TXCLK

clock sources 7 configurable
compare or
capture
registers

3 - 76

Timer Example MSP432 (ES-Lab)

Example: Configure Timer in “continuous mode”. Goal: generate periodic interrupts.

0x0000

0xFFFF

Interrupt

3 - 77

Timer Example MSP432 (ES-Lab)
Example: Configure Timer in “continuous mode”. Goal: generate periodic interrupts,
but with configurable periods.

int main(void) {

...

const Timer_A_ContinuousModeConfig continuousModeConfig = {

TIMER_A_CLOCKSOURCE_ACLK,

TIMER_A_CLOCKSOURCE_DIVIDER_1,

TIMER_A_TAIE_INTERRUPT_DISABLE,

TIMER_A_DO_CLEAR};

...

Timer_A_configureContinuousMode(TIMER_A0_BASE, &continuousModeConfig);

Timer_A_startCounter(TIMER_A0_BASE, TIMER_A_CONTINUOUS_MODE);

...

while(1) PCM_gotoLPM0(); }

clock source is ACLK (32.768 kHz);
divider is 1 (count frequency 32.768 kHz);
no interrupt on roll-over;

configure continuous mode
of timer instance A0

start counter A0 in
continuous mode

so far,
nothing
happens

only the
counter is
running

3 - 78

Timer Example MSP432 (ES-Lab)

Example:

 For a periodic interrupt, we need to add a compare register and an ISR.

 The following code should be added as a definition:

 The following code should be added to main():

const Timer_A_CompareModeConfig compareModeConfig = {

TIMER_A_CAPTURECOMPARE_REGISTER_1,

TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE,

0,

PERIOD};

...

Timer_A_initCompare(TIMER_A0_BASE, &compareModeConfig);

Timer_A_enableCaptureCompareInterrupt(TIMER_A0_BASE, TIMER_A_CAPTURECOMPARE_REGISTER_1);

Interrupt_enableInterrupt(INT_TA0_N);

Interrupt_enableMaster();

...

a first interrupt is generated after about one
second as the counter frequency is 32.768 kHz

#define PERIOD 32768

3 - 79

Timer Example MSP432 (ES-Lab)

Example:

 For a periodic interrupt, we need to add a compare register and an ISR.

 The following Interrupt Service Routine (ISR) should be added. It is called if one of
the capture/compare registers CCR1 … CCR6 raises an interrupt

void TA0_N_IRQHandler(void) {

switch(TA0IV) {

case 0x0002: //flag for register CCR1

TA0CCR1 = TA0CCR1 + PERIOD;

... // do something every PERIOD

default: break;

}

}

the register TA0IV contains the interrupt flags for
the registers; after being read, the highest priority
interrupt (smallest register number) is cleared
automatically.

other cases in the switch statement may be used
to handle other capture and compare registers

the register TA0CCR1 contains the compare
value of compare register 1.

3 - 80

Timer Example MSP432 (ES-Lab)

Example: This principle can be used to generate several periodic interrupts with
one timer.

0xFFFF

TA0CCR1

TA0CCR1 TA0CCR1
TA0CCR1

TA0CCR2

TA0CCR2 TA0CCR2

TA0CCR2

