
© Lothar Thiele
Computer Engineering and Networks Laboratory

Embedded Systems

4. Programming Paradigms

4 - 2

Where we are …

1. Introduction to Embedded Systems

2. Software Development

3. Hardware-Software Interface

4. Programming Paradigms

5. Embedded Operating Systems

6. Real-time Scheduling

7. Shared Resources

8. Hardware Components

9. Power and Energy

10. Architecture Synthesis

Software

Hardware

Hardware-
Software

4 - 3

Reactive Systems and Timing

4 - 4

Timing Guarantees

 Hard real-time systems can be often found in safety-critical applications. They
need to provide the result of a computation within a fixed time bound.

 Typical application domains:

 avionics, automotive, train systems, automatic control including robotics,
manufacturing, media content production

wing vibration of airplane,

sensing every 5 ms
sideairbag in car,

reaction after event in <10 mSec

4 - 5

Simple Real-Time Control System

EnvironmentSensor

Control-Law
Computation

A/D

A/D

D/AInput

Actuator

4 - 6

Real-Time Systems

In many cyber-physical systems (CPSs), correct timing is a matter of correctness, not
performance: an answer arriving too late is consider to be an error.

4 - 7

Real-Time Systems

4 - 8

Real-Time Systems

4 - 9

Real-Time Systems

4 - 10

Real-Time Systems

4 - 11

Real-Time Systems

deadlinestart time

4 - 12

Real-Time Systems

 Embedded controllers are often expected to finish the processing of data and
events reliably within defined time bounds. Such a processing may involve
sequences of computations and communications.

 Essential for the analysis and design of a real-time system: Upper bounds on the
execution times of all tasks are statically known. This also includes the
communication of information via a wired or wireless connection.

 This value is commonly called the Worst-Case Execution Time (WCET).

 Analogously, one can define the lower bound on the execution time, the Best-Case
Execution Time (BCET).

4 - 13

Execution Time

Best Case
Execution Time

Worst Case
Execution Time

Upper bound

Unsafe:
Execution Time
Measurement

D
is

tr
ib

u
ti

o
n

 o
f

ex
ec

u
ti

o
n

 t
im

es

Distribution of Execution Times

4 - 14

Modern Hardware Features

 Modern processors increase the average performance (execution of tasks) by
using caches, pipelines, branch prediction, and speculation techniques, for
example.

 These features make the computation of the WCET very difficult: The
execution times of single instructions vary widely.

 The microarchitecture has a large time-varying internal state that is changed by
the execution of instructions and that influences the execution times of
instructions.

 Best case - everything goes smoothely: no cache miss, operands ready, needed
resources free, branch correctly predicted.

 Worst case - everything goes wrong: all loads miss the cache, resources needed
are occupied, operands are not ready.

 The span between the best case and worst case may be several hundred cycles.

4 - 15

Methods to Determine the Execution Time of a Task

•execution time

•Real System •Measurement •Simulation
(correct model)

•Worst-Case
Analysis

•Worst-Case

•Best-Case

4 - 16

(Most of) Industry’s Best Practice

 Measurements: determine execution times directly by observing the execution
or a simulation on a set of inputs.
 Does not guarantee an upper bound to all executions unless the reaction to all

initial system states and all possible inputs is measured.

 Exhaustive execution in general not possible: Too large space of (input domain) x
(set of initial execution states).

 Simulation suffers from the same restrictions.

 Compute upper bounds along the structure of the program:
 Programs are hierarchically structured: Instructions are “nested” inside

statements.

 Therefore, one may compute the upper execution time bound for a statement
from the upper bounds of its constituents, for example of single instructions.

 But: The execution times of individual instructions varies largely!

4 - 17

Determine the WCET

Complexity of determining the WCET of tasks:
 In the general case, it is even undecidable whether a finite bound exists.

 For restricted classes of programs it is possible, in principle. Computing accurate
bounds is simple for „old“ architectures, but very complex for new architectures with
pipelines, caches, interrupts, and virtual memory, for example.

Analytic (formal) approaches exist for hardware and software.
 In case of software, it requires the analysis of the program flow and the analysis of the

hardware (microarchitecture). Both are combined in a complex analysis flow, see for
example www.absint.de and the lecture “Hardware/Software Codesign”.

 For the rest of the lecture, we assume that reliable bounds on the WCET are available,
for example by means of exhaustive measurements or simulations, or by analytic
formal analysis.

4 - 18

Different Programming Paradigms

4 - 19

Why Multiple Tasks on one Embedded Device?

 The concept of concurrent tasks reflects our intuition about the functionality of
embedded systems.

 Tasks help us manage the complexity of concurrent activities as happening in the
system environment:

 Input data arrive from various sensors and input devices.

 These input streams may have different data rates like in multimedia processing,
systems with multiple sensors, automatic control of robots

 The system may also receive asynchronous (sporadic) input events.

 These input event may arrive from user interfaces, from sensors, or from
communication interfaces, for example.

4 - 20

Example: Engine Control

Typical Tasks:

 spark control

 crankshaft sensing

 fuel/air mixture

 oxygen sensor

 Kalman filter – control
algorithm

engine
controller

4 - 21

Overview

 There are many structured ways of programming an embedded system.

 In this lecture, only the main principles will be covered:
 time triggered approaches

 periodic

 cyclic executive

 generic time-triggered scheduler

 event triggered approaches
 non-preemptive

 preemptive – stack policy

 preemptive – cooperative scheduling

 preemptive - multitasking

4 - 22

Time-Triggered Systems

Pure time-triggered model:

 no interrupts are allowed, except by timers

 the schedule of tasks is computed off-line and therefore, complex sophisticated
algorithms can be used

 the scheduling at run-time is fixed and therefore, it is deterministic

 the interaction with environment happens through polling

Timer

CPU

interrupt polling

interfaces
to sensor/
actuator

set timer

4 - 23

Simple Periodic TT Scheduler

 A timer interrupts regularly with period P.

 All tasks have same period P.

 Properties:

 later tasks, for example T2 and T3, have unpredictable starting times

 the communication between tasks or the use of common resources is safe, as
there is a static ordering of tasks, for example T2 starts after finishing T1

 as a necessary precondition, the sum of WCETs of all tasks within a period is
bounded by the period P:

P

T2 T3T1 T2 T3T1 T2 T3T1
t

t(0)

4 - 24

Simple Periodic Time-Triggered Scheduler

main:

determine table of tasks (k, T(k)), for k=0,1,…,m-1;

i=0; set the timer to expire at initial phase t(0);

while (true) sleep();

Timer Interrupt:

i=i+1;

set the timer to expire at i*P + t(0);

for (k=0,…,m-1){ execute task T(k); }

return;

k T(k)

0 T1

1 T2

2 T3

3 T4

4 T5

m=5

for example using a function pointer in C;
task(= function) returns after finishing.

set CPU to low power mode;
processing starts again after interrupt

usually done offline

4 - 25

Time-Triggered Cyclic Executive Scheduler

 Suppose now, that tasks may have different periods.

 To accommodate this situation, the period P is partitioned into frames of length f.

 We have a problem to determine a feasible schedule, if there are tasks with a
long execution time.

 long tasks could be partitioned into a sequence of short sub-tasks

 but this is tedious and error-prone process, as the local state of the task must be
extracted and stored globally

P

T1
t

0 2 4 6 8 10 12 14 16 18 20

T1 T1 T1 T1T3 T2T2 T4

f

T2 T2

4 - 26

Time-Triggered Cyclic Executive Scheduling

 Examples for periodic tasks: sensory data acquisition, control loops, action
planning and system monitoring.

 When a control application consists of several concurrent periodic tasks with
individual timing constraints, the schedule has to guarantee that each periodic
instance is regularly activated at its proper rate and is completed within its
deadline.

 Definitions:

: denotes the set of all periodic tasks
: denotes a periodic task
: denotes the jth instance of task i
: denote the release time and absolute deadline of the

jth instance of task i
: phase of task i (release time of its first instance)
: relative deadline of task i

i
ji,

jiji dr ,, ,

i

iD

4 - 27

Time-Triggered Cyclic Executive Scheduling

 Example of a single periodic task :

 A set of periodic tasks :

i
i iT

1,ir 2,ir

iD

iC

i

task instances should execute in these intervals

4 - 28

Time-Triggered Cyclic Executive Scheduling

 The following hypotheses are assumed on the tasks:

 The instances of a periodic task are regularly activated at a constant rate. The
interval between two consecutive activations is called period. The release times
satisfy

 All instances have the same worst case execution time . The worst case
execution time is also denoted as WCET(i) .

 All instances of a periodic task have the same relative deadline . Therefore, the
absolute deadlines satisfy

 iiiji DTjd 1,

 iiji Tjr 1,

iC

iT

iD

4 - 29

Time-Triggered Cyclic Executive Scheduling

Example with 4 tasks:

0 4 8 12 16 20 24 28 32 36

requirement

not given as part of the requirement

schedule

4 - 30

Time-Triggered Cyclic Executive Scheduling

Some conditions for period P and frame length f:

 A task executes at most once within a frame:

 P is a multiple of f.

 Period P is least common multiple of all periods .

 Tasks start and complete within a single frame:

 Between release time and deadline of every task there is at least one full frame:

period of task

relative deadline of task

worst case execution time
of task

4 - 31

Sketch of Proof for Last Condition

f

release times and
deadlines of tasks

frames

starting time latest finishing time

4 - 32

Example: Cyclic Executive Scheduling

Conditions:

Feasible solution (f=2):

4 4 1.0

5 5 1.8

20 20 1.0

20 20 2.0possible solution: f = 2

P

t
0 2 4 6 8 10 12 14 16 18 20

f

4 - 33

Time-Triggered Cyclic Executive Scheduling

Checking for correctness of schedule:

 denotes the number of the frame in which that instance j of task executes.

 Is P a common multiple of all periods ?

 Is P a multiple of f ?

 Is the frame sufficiently long?

 Determine offsets such that instances of tasks start after their release time:

 Are deadlines respected?

4 - 34

Generic Time-Triggered Scheduler

 In an entirely time-triggered system, the temporal control structure of all tasks is
established a priori by off-line support-tools.

 This temporal control structure is encoded in a Task-Descriptor List (TDL) that
contains the cyclic schedule for all activities of the node.

 This schedule considers the required precedence and mutual exclusion
relationships among the tasks such that an explicit coordination of the tasks by
the operating system at run time is not necessary.

 The dispatcher is activated by a
synchronized clock tick. It looks at the
TDL, and then performs the action
that has been planned for this
instant [Kopetz].

4 - 35

Simplified Time-Triggered Scheduler

main:

determine static schedule (t(k), T(k)), for k=0,1,…,n-1;

determine period of the schedule P;

set i=k=0 initially; set the timer to expire at t(0);

while (true) sleep();

Timer Interrupt:

k_old := k;

i := i+1; k := i mod n;

set the timer to expire at i/n * P + t(k);

execute task T(k_old);

return;

k t(k) T(k)

0 0 T1

1 3 T2

2 7 T1

3 8 T3

4 12 T2

n=5, P = 16

for example using a function pointer in C;
task returns after finishing.

set CPU to low power mode;
processing continues after interrupt

usually done offline

4 - 36

Summary Time-Triggered Scheduler

Properties:

 deterministic schedule; conceptually simple (static table); relatively easy to
validate, test and certify

 no problems in using shared resources

 external communication only via polling

 inflexible as no adaptation to the environment

 serious problems if there are long tasks

Extensions:

 allow interrupts → be careful with shared resources and the WCET of tasks!!

 allow preemptable background tasks

 check for task overruns (execution time longer than WCET) using a watchdog timer

4 - 37

Event Triggered Systems

The schedule of tasks is determined by the occurrence of external or internal events:

 dynamic and adaptive: there are possible problems with respect to timing, the use
of shared resources and buffer over- or underflow

 guarantees can be given either off-line (if bounds on the behavior of the
environment are known) or during run-time

Timer

CPU

interrupt interrupt or polling

interfaces
to sensor/
actuator

set timer

4 - 38

Non-Preemptive Event-Triggered Scheduling

Principle:
 To each event, there is associated a corresponding task that will be executed.

 Events are emitted by (a) external interrupts or (b) by tasks themselves.

 All events are collected in a single queue; depending on the queuing discipline, an
event is chosen for execution, i.e., the corresponding task is executed.

 Tasks can not be preempted.

Extensions:
 A background task can run if the event queue is empty. It will be preempted by

any event processing.

 Timed events are ready for execution only after a time interval elapsed. This
enables periodic instantiations, for example.

4 - 39

Non-Preemptive Event-Triggered Scheduling

main:

while (true) {

if (event queue is empty) {

sleep();

} else {

extract event from event queue;

execute task corresponding to event;

}

}

Interrupt:

put event into event queue;

return;

set the CPU to low power mode;
continue processing after interrupt

for example using a function pointer in C;
task returns after finishing.

extract event;
dispatch corresponding task

interrupts

event

event queue

tasks

ISR
(interrupt service

routine)
event

4 - 40

Non-Preemptive Event-Triggered Scheduling

Properties:

 communication between tasks does not lead to a simultaneous access to shared
resources, but interrupts may cause problems as they preempt running tasks

 buffer overflow may happen if too many events are generated by the environment or
by tasks

 tasks with a long running time prevent other tasks from running and may cause
buffer overflow as no events are being processed
during this time

 partition tasks into smaller ones

 but the local context must be stored

task with a long
execution time

subtask 1 subtask 2

global memory

save
context

partition

restore
context

4 - 41

Preemptive Event-Triggered Scheduling – Stack Policy

 This case is similar to non-preemptive case, but tasks can be preempted by
others; this resolves partly the problem of tasks with a long execution time.

 If the order of preemption is restricted, we can use the usual stack-based context
mechanism of function calls. The context of a
function contains the necessary state such as local
variables and saved registers.

main memory
addressescontext of

main()

context of
f1()

context of
f2()

main(){

…

f1();

…

f1(){

…

f2();

…

4 - 42

Preemptive Event-Triggered Scheduling – Stack Policy

 Tasks must finish in LIFO (last in first out) order of their instantiation.

 this restricts flexibility of the approach

 it is not useful, if tasks wait some unknown time for external events, i.e., they are
blocked

 Shared resources (communication between tasks!) must be protected, for
example by disabling interrupts or by the use of semaphores.

t

task T1

task T2

task T3

preemption

4 - 43

Preemptive Event-Triggered Scheduling – Stack Policy

main:

while (true) {

if (event queue is empty) {

sleep();

} else {

select event from event queue;

execute selected task;

remove selected event from queue;

}

}

InsertEvent:

put new event into event queue;

select event from event queue;

if (selected task running task) {

execute selected task;

remove selected event from queue;

}

return;

Interrupt:

InsertEvent(…);

return;

for example using a function pointer
in C; task returns after finishing.

set CPU to low power mode;
processing continues after interrupt

may be called by interrupt service
routines (ISR) or tasks

4 - 44

Thread

 A thread is a unique execution of a program.

 Several copies of such a “program” may run simultaneously or at different times.

 Threads share the same processor and its peripherals.

 A thread has its own local state. This state consists mainly of:

 register values;

 memory stack (local variables);

 program counter;

 Several threads may have a shared state consisting of global variables.

4 - 45

Threads and Memory Organization

 Activation record (also denoted as the thread context) contains the
thread local state which includes
registers and local data structures.

 Context switch:

 current CPU context
goes out

 new CPU context
goes in

CPU

PC

registers

thread 1

thread 2

...

memory

4 - 46

Co-operative Multitasking

 Each thread allows a context switch to another thread at a call to the
cswitch() function.
 This function is part of the underlying runtime system (operating system).

 A scheduler within this runtime system chooses which thread will run next.

 Advantages:
 predictable, where context switches can occur

 less errors with use of shared resources if the switch locations are chosen carefully

 Problems:
 programming errors can keep other threads out as a thread may never give up

CPU

 real-time behavior may be at risk if a thread runs too long before the next context
switch is allowed

4 - 47

Example: Co-operative Multitasking

Thread 1

if (x > 2)

sub1(y);

else

sub2(y);

cswitch();

proca(a,b,c);

Thread 2

procdata(r,s,t);

cswitch();

if (val1 == 3)

abc(val2);

rst(val3);

Scheduler

save_state(current);

p = choose_process();

load_and_go(p);

4 - 48

Preemptive Multitasking

 Most general form of multitasking:

 The scheduler in the runtime system (operating system) controls when contexts
switches take place.

 The scheduler also determines what thread runs next.

 State diagram corresponding to each single thread:

 Run: A thread enters this state as it starts executing
on the processor

 Ready: State of threads that are ready to execute
but cannot be executed because the processor
is assigned to another thread.

 Blocked: A task enters this state when it waits
for an event.

run

ready

blocked

signal

wait

dispatch

preemption

activate thread

terminate thread

