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Timing Peculiarities in Modern Computer Architectures

* The following example is taken from an exercise in
“‘Systemprogrammierung’.

* |t was not! constructed for challenging the timing

predictability of modern computer architectures; the
strange behavior was found by chance.

» A straightforward GCD algorithm was executed on an
UltraSparc (Sun) architecture and timing was
measured.

 Goal in this lecture: Determine the cause(s) for the
strange timing behavior.



Program

* Only the relevant assembler program is shown (and
the related C program); the calling main function just
jumps to label ggt 1.000.000 times.

text Here, we will introduces nop

.global ggt statements: there are NOT

align 32 executed.

agt: ! %00:= x,%01 =y

cmp %00, %01 Int ggt_c (int x, inty) {
blu,a ggt lif (%00 < %o01) {goto ggt;} while (x I=y) {

sub %01, %00, %01 1 %01 = %01 - %00 f(x<y){y-=x;}
bgu,a ggt if (%00 > %o1) {goto ggt;} else {x -=vy:}
sub %00, %01, %00 ! %00 = %01 - %00 }

retl return (x);

nop }




Observation

* Depending on the number of nop statements before
the ggt label, the execution time of ggt(17, 17*97)
varies by a factor of almost 2. The execution time of
ggt(17*97, 17) varies by a factor of more than 4.

* This behavior is periodic In the number of nop
statements, i.e. it repeats after 8 nop statements.

« Measurements:

nop

time[s]
got(17,17*97)

time[s]
gat(17*97,17)

nop

time[s]
gat(17,17797)

time[s]
gat(17*97,17)

0 0.36 0.62
1 0.35 2.78
2 0.36 0.64
3 0.35 2.79

4 0.37 0.63
S 0.35 0.62
6 0.65 0.64
7 0.64 0.63
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Simple Calculations

 The CPU iIs UltraSparc with 360 MHz clock rate.
* Problem 1 (ggt(17,17*97) ):

Fast execution: 96*3*1.000.000 / 0.35 = 823 MIPS and
0.35 * 360 /96 = 1.31 cycles per iteration.

Slow execution: 96*3*1.000.000 / 0.65 = 443 MIPS and
0.65 * 360/ 96 = 2.44 cycles per iteration.

Therefore, the difference is about 1 cycle per iteration.

« Problem 2 ( ggt(17*97, 17) )

Fast execution: 96*4*1.000.000 / 0.63 = 609 MIPS and
0.63 * 360 / 96 = 2.36 cycles per iteration.

Slow execution: 96*4*1.000.000/ 2.78 = 138 MIPS and
2.78 * 360 / 96 = 10.43 cycles per iteration.

Therefore, the difference is about 8 cycles per iteration.
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Explanations

* Problem 1 (ggt(17,17*97) ):

* The first three instructions (cmp, blu, sub) are called 96
times before ggt returns. The timing behavior depends on
the location of the program in address space.

* The reason is most probably the implementation of the 4
word instruction buffer between the instruction cache and
the pipeline: The instruction buffer can not be filled by
different cache lines in one cycle.

* |n the slow execution, one needs to fill the instruction buffer
twice for each iteration. This needs at least two cycles
(despite of any parallelism in the pipeline).
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Block Diagram of UltraSparc
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User Manual (page 361 ...)

Instruction Availability

Instruction dispatch is limited to the number of instructions available in the
instruction buffer. Several factors limit instruction availability. UltraSPARC-I1i
fetches up to four instructions per clock from an aligned group of eight instructions.
When the fetch address (modulo 32) is equal to 20, 24, or 28, then three, two, or one

instruction(s) respectively are added to the instruction buffer. The next cache line
and set are predicted using a next field and set predictor for each aligned four
instructions in the instruction cache. When a set or next field mispredict occurs,
instructions are not added to the instruction buffer for two clocks.
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Address Alignment

0 nop

5 nop

6 nop

Cache line:
cmp blu sub
Instruction buffer:
cmp blu sub
Cache line:
nop nop nop nop nop cmp blu sub
Instruction buffer:
cmp blu sub ><
Cache lines:
nop nop nop nop nop nop cmp blu
sub

Instruction buffer:

cmp

blu

al

as sub is missing

fetches are necessarg
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Explanations

 Problem 2 (ggt(17*97,17) ):

* The loop is executed (cmp, blu, sub, bgu, sub) 96 times,
where the first sub instruction is not executed (since blu is
used with '.a’ suffix, which means, that instruction in the
delay slot is not executed if branch is not taken). Therefore,
there are four instructions to be executed, but the loop has 5
iInstructions in total.

* The main reason for this behavior is most probably due to
the branch prediction scheme used in the architecture.

* In particular, there is a prediction of the next block of 4
instructions to be fetched into the instruction buffer. This
scheme is based on a two bit predictor and is also used to
control the pipeline and to prevent stalls.

« But there is a problem due to the optimization of the state
iInformation that is stored (prediction for blocks of
iInstructions and single instructions):
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User Manual (page 342 ...)

The following cases represent situations when the prediction bits and/or the next

field do not operate optimally:

1. When the target of a branch is word 1 or word 3 of an I-cache line (FIGURE 21-2)
and the fourth instruction to be fetched (instruction 4 and 6 respectively) is a
branch, the branch prediction bits from the wrong pair of instructions are used.

5 6 / ‘

Odd Fetches

FIGURE 21-2 Odd Fetch to an I-cache Line

We exactly have this situation, if
there are 1 or three nops
statements inserted

_._.-—"""/
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Conclusions

Innocent changes (Just moving code in address
space) can easily change the timing by a factor of 4.

In our example, the timing oddities are caused by two
different architectural features of modern superscalar
Processors:

* branch prediction
* nstruction buffer

It is hard to predict the timing of modern processors;
this is bad in all situations, where timing is of
Importance (embedded systems, hard real-time
systems).

What is a proper approach to predictable system
design ?



