
© Lothar Thiele
Computer Engineering and Networks Laboratory

Embedded Systems

5. Operating Systems

5 - 2

Embedded Operating Systems

5 - 3

Where we are …

1. Introduction to Embedded Systems

2. Software Development

3. Hardware-Software Interface

4. Programming Paradigms

5. Embedded Operating Systems

6. Real-time Scheduling

7. Shared Resources

8. Hardware Components

9. Power and Energy

10. Architecture Synthesis

Software

Hardware

Hardware-
Software

5 - 4

Embedded Operating System (OS)

 Why an operating system (OS) at all?

 Same reasons why we need one for a traditional computer.

 Not every devices needs all services.

 In embedded systems we find a large variety of requirements and environments:

 Critical applications with high functionality (medical applications, space shuttle,
process automation, …).

 Critical applications with small functionality (ABS, pace maker, …).

 Not very critical applications with broad range of functionality (smart phone, …).

5 - 5

Embedded Operating System

 Why is a desktop OS not suited?

 The monolithic kernel of a desktop OS offers too many features that take space in
memory and consume time.

 Monolithic kernels are often not modular, fault-tolerant, configurable.

 Requires too much memory space and is often too ressource hungry in terms of
computation time.

 Not designed for mission-critical applications.

 The timing uncertainty may be too large for some applications.

5 - 6

Embedded Operating Systems

Essential characteristics of an embedded OS: Configurability
 No single operating system will fit all needs, but often no overhead for

unused functions/data is tolerated. Therefore, configurability is needed.

 For example, there are many embedded systems without external memory, a

keyboard, a screen or a mouse.

Configurability examples:
 Remove unused functions/libraries (for example by the linker).

 Use conditional compilation (using #if and #ifdef commands in C, for example).

 But deriving a consistent configuration is a potential problem of systems with a

large number of derived operating systems. There is the danger of missing

relevant components.

5 - 7

Example: Configuration of VxWorks

© Windriver

h
tt

p
:/

/w
w

w
.w

in
d

ri
ve

r.
co

m
/p

ro
d

u
ct

s/
d

ev
el

o
p

m
en

t_
to

o
ls

/i
d

e/
to

rn
ad

o
2

/t
o

rn
ad

o
_2

_d
s.

p
d

f

5 - 8

Real-time Operating Systems

A real-time operating system is an operating system that supports the

construction of real-time systems.

Key requirements:

1. The timing behavior of the OS must be predictable.

For all services of the OS, an upper bound on the execution time is necessary. For

example, for every service upper bounds on blocking times need to be available,

i.e. for times during which interrupts are disabled. Moreover, almost all

processor activities should be controlled by a real-time scheduler.

2. OS must manage the timing and scheduling

 OS has to be aware of deadlines and should have mechanism to take them
into account in the scheduling

 OS must provide precise time services with a high resolution

5 - 9

Embedded Operating Systems
Features and Architecture

5 - 10

Embedded Operating System

Device drivers are typically handled directly by tasks instead of drivers that are
managed by the operating system:

 This architecture improves timing predictability as access to devices is also handled by
the scheduler

 If several tasks use the same external device and the associated driver, then the access
must be carefully managed (shared critical resource, ensure fairness of access)

Embedded OS Standard OS

5 - 11

Embedded Operating Systems

Every task can perform an interrupt:

 For standard OS, this would be serious source of unreliability. But embedded
programs are typically programmed in a controlled environment.

 It is possible to let interrupts directly start or stop tasks (by storing the tasks start
address in the interrupt table). This approach is more efficient and predictable
than going through the operating system’s interfaces and services.

Protection mechanisms are not always necessary in embedded operating systems:

 Embedded systems are typically designed for a single purpose, untested programs
are rarely loaded, software can be considered to be reliable.

 However, protection mechanisms may be needed for safety and security reasons.

5 - 12

Main Functionality of RTOS-Kernels

Task management:

 Execution of quasi-parallel tasks on a processor using processes or threads (lightweight
process) by

 maintaining process states, process queuing,

 allowing for preemptive tasks (fast context switching) and quick interrupt handling

 CPU scheduling (guaranteeing deadlines, minimizing process waiting times, fairness in
granting resources such as computing power)

 Inter-task communication (buffering)

 Support of real-time clocks

 Task synchronization (critical sections, semaphores, monitors, mutual exclusion)

 In classical operating systems, synchronization and mutual exclusion is performed via
semaphores and monitors.

 In real-time OS, special semaphores and a deep integration of them into scheduling is
necessary (for example priority inheritance protocols as described in a later chapter).

5 - 13

Task States

Minimal Set of Task States:

running

ready

blocked

signal

wait

dispatch

preemption

instantiate

delete

5 - 14

Task states

Running:

 A task enters this state when it starts executing on the processor. There is as
most one task with this state in the system.

Ready:

 State of those tasks that are ready to execute but cannot be run because the
processor is assigned to another task, i.e. another task has the state “running”.

Blocked:

 A task enters the blocked state when it executes a synchronization primitive to
wait for an event, e.g. a wait primitive on a semaphore or timer. In this case,
the task is inserted in a queue associated with this semaphore. The task at the
head is resumed when the semaphore is unlocked by an event.

5 - 15

Multiple Threads within a Process

5 - 16

Threads

A thread is the smallest sequence of programmed instructions that can be
managed independently by a scheduler; e.g., a thread is a basic unit of CPU
utilization.

 Multiple threads can exist within the same process and share resources such
as memory, while different processes do not share these resources:
 Typically shared by threads: memory.

 Typically owned by threads: registers, stack.

 Thread advantages and characteristics:
 Faster to switch between threads; switching between user-level threads requires

no major intervention by the operating system.

 Typically, an application will have a separate thread for each distinct activity.

 Thread Control Block (TCB) stores information needed to manage and schedule a
thread

5 - 17

Threads

 The operating system maintains for each thread a data structure (TCB – thread control block)
that contains its current status such as program counter, priority, state, scheduling information,
thread name.

 The TCBs are administered in linked lists:

timer queue

5 - 18

Context Switch: Processes or Threads

process control block or
thread control block

process or thread P0 process or thread P1operating system

5 - 19

Embedded Operating Systems
Classes of Operating Systems

5 - 20

Class 1: Fast and Efficient Kernels

Fast and efficient kernels

For hard real-time systems, these kernels are questionable, because they are

designed to be fast, rather than to be predictable in every respect.

Examples include

FreeRTOS, QNX, eCOS, RT-LINUX, VxWORKS, LynxOS.

5 - 21

Class 2: Extensions to Standard OSs

Real-time extensions to standard OS:

 Attempt to exploit existing and comfortable main stream operating systems.

 A real-time kernel runs all real-time tasks.

 The standard-OS is executed as one task.

+ Crash of standard-OS does not affect RT-tasks;
- RT-tasks cannot use Standard-OS services;

less comfortable than expected revival of the concept:

hypervisor

5 - 22

Example: Posix 1.b RT-extensions to Linux

The standard scheduler of a general purpose operating system can be replaced by
a scheduler that exhibits (soft) real-time properties.

Hardware

Linux-Kernel

driver

POSIX 1.b scheduler

Init Bash Mozilla

I/O, interrupts

RT-Task RT-Task Special calls for real-time
as well as standard
operating system calls
available.

Simplifies programming,
but no guarantees for
meeting deadlines are
provided.

5 - 23

Example: RT Linux

 RT-tasks cannot use standard OS calls.

 Commercially available from fsmlabs and
WindRiver (www.fsmlabs.com)

5 - 24

Class 3: Research Systems

Research systems try to avoid limitations of existing real-time and embedded
operating systems.

 Examples include L4, seL4, NICTA, ERIKA, SHARK

Typical Research questions:

 low overhead memory protection,

 temporal protection of computing resources

 RTOS for on-chip multiprocessors

 quality of service (QoS) control (besides real-time constraints)

 formally verified kernel properties

List of current real-time operating systems:
http://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems

5 - 25

Embedded Operating Systems
FreeRTOS in the Embedded Systems Lab (ES-Lab)

5 - 26

Example: FreeRTOS (ES-Lab)

FreeRTOS (http://www.freertos.org/) is a typical embedded operating system. It is
available for many hardware platforms, open source and widely used in industry. It
is used in the ES-Lab.

 FreeRTOS is a real-time kernel (or real-time scheduler).

 Applications are organized as a collection of independent
threads of execution.

 Characteristics: Pre-emptive or co-operative operation,
queues, binary semaphores, counting semaphores,
mutexes (mutual exclusion), software timers,
stack overflow checking, trace recording, … .

5 - 27

Example: FreeRTOS (ES-Lab)

Typical directory structure (excerpts):

 FreeRTOS is configured by a header file called FreeRTOSConfig.h that
determines almost all configurations (co-operative scheduling vs. preemptive,
time-slicing, heap size, mutex, semaphores, priority levels, timers, …)

directory containing all port specific source files

functions that implement the handling of tasks (threads)

implementation of linked list data type

implementation of queue and semaphore services

software timer functionality

5 - 28

Embedded Operating Systems
FreeRTOS Task Management

5 - 29

Example FreeRTOS – Task Management

Tasks are implemented as threads.

 The functionality of a thread is implemented in form of a function:

 Prototype:

 Task functions are not allowed to return! They can be “killed” by a specific call to a
FreeRTOS function, but usually run forever in an infinite loop.

 Task functions can instantiate other tasks. Each created task is a separate
execution instance, with its own stack.

 Example:

some name of task function pointer to task arguments

void vTask1(void *pvParameters) {

volatile uint32_t ul; /* volatile to ensure ul is implemented. */

for(;;) {

• ... /* do something repeatedly */

• for(ul = 0; ul < 10000; ul++) { /* delay by busy loop */ }

• }

•}

5 - 30

Example FreeRTOS – Task Management

 Thread instantiation:

returns pdPASS or pdFAIL
depending on the success
of the thread creation

the priority at which the
task will execute; priority 0
is the lowest priority

each task has its own unique
stack that is allocated by the
kernel to the task when the
task is created; the
usStackDepth value
determines the size of the
stack (in words)

a descriptive name for the task

a pointer to the function
that implements the task

pxCreatedTask can be
used to pass out a handle
to the task being created.

task functions accept a parameter
of type pointer to void; the
value assigned to pvParameters is
the value passed into the task.

5 - 31

Example FreeRTOS – Task Management

Examples for changing properties of tasks:

 Changing the priority of a task. In case of preemptive scheduling policy, the ready
task with the highest priority is automatically assigned to the “running” state.

 A task can delete itself or any other task. Deleted tasks no longer exist and cannot
enter the “running” state again.

handle of the task whose priority is being modified new priority (0 is lowest priority)

handle of the task who will be deleted; if NULL, then the caller will be deleted

5 - 32

Embedded Operating Systems
FreeRTOS Timers

5 - 33

Example FreeRTOS – Timers

 The operating system also provides interfaces to timers of the processor.

 As an example, we use the FreeRTOS timer interface to replace the busy loop by
a delay. In this case, the task is put into the “blocked” state instead of
continuously running.

time is measured in “tick” units that are defined in the
configuration of FreeRTOS (FreeRTOSConfig.h). The
function pdMS_TO_TICKS()converts ms to “ticks”.

void vTask1(void *pvParameters) {

for(;;) {

• ... /* do something repeatedly */

• vTaskDelay(pdMS_TO_TICKS(250)); /* delay by 250 ms */

• }

•}

5 - 34

Example FreeRTOS – Timers

 Problem: The task does not execute strictly periodically:

 The parameters to vTaskDelayUntil() specify the exact tick count value at which
the calling task should be moved from the “blocked” state into the “ready” state.
Therefore, the task is put into the “ready” state periodically.

void vTask1(void *pvParameters) {

TickType_t xLastWakeTime = xTaskGetTickCount();

for(;;) {

• ... /* do something repeatedly */

• vTaskDelayUntil(&xLastWakeTime, pdMS_TO_TICKS(250));

• }

•}

task moved to run state

execution of “something”

wait 250ms

t
task in ready state again

The xLastWakeTime variable needs to
be initialized with the current tick
count. Note that this is the only time
the variable is written to explicitly.
After this xLastWakeTime is
automatically updated within
vTaskDelayUntil().

automatically updated when task is unblocked time to next unblocking

5 - 35

Embedded Operating Systems
FreeRTOS Task States

5 - 36

Example FreeRTOS – Task States

What are the task states in FreeRTOS and the corresponding transitions?

 A task that is waiting for an event is said to be
in the “Blocked” state, which is a sub-state of
the “Not Running” state.

 Tasks can enter the “Blocked” state to wait for
two different types of event:

 Temporal (time-related) events—the event
being either a delay period expiring, or an
absolute time being reached.

 Synchronization events—where the events
originate from another task or interrupt. For
example, queues, semaphores, and mutexes, can
be used to create synchronization events.

not much
used

5 - 37

Example FreeRTOS – Task States

Example 1: Two threads with equal priority.
void vTask1(void *pvParameters) {

volatile uint32_t ul;

for(;;) {

• ... /* do something repeatedly */

• for(ul = 0; ul < 10000; ul++) { }

• }

•}

void vTask2(void *pvParameters) {

volatile uint32_t u2;

for(;;) {

• ... /* do something repeatedly */

• for(u2 = 0; u2 < 10000; u2++) { }

• }

•}

int main(void) {

xTaskCreate(vTask1, "Task 1", 1000, NULL, 1, NULL);

xTaskCreate(vTask2, "Task 2", 1000, NULL, 1, NULL);

vTaskStartScheduler();

for(;;);

•}

Both tasks have priority 1. In this case,
FreeRTOS uses time slicing, i.e., every
task is put into “running” state in turn.

5 - 38

Example FreeRTOS – Task States

Example 2: Two threads with delay timer.

If no user-defined task is in the running state,
FreeRTOS chooses a built-in Idle task with priority
0. One can associate a function to this task, e.g.,
in order to go to low power processor state.

int main(void) {

xTaskCreate(vTask1,"Task 1",1000,NULL,1,NULL);

xTaskCreate(vTask2,"Task 2",1000,NULL,2,NULL);

vTaskStartScheduler();

for(;;);

}

void vTask1(void *pvParameters) {

TickType_t xLastWakeTime = xTaskGetTickCount();

for(;;) {

• ... /* do something repeatedly */

• vTaskDelayUntil(&xLastWakeTime,pdMS_TO_TICKS(250));

}

}

void vTask2(void *pvParameters) {

TickType_t xLastWakeTime = xTaskGetTickCount();

for(;;) {

• ... /* do something repeatedly */

• vTaskDelayUntil(&xLastWakeTime,pdMS_TO_TICKS(250));

• }

}

5 - 39

Embedded Operating Systems
FreeRTOS Interrupts

5 - 40

Example FreeRTOS – Interrupts

How are tasks (threads) and hardware interrupts scheduled jointly?

 Although written in software, an interrupt service routine (ISR) is a hardware
feature because the hardware controls which interrupt service routine will run,
and when it will run.

 Tasks will only run when there are no ISRs running, so the lowest priority interrupt
will interrupt the highest priority task, and there is no way for a task to pre-empt
an ISR. In other words, ISRs have always a higher priority than any other task.

 Usual pattern:

 ISRs are usually very short. They find out the reason for the interrupt, clear the
interrupt flag and determine what to do in order to handle the interrupt.

 Then, they unblock a regular task (thread) that performs the necessary processing
related to the interrupt.

 For blocking and unblocking, usually semaphores are used.

5 - 41

Example FreeRTOS – Interrupts

blocking and
unblocking is
typically
implemented
via semaphores

5 - 42

Example FreeRTOS – Interrupts

