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Ressource Sharing
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Resource Sharing

 Examples of shared resources: data structures, variables, main memory area, 
file, set of registers, I/O unit, … .

 Many shared resources do not allow simultaneous accesses but require mutual 
exclusion. These resources are called exclusive resources. In this case, no two 
threads are allowed to operate on the resource at the same time.

 There are several methods available to protect exclusive resources, for example

 disabling interrupts and preemption or 

 using concepts like semaphores 
and mutex that put threads into the
blocked state if necessary.
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Protecting Exclusive Resources using Semaphores

 Each exclusive resource Ri

must be protected by a different 
semaphore Si . Each critical 
section operating on a resource 
must begin with a wait(Si)
primitive and end with a 
signal(Si) primitive.

 All tasks blocked on the same resource are kept in a queue associated with the 
semaphore. When a running task executes a wait on a locked semaphore, it 
enters a blocked state, until another tasks executes a signal primitive that 
unlocks the semaphore.
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Example FreeRTOS (ES-Lab)

To ensure data consistency is maintained at all times access to a resource that is 
shared between tasks, or between tasks and interrupts, must be managed using a 
‘mutual exclusion’ technique.

One possibility is to disable all interrupts:

This kind of critical sections must be kept very short, otherwise they will adversely 
affect interrupt response times.

... 

taskENTER_CRITICAL();  

... /* access to some exclusive resource */

taskEXIT_CRITICAL();  

...
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Example FreeRTOS (ES-Lab)

Another possibility is to use mutual exclusion: In FreeRTOS, a mutex is a special type of 
semaphore that is used to control access to a resource that is shared between two or 
more tasks. A semaphore that is used for mutual exclusion must always be returned:

 When used in a mutual exclusion scenario, the mutex can be thought of as a 
token that is associated with the resource being shared. 

 For a task to access the resource legitimately, it must first successfully ‘take’ 
the token (be the token holder). When the token holder has finished with the 
resource, it must ‘give’ the token back. 

 Only when the token has been returned can another task successfully take the 
token, and then safely access the same shared resource.
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Example FreeRTOS (ES-Lab)
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Example FreeRTOS (ES-Lab)

Example:

SemaphoreHandle_t xMutex;

int main( void ) {

xMutex = xSemaphoreCreateMutex();

if( xMutex != NULL ) {

xTaskCreate(vTask1,“Task1",1000,NULL,1,NULL);

xTaskCreate(vTask2,“Task2",1000,NULL,2,NULL);

vTaskStartScheduler();

}

for( ;; );

}

void vTask1( void *pvParameters ) {

for( ;; ) {

... 

xSemaphoreTake(xMutex,portMAX_DELAY);

... /* access to exclusive resource */

xSemaphoreGive(xMutex);

... }

}

void vTask2( void *pvParameters ) {

for( ;; ) {

... 

xSemaphoreTake(xMutex,portMAX_DELAY);

... /* access to exclusive resource */

xSemaphoreGive(xMutex);

... }

}

some defined constant for infinite timeout; 
otherwise, the function would return if the 
mutex was not available for the specified timecreate mutex semaphore
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Ressource Sharing
Priority Inversion



7 - 11

Priority Inversion (1)

Unavoidable blocking:
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Priority Inversion (2)

can last arbitrarily long

[But97, S.184]

Priority Inversion:
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Solutions to Priority Inversion

Disallow preemption during the execution of all critical sections. Simple approach, 
but it creates unnecessary blocking as unrelated tasks may be blocked.



7 - 14

Resource Access Protocols

Basic idea: Modify the priority of those tasks that cause blocking. When a task Ji

blocks one or more higher priority tasks, it temporarily assumes a higher priority.

Specific Methods:

 Priority Inheritance Protocol (PIP), for static priorities 

 Priority Ceiling Protocol (PCP), for static priorities 

 Stack Resource Policy (SRP), 

for static and dynamic priorities

 others … 
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Priority Inheritance Protocol (PIP) 

Assumptions: 

n tasks which cooperate through m shared resources; fixed priorities, all 
critical sections on a resource begin with a wait(Si) and end with a 
signal(Si) operation.

Basic idea:

When a task Ji blocks one or more higher priority tasks, it temporarily assumes 
(inherits) the highest priority of the blocked tasks.

Terms:

We distinguish a fixed nominal priority Pi and an active priority pi larger or 
equal to Pi. Jobs J1, …Jn are ordered with respect to nominal priority where J1

has highest priority. Jobs do not suspend themselves.



7 - 16

Priority Inheritance Protocol (PIP) 

Algorithm:
 Jobs are scheduled based on their active priorities. Jobs with the same priority are 

executed in a FCFS discipline.

 When a job Ji tries to enter a critical section and the resource is blocked by a lower 
priority job, the job Ji is blocked. Otherwise it enters the critical section.

 When a job Ji is blocked, it transmits its active priority to the job Jk that holds the 
semaphore. Jk resumes and executes the rest of its critical section with a priority 
pk=pi (it inherits the priority of the highest priority of the jobs blocked by it).

 When Jk exits a critical section, it unlocks the semaphore and the highest priority 
job blocked on that semaphore is awakened. If no other jobs are blocked by Jk, 
then pk is set to Pk, otherwise it is set to the highest priority of the jobs blocked by 
Jk.

 Priority inheritance is transitive, i.e. if 1 is blocked by 2 and 2 is blocked by 3, then 
3 inherits the priority of 1 via 2.
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Priority Inheritance Protocol (PIP)

Example:

.

Direct Blocking: higher-priority job tries to acquire a resource held by a lower-priority job

Push-through Blocking: medium-priority job is blocked by a lower-priority job that has 
inherited a higher priority from a job it directly blocks
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Priority Inheritance Protocol (PIP)

Example with nested critical sections:

priority does not change

[But97, S. 189]

a a a
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Priority Inheritance Protocol (PIP)

Example of transitive priority inheritance:

J1 blocked by J2, J2 blocked by J3.
J3 inherits priority from J1 via J2. 

[But97, S. 190]

a
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Priority Inheritance Protocol (PIP)

Still a Problem: Deadlock

…. but there are other protocols like the Priority Ceiling Protocol …

[But97, S. 200]
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The MARS Pathfinder Problem (1)

“But a few days into the mission, not long after Pathfinder started gathering 
meteorological data, the spacecraft began experiencing total system resets, each 
resulting in losses of data.
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The MARS Pathfinder Problem (2)

“VxWorks provides preemptive priority scheduling of threads. Tasks on the 
Pathfinder spacecraft were executed as threads with priorities that were assigned 
in the usual manner reflecting the relative urgency of these tasks.”

“Pathfinder contained an "information bus", which you can think of as a shared 
memory area used for passing information between different components of the 
spacecraft.”

 A bus management task ran frequently with high priority to move certain kinds of 
data in and out of the information bus. Access to the bus was synchronized with 
mutual exclusion locks (mutexes).” 
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The MARS Pathfinder Problem (3)

 The meteorological data gathering task ran as an infrequent, low priority thread.
When publishing its data, it would acquire a mutex, do writes to the bus, and release 
the mutex.

 The spacecraft also contained a communications task that ran with medium priority.

High priority: retrieval of data from shared memory
Medium priority: communications task
Low priority:       thread collecting meteorological data
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The MARS Pathfinder Problem (4)

“Most of the time this combination worked fine. 

However, very infrequently it was possible for an interrupt to occur that caused the 
(medium priority) communications task to be scheduled during the short interval 
while the (high priority) information bus thread was blocked waiting for the (low 
priority) meteorological data thread. In this case, the long-running communications 
task, having higher priority than the meteorological task, would prevent it from 
running, consequently preventing the blocked information bus task from running. 

After some time had passed, a watchdog timer would go off, notice that the data 
bus task had not been executed for some time, conclude that something had gone 
drastically wrong, and initiate a total system reset. This scenario is a classic case of 
priority inversion.”
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Priority Inversion on Mars

Priority inheritance also solved the Mars Pathfinder problem: the VxWorks
operating system used in the pathfinder implements a flag for the calls to mutex
primitives. This flag allows priority inheritance to be set to “on”. When the 
software was shipped, it was set to “off”. 

The problem on Mars was corrected 
by using the debugging facilities of 
VxWorks to change the flag to “on”, 
while the Pathfinder was already on 
the Mars [Jones, 1997].
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Timing Anomalies
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Timing Anomaly

Suppose, a real-time system works correctly with a given processor architecture. 
Now, you replace the processor with a faster one. 

Are real-time constraints still satisfied?

Unfortunately, this is not true in general. Monotonicity does not hold in general, 
i.e., making a part of the system operate faster does not lead to a faster system 
execution. In other words, many software and systems architectures are fragile. 

There are usually many timing anomalies in a system, starting from the 
microarchitecture (caches, pipelines, speculation) via single processor scheduling 
to multiprocessor scheduling.
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Single Processor with Critical Sections

Example: Replacing the 
processor with one 
that is twice as fast
leads to a deadline
miss.
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Multiprocessor Example (Richard’s Anomalies)

Example: 9 tasks with precedence constraints and the shown execution times. Scheduling 
is preemptive fixed priority, where lower numbered tasks have higher priority than higher 
numbers. Assignment of tasks to processors is greedy.

optimal 
schedule on a 
3-processor 
architecture
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Multiprocessor Example (Richard’s Anomalies)

Example: 9 tasks with precedence constraints and the shown execution times. Scheduling 
is preemptive fixed priority, where lower numbered tasks have higher priority than higher 
numbers. Assignment of tasks to processors is greedy.

optimal 
schedule on a 
3-processor 
architecture

slower on a
4-processor
architecture!
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Multiprocessor Example (Richard’s Anomalies)

Example: 9 tasks with precedence constraints and the shown execution times. Scheduling 
is preemptive fixed priority, where lower numbered tasks have higher priority than higher 
numbers. Assignment of tasks to processors is greedy.

optimal 
schedule on a 
3-processor 
architecture

slower if all
computation
times are 
reduced by 1!
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Multiprocessor Example (Richard’s Anomalies)

Example: 9 tasks with precedence constraints and the shown execution times. Scheduling 
is preemptive fixed priority, where lower numbered tasks have higher priority than higher 
numbers. Assignment of tasks to processors is greedy.

optimal 
schedule on a 
3-processor 
architecture

slower if 
some
precedences
are removed!
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Communication and Synchronization
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Communication Between Tasks

Problem: the use of shared memory for implementing communication between 
tasks may cause priority inversion and blocking.

Therefore,  either the implementation of the shared medium is “thread safe” or 
the data exchange must be protected by critical sections.
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Communication Mechanisms

Synchronous communication:

 Whenever two tasks want to communicate they must be synchronized for a 
message transfer to take place (rendez-vous).

 They have to wait for each other, i.e. both must be at the same time ready to do 
the data exchange.

 Problem:

 In case of dynamic real-time systems, estimating the maximum blocking time 
for a process rendez-vous is difficult.

 Communication always needs synchronization. Therefore, the timing of the 
communication partners is closely linked.
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Communication Mechanisms

Asynchronous communication:
 Tasks do not necessarily have to wait for each other.

 The sender just deposits its message into a channel and continues its execution; 
similarly the receiver can directly access the message if at least a message has 
been deposited into the channel.

 More suited for real-time systems than synchronous communication.

 Mailbox: Shared memory buffer, FIFO-queue, basic operations are send and 
receive, usually has a fixed capacity.

 Problem: Blocking behavior if the channel is full or empty; alternative approach is 
provided by cyclical asynchronous buffers or double buffering. 

receiversender
mailbox
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Example: FreeRTOS (ES-Lab)
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Example: FreeRTOS (ES-Lab)

Creating a queue:

Sending item to a queue:

the maximum number of items that the queue 
being created can hold at any one time

the size in bytes of 
each data item

returns handle to 
created queue

the maximum amount of time the task 
should remain in the Blocked state to wait 
for space to become available on the queue

a pointer to the 
data to be copied 
into the queue

returns pdPASS if 
item was successfully 
added to queue
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Example: FreeRTOS (ES-Lab)

Receiving item from a queue:

Example: 

 Two sending tasks with equal priority 1 and one receiving task with priority 2.

 FreeRTOS schedules tasks with equal priority in a round-robin manner: A blocked 
or preempted task is put to the end of the ready queue for its priority. The same 
holds for the currently running task at the expiration of the time slice.

the maximum amount of time the task 
should remain in the Blocked state to wait 
for data to become available on the queue

a pointer to the 
memory into which 
the received data 
will be copied

returns pdPASS if data 
was successfully read 
from the queue
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Example: FreeRTOS (ES-Lab)

Example cont.:

queue
sender 1

sender 2
receiver
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Communication Mechanisms

Cyclical Asynchronous Buffers (CAB):
 Non-blocking communication between tasks.

 A reader gets the most recent message put into the CAB. A message is not 
consumed (that is, extracted) by a receiving process but is maintained until 
overwritten by a new message.

 As a consequence, once the first message has been put in a CAB, a task can never 
be blocked during a receive operation. Similarly, since a new message overwrites 
the old one, a sender can never be blocked.

 Several readers can simultaneously read a single message from the CAB.

writing reading


