Embedded Systems

9. Power and Energy

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Eidgenodssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Lecture Overview

Software <]

Hardware <
1 10.

w N

O 00 N O W

. Power and Energy <

. Introduction to Embedded Systems :
. Software Development |
. Hardware-Software Interface

. Programming Paradigms

. Embedded Operating Systems

. Real-time Scheduling

. Shared Resources

Hardware Components

1

\
\

9
h

\‘g Hardware-
/ Software

Architecture Synthesis

General Remarks

Power and Energy Consumption

= Statements that are true since a decade or longer:

,Power Is considered as the most important constraint in embedded
systems . [in: L. Eggermont (ed): Embedded Systems Roadmap 2002, STW]

“Power demands are increasing rapidly, yet battery capacity cannot
keep up 7’ [in Diztel et al.: Power-Aware Architecting for data-dominated applications, 2007, Springer]

A High temperature

= Main reasons are:

High temperature detected. Device
will be turned off for your safety If
the temperature rses higher
please use after a while

= power provisioning is expensive

= battery capacity is growing only slowly

UX

= devices may overheat

= energy harvesting (e.g. from solar cells) is limited due to the relatively low energy
available density

Some Trends

40 Years of Microprocessor Trend Data

7
10 ! ! ' ! Transistors
108 _ ____________________________ ________________________ :A:A‘:‘ ___________ | (thousands)
A _
10° TS SO VUSRS . f‘.,:gf'.‘.: S g | Single-Thread
b 20 Performance
4 :A“‘ 0edp e (SpecINT x 10°)
107 [agag gl e e .
e e t“ ’ S, Tl Frequency (MHz)
103 _AALA..G;#!II __________ e B i
Y Y L | Typical Power
102 o A e TR (Watts
A ..5= Vv v ve | e
' R . W Y T ysef® | Number of
10 L A = I | ¢ z‘t ¢ Logical Cores
of £ v vovy : snoee
10 _.;...’ ’; ’ﬁ*.”.mm’* E —
i i | i
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammaond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

Implementation Alternatives

Performance
Power Efficiency

General-purpose processors

Application-specific instruction set processors (ASIPs)

Microcontroller

DSPs (digital signal processors)

Programmable hardware

FPGA (field-programmable gate arrays)

Application-specific integrated circuits (ASICs)

Flexibility

Energy Efficiency

= |tis necessary to
optimize HW and SW.

= Use heterogeneous

architectures in order to
adapt to required performance
and to class of application.

= Apply specialization techniques.

GOP/J

1000

100

10

0.1

0.01

0.001

© Hugo De Man,

IMEC, Philips, 2007

X cell

o MPU
+ RISC

1990

1995

2000

2005

2010

Power and Energy

Power and Energy

t

In some cases, faster execution also means less energy, but
the opposite may be true if power has to be increased to allow
for a faster execution.

Power and Energy

t

In some cases, faster execution also means less energy, but
the opposite may be true if power has to be increased to allow
for a faster execution.

-10

Power and Energy

t

In some cases, faster execution also means less energy, but
the opposite may be true if power has to be increased to allow
for a faster execution.

-11

Power and Energy

E:/P@ﬁ
PN

E

t

In some cases, faster execution also means less energy, but
the opposite may be true if power has to be increased to allow
for a faster execution.

-12

Low Power vs. Low Energy

* Minimizing the power consumption (voltage * current) is important for
" the design of the power supply and voltage regulators
* the dimensioning of interconnect between power supply and components
= cooling (short term cooling)
= high cost
= |imited space
= Minimizing the energy consumption is important due to
» restricted availability of energy (mobile systems)
" |imited battery capacities (only slowly improving)
= very high costs of energy (energy harvesting, solar panels, maintenance/batteries)
" J|ong lifetimes, low temperatures

-13

Power Consumption of a CMOS Gate

VDD

subthreshold (I), junction (I,) and
gate-oxide (lzr) leakage

Zak

Source Crain

Y low
(Subthreshold) |

| |1

leax : 1€akage current ljeak

l..: short circuit current l

I, : switching current
Gnd

— Mg s

\ [unc
Cload P-weell

Power Consumption of a CMOS Processors

Main sources:

= Dynamic power consumption

charging and discharging capacitors

Short circuit power consumption:
short circuit path between supply rails

during switching

= |eakage and static power

gate-oxide/subthreshold/junction
leakage

becomes one of the major factors
due to shrinking feature sizes in

semiconductor technology

102 300
Sub-threshold+ -
= |\ junction leakage .
§_ 1| \ —"""\ Dynamic Power | 225
o - \\
o= N
h 2 \Z
=5 10 |- 4 — 150
u_ X Gate Oxide
©
@ 8 Leakage
N
T i
E 10% | T 175
2 A
Gate Length >
10 | ! ! 1 1 0
1990 1995 2000 2005 2010 2015 2020
Year

[J. Xue, T. Li, Y. Deng, Z. Yu, Full-chip leakage analysis for 65 nm CMOS
technology and beyond, Integration VLSI J. 43 (4) (2010) 353—-364]

Drawn gate length (in nm)

-15

Reducing Static Power - Power Supply Gating

Power gating is one of the most effective ways of minimizing static power consumption
(leakage)

= Cut-off power supply to inactive units/components

I — |::l :
HEADER - . LOGIC =
SWITCH T BLOGK -
0 ql - —©
O—]
VIRTUAL VIRTUAL
POWER GROUND
I:: e
O i I
R LOGIC £ | | FOOQTER
" BLOCK S | SWITCH
0 ' =

-16

Dynamic Voltage Scaling (DVS)

Average power consumption of CMOS
circuits (ignoring leakage):

P ~ OéCL Vdef

Via :supply voltage

xQ . switching activity
C'p : load capacity
f : clock frequency

Delay of CMOS circuits:

Vid
(Vga — Vr)?

TNCL

Viga :supply voltage
Vr : threshold voltage
Vir < Vg

Decreasing V,, reduces P quadratically (f constant).
The gate delay increases reciprocally with decreasing V., .

Maximal frequency f,., decreases linearly with decreasing V, .

-17

Dynamic Voltage Scaling (DVS)

P ~ OéCLVdef
E ~ OéCLdedft — CYCLVde (#CYCI@S)

Saving energy for a given task:
— reduce the supply voltage V4
— reduce switching activity a
—reduce the load capacitance C,
—reduce the number of cycles #cycles

-18

Techniques to Reduce Dynamic Power

-19

Parallelism

lmmmm

Vaa | B
f 1

max

-20

Pipelining
ittt

Erq

f

max

[

E ~ ded (#CYCleS)

Ep = %El

-21

VLIW (Very Long Instruction Word) Architectures

" Large degree of parallelism

many parallel computational units, (deeply) pipelined

= Simple hardware architecture

explicit parallelism (parallel instruction set)

parallelization is done offline (compiler)

instruction packet

all 4 instructions are
executed in parallel

e —

p—

instruction 1

instruction 2

instruction 3

instruction 4

\

¥

\

\

floating point
unit

integer
unit

integer
unit

memory
unit

/

Example: Qualcomm Hexagon

Hexagon DSP

VLIW: Area & power efficient multi-issue

« Dual 84-bat execution units

« Standard 8/18/3284bit Sata
types

» SIMD vectorzed MPY JALU
/ SHIFT, Permute, BitOps

« Up 108 16b MAC/cycie

« 2 SP FMA/cycle

Varable sced
NSrUCHON packets
{1 10 4 mstroctions

Instruction Unit |
1 —

, e 24 DataUnit DataUnit Execution Execution
load/stoce (Load (Load/ Unit Unit

s Store/ (B4dit (BBt

ALU) \Vector) Vestor)

nified 32x32bit
eneral Register
£t for

L

uf

¥
"

~ g

3
°

zZg 1

arate Address
cum Regs
Per-Theead

Q
“
~>
b

Register FileThread

Q

>
O

D

Swmcorm Tedwvooper Inc Al Rgrs Seaeroec

Snapdragon 835
(Galaxy S8)

Snapdragon
X16 LTE modem

Hexagon DSP

HVX All-Ways
Aware

Agstic Audio

Qualcomm®
|Zat™ Location

Adreno 540

Graphics Processing
Unit (GPU)

Display Video -
ing Unit Processing Unit .

(VPU)

Qualcomm

Spectra 180
Camera

Kryo 280 CPU

Qualcomm
Haven Security

Dynamic Voltage and Frequency Scaling -
Optimization

-24

Dynamic Voltage and Frequency Scaling (DVFS)

energy per cycle _
P~ aCfy Vdef gy percy reduce voltage -> reduce energy per task

A
E ~ OéCLVd2dft — OéCLVde (#CYCIGS) /

1

~ —~V
/ f T dd “——reduce voltage -> reduce clock frequency

maximum \ gate delay
frequency
of operation Saving energy for a given task:

—reduce the supply voltage V44
—reduce switching activity a

—reduce the load capacitance C;
—reduce the number of cycles #cycles

Example DVFS: Samsung Exynos (ARM processor)

ARM processor core A53 on the Samsung Exynos 7420 (used in
mobile phones, e.g. Galaxy S6)

Exynos 7420 - A53 Power Curves 100

=1 Core == Cores ==3 Cores =g=d4 COores

1026 [1000
900
800
700
600
500

/D‘415 451 L 400

- 300

Power Consumption (mW)

- 200

- 100
ANANDIECH |

400 500 &00 700 goao o0 1000 1104 1200 1295 1400 1500
Frequency (MHz)

Example: Dynamic Voltage and Frequency Scaling

1 507 50MHz= {50
& : Maximum Clock Frequency ‘E_
~ 401 40nJ »# 140 =
| E g
[| £
" 30; 130 3
=) "
g | 25MHz -
20r Energy Consumption 20 £
10nJ |

10} 110

25 30 35 40 45 50

[Courtesy, Yasuura, 2000] Vdd

Example: DVFS — Complete Task as Early as Possible

Via [V] 50 4.0 25
Energy per cycle [nJ] 40 25 10
fmax [MHZ] 50 40 25
cycle time [ns] 20 25 40

We suppose a task that needs 10° cycles to execute within 25 seconds.

a) [V j 109 cycles@50 MHz E.= 10° x 40 x 10°°
52 =40 [J]
42 deadline
252 I
| | | =

5 10 15 20 25 tls]

-28

Example: DVFS — Use Two Voltages

Via [V] 4.0 2.5
Energy per cycle [nJ] 25 10
fmax [MHZ] 40 25
cycle time [ns] 25 40

b) [V?] 4 750M cycles @ 50 MHz + 250M cycles @ 25 MHz

52
42 —

2.5% -

E,= 750 106 x 40 x 10
+250 109 x 10 x 10°

=325 [J]

S 10 15 20

—

t[s]

Example: DVFS — Use One Voltage

Vg V] 5.0 4.0 2.5
Energy per cycle [nJ] 40 25 10
fmax [MHZ] 50 40 25
cycle time [ns] 20 25 40
c) [V7] § 109 — 109 9
52 _ cycles@40 MHz E. =10°x25x 10
= 25 [J]
42
2.5%—
| | | | =

5 10 15 20 25 tl[s]

-30

DVFS: Optimal Strategy

t V., P(y)
y —
L — P (X)
X
T-a T :t

Execute task in fixed time T

with variable voltage V_(t):
1

gatedelay: 7~ —
Via

execution rate: f(t) ~ Vyq(t)

invariant: /Vdd(t)dt = const.

" case A: execute at voltage x for T - g time units and at
voltage y for (1-a) - T time units;
energy consumption: T-(P(x)-a + P(y) - (1-a))

-31

DVFS: Optimal Strategy

V4

X

t V., P(y)
y = P

v

T-a T t

voltage y for (1-a) - T time units;
energy consumption: T-(P(x)-a + P(y) - (1-a))

energy consumption: T - P(z)

Execute task in fixed time T

with variable voltage V_(t):
1

gatedelay: 7~ —
Via

execution rate: f(t) ~ Vyq(t)

invariant: /Vdd(t)dt = const.

case A: execute at voltage x for T - a time units and at

case B: execute at voltagez=a - x + (1-a) - y for T time units;

-32

DVFS: Optimal Strategy
y“ ‘o — Ii?z/j

z P(x)

X

v

T-a T t
Z-T=a-T-x+

z=a-x+(1-a)-y

voltage y for (1-a) - T time units;

Execute task in fixed time T

with variable voltage V_(t):
1

gatedelay: 7~ —
Via

execution rate: f(t) ~ Vyq(t)

invariant: /Vdd(t)dt = const.

case A: execute at voltage x for T - a time units and at

energy consumption: T-(P(x)-a + P(y) - (1-a))

energy consumption: T - P(z)

case B: execute at voltagez=a - x + (1-a) - y for T time units;

-33

DVFS: Optimal Strategy

Assumption: Dynamic power
is a convex function of V,

P(x) -a + P(y) - (1-a)

P(x) \

T~ P(z)

power consumption

average

a.m-—|— (1 — ey @'
Wdd

Dl:l

If possible, running at a constant frequency (voltage) minimizes the energy
consumption for dynamic voltage scaling:

case A is always worse if the power consumption is a convex function of the
supply voltage

DVFS: Real-Time Offline Scheduling on One Processor

" Let us model a set of independent tasks as follows:
= We suppose that a task v, e V
" requires ¢; computation time at normalized processor frequency 1
= arrives at time g,
* has (absolute) deadline constraint d.

= How do we schedule these tasks such that all these tasks can be finished no
later than their deadlines and the energy consumption is minimized?

= YDS Algorithm from “A Scheduling Model for Reduce CPU Energy”, Frances
Yao, Alan Demers, and Scott Shenker, FOCS 1995.”

If possible, running at a constant frequency (voltage) minimizes
the energy consumption for dynamic voltage scaling.

-35

1 5
4
L I L L L B B L L
0 4 8 12 16 time

= Define intensity G([z, z']) in some time interval [z, Z']:

= average accumulated execution time of all tasks that
have arrival and deadline in [z, Z‘] relative to the length
of the interval z'-z

V(2,2]) ={v; €V : 2<a; <d; <2}

G(z2D=) a/(@—2)

'U?ZEVI([Z&Z,])

YDS Optimal DVFS Algorithm for Offline Scheduling

0,8,2

6,14,6

10,14,6

12,17,2

-36

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 1: Execute jobs in the interval with the highest intensity by using the earliest-deadline first
schedule and running at the intensity as the frequency.

1 5 1365 |
2 6 263 |
4
(I)I I IL{III8IIII1I2III1I6I 'time 6,14,6
G([0,6]) = (5+3)/6=8/6, G([0,8]) = (5+3+2)/ (8-0) = 10/8, 10,14,6

G([0,14]) = (5+3+2+6+6)/14=11/7, G(]0,17]) = (5+3+2+6+6+2+2)/17=26/17

G([2, 6]) = (5+3)/(6-2)=2, G([2,14]) = (5+3+6+6) / (14-2) = 5/3,

G([2,17]) = (5+3+6+6+2+2)/15=24/15

G([3,6]) =5/3, G([3,14]) = (5+6+6)/(14-3) = 17/11, G([3,17])=(5+6+6+2+2)/14=21/14
G([6,14]) = 12/(14-6)=12/8, G([6,17]) = (6+6+2+2)/(17-6)=16/11

12,17,2

G([10,14]) = 6/4, G([10,17]) = 10/7, G([11,17]) = 4/6, G([12,17]) = 2/5

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 1: Execute jobs in the interval with the highest intensity by using the earliest-deadline first
schedule and running at the intensity as the frequency.

1 5 1365 |
2 6 263 |
4
(I)I ;IL{I:I8IIII1I2III1I6I 'time 6,14,6
G([0,6]) = (5+3)/6=8/6, G([0,8]) = (5+3+2)/ (8-0) = 10/8, 10,14,6

G([0,14]) = (5+3+2+6+6)/14=11/7, G([0,17]) = (5+3+2+6+6+2+2)/17=26/17

G([2, 6]) = (5+3)/(6-2)=2| G([2,14]) = (5+3+6+6) / (14-2) = 5/3,

G([2,17]) = (5+3+6+6+2+2)/15=24/15

G([3,6]) =5/3, G([3,14]) = (5+6+6)/(14-3) = 17/11, G([3,17])=(5+6+6+2+2)/14=21/14
G([6,14]) = 12/(14-6)=12/8, G([6,17]) = (6+6+2+2)/(17-6)=16/11

12,17,2

G([10,14]) = 6/4, G([10,17]) = 10/7, G([11,17]) = 4/6, G([12,17]) = 2/5

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 1: Execute jobs in the interval with the highest intensity by using the earliest-deadline first
schedule and running at the intensity as the frequency.

0,8,2

T T T T T T T T T T T 7171711 >
0 |4 8 12 16 time

!

RN
0 4 8 12 16

10,14,6

12,17,2

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 2: Adjust the arrival times and deadlines by excluding the possibility to execute at the previous

critical intervals.

1] 5
4
] T T T [T T T T T T T 1T T T tme
0 4 8 12 16

0,8,2

6,14,6

10,14,6

12,17,2

-40

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 2: Adjust the arrival times and deadlines by excluding the possibility to execute at the previous
critical intervals.

1] 5
2 5
6146 | 2106 |
[] [| (1 1 1T [17 17 11 tlr:ne
0 4 8 12 16 10,146 | =) [6,10,6
@ 11172 | 7132 |
5
5
@] a,d.c; |

llllllllllllllllll_:
0 4 8 12 16 time

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 3: Run the algorithm for the revised input again

5 0,4,2
s] SOE
4
6108
ettt >

G([0,4])=2/4, G([0,10]) = 14/10, G([0,13])=18/13 8,13,2

G([2,10])=12/8, G([2,13]) = 16/11, G([6,10])=6/4
G([6,13])=10/7, G([7,13])=4/6, G([8,13])=4/5

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 3: Run the algorithm for the revised input again

5 0,4,2
s] SOE
4
6108
ettt >

G([0,4])=2/4, G([0,10]) = 14/10, G([0,13])=18/13 8,13,2

| G([2,100)=12/8,|G([2,13]) = 16/11, G([6,10])=6/4
G([6,13])=10/7, G([7,13])=4/6, G([8,13])=4/5

Step 3: Run the algorithm for the revised input again
5

ettt

G([0,4])=2/4, G([0,10]) = 14/10, G([0,13])=18/13
| G([2,100)=12/8,1G([2,13]) = 16/11, G([6,10])=6/4
G([6,13])=10/7, G([7,13])=4/6, G([8,13])=4/5

YDS Optimal DVFS Algorithm for Offline Scheduling

0,4,2

2,10,6

6,10,6

8,13,2

- 44

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 3: Run the algorithm for the revised input again
Step 4: Put pieces together

frequency 0,4,2 2

0 4 8 12 16 8132 5

frequency

1
! Nﬂp
{ Il

0,2,2 0,2,2

frequency 2 2 1 1.5 1.5 4/3 4/3

-45

YDS Optimal DVFS Algorithm for Online Scheduling

frequency |
3 |
2 1
1 0,8,2
m L I I T > .
0 4 8 12 16 time

Continuously update to the best schedule for all arrived tasks:
Time O: task v is executed at 2/8

YDS Optimal DVFS Algorithm for Online Scheduling

frequency |
3 —
2 263 |
1 0,8,2

Wiiiiiiiii >
0 4 8 12 16 time

Continuously update to the best schedule for all arrived tasks:
Time O: task v is executed at 2/8

Time 2: task v, arrives
= G([2,6]) =%, G([2,8]) =4.5/6=3/4 =>execute vg, Vv, at %

YDS Optimal DVFS Algorithm for Online Scheduling

frequency

A

3 -

2_

1_.

o

Tt ..
0 4 8 12 16 time

Continuously update to the best schedule for all arrived tasks:
Time O: task v is executed at 2/8
Time 2: task v, arrives

G([2,6]) = %, G([2,8]) = 4.5/6=3/4 =>execute vg, v, at %

Time 3: task v, arrives

G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v, and v, at 29/12

0,8,2

-48

YDS Optimal DVFS Algorithm for Online Scheduling

A
frequency

3 —

2_

1_

0 4 8 12 16 time
Continuously update to the best schedule for all arrived tasks:
Time O: task v is executed at 2/8
Time 2: task v, arrives
= G([2,6]) =%, G([2,8]) =4.5/6=3/4 =>execute vg, Vv, at %
Time 3: task v, arrives
= G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v, and v, at 29/12
Time 6: task v, arrives
= G([6,8]) =1.5/2, G([6,14]) = 7.5/8 => execute v; and v, at 15/16

0,8,2

-49

YDS Optimal DVFS Algorithm for Online Scheduling

A
frequency

3 —

Continuously update to the best schedule for all arrived tasks:
Time O: task v is executed at 2/8
Time 2: task v, arrives
= G([2,6]) =%, G([2,8]) =4.5/6=3/4 =>execute vg, Vv, at %
Time 3: task v, arrives
= G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v, and v, at 29/12
Time 6: task v, arrives
= G([6,8]) =1.5/2, G([6,14]) = 7.5/8 => execute v; and v, at 15/16
Time 10: task v arrives
= G([10,14]) = 39/16 => execute v, and v at 39/16

0,8,2

10,14,6

-50

YDS Optimal DVFS Algorithm for Online Scheduling

A

frequency
3 —

0,8,2

8 time

10,14,6

Continuously update to the best schedule for all arrived tasks:
Time O: task v is executed at 2/8
Time 2: task v, arrives
= G([2,6]) =%, G([2,8]) =4.5/6=3/4 =>execute vg, Vv, at % 12,17,2
Time 3: task v, arrives
= G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v, and v, at 29/12
Time 6: task v, arrives
= G([6,8]) =1.5/2, G([6,14]) = 7.5/8 => execute v; and v, at 15/16
Time 10: task v arrives
= G([10,14]) = 39/16 => execute v, and v at 39/16
Time 11 and Time 12
" The arrival of vg and v, does not change the critical interval
Time 14:
= G([14,17]) = 4/3 => execute v, and v, at 4/3

Remarks on the YDS Algorithm

» Offline

" The algorithm guarantees the minimal energy consumption while satisfying the
timing constraints

= The time complexity is O(N3), where N is the number of tasks in V
= Finding the critical interval can be done in O(N?)
= The number of iterations is at most N

= Exercise:

= For periodic real-time tasks with deadline=period, running at constant speed with
100% utilization under EDF has minimum energy consumption while satisfying the
timing constraints.

= Online

= Compared to the optimal offline solution, the on-line schedule uses at most 27
times of the minimal energy consumption.

-52

Dynamic Power Management

-53

Dynamic Power Management (DPM)

 Dynamic power management tries to assign optimal
power saving states during program execution

* DPM requires hardware and software support

Example: StrongARM SA1100

400mW
RUN: operational 0 RUN }
LLS

IDLE: a SW routine may stop the A 160ms
CPU when not in use, while 90us 64m)

L 10us 36,
monitoring interrupts a H
SLEEP: Shutdown of on-chip (

50mW op 160pW

Dynamic Power Management (DPM)

application states

shut down wake up
busy waiting I busy
| |
| ,
run I T sleep Tou I run
_ ! !
power states
T.4: shutdown delay T,,,: Wakeup delay

T,: waiting time

Desired: Shutdown only during long waiting times. This

leads to a tradeoff between energy saving and overhead.

-55

Break-Even Time

Definition: The minimum waiting time required to compensate
the cost of entering an inactive (sleep) state.

" Enter an inactive state is beneficial only if the waiting time is longer than the
break-even time

= Assumptions for the calculation:

Workload
information

|
No performance penalty is tolerated. :
|
|

An ideal power manager that

has the full knowledge of the future
workload trace. On the previous slide,
we supposed that the power manager
has no knowledge about the future.

SYSTEM

-56

Break-Even Time

application states

> power states

T. P,
busy waiting busy ‘
, State transition
run sleep run
Tsd Twu
PSd -PS Pwu
Scenario 1 (no transition): FE; =1, - P,

Scenario 2 (state transition): Fo = Tsq - Psqa + Twu - Pwu + (T — Tsq — Tww) - Ps

Break-even time:

Break-even constraint:

Time constraint:

Limit for 7,, such that E < Ej

T

Vv

Tsd'(Psd_Ps)_l_Twu'(Pwu_

P;)

break-even
— time

Tw 2 Tsd + T'wu

— P,

-57

Break-Even Time

Tw Py
busy waiting busy ‘
/state transition | application states
run sleep run ‘
T., T >~ power states
Pgq P P,

remove, if power manager has

X . no knowledge about future
Scenario 1 (no transition): FE; =1, - P,

Scenario 2 (state transition): Fs = Tsq - Psq + Twu - Puwu + (1L Toww) - Ps
Break-even time: Limit for 7,, such that E,
break-even
«— time

Break-even constraint: Ty >

Time constraint: Ty 2 Tsa+ Ty

Power Modes in MSP432 (Lab)

LFEXIN, LFXOUT,

HFXIN HEXOUT PixtoP10x PJx
4 DCOR 4 4
v | 4 " tPvsspoman r ‘ The MSP432 has one
| | (éapamlt;lve '_rl_c:urz:r;h1 ||a;% 01‘ . . .
apaciiuve ouc
poM Pss ! Backen || F—— active mode in 6 different
cs | rre_c WDT_A Momoer |, _ _ _
/O Port /0 Port
coner Lo Clock : Real-Time | | Watchdog | | conrr || o o Conflguratlons which all
System Clock Timer P1to P10 PJ .
owA N | ||| rvos | | evos allow for execution of
8 Channels I |
AdresT— - e il el e il ol code.
Bus Data l - - - - - -
r-——-—- == l Control l
e | S T T T |
| L s | [o It has 5 major low power
| (includes . AES256
ARM Flash (Peripheral RSTCTL SYSCTL
' Cortex-M4F I i Driver ; mOdeS (LPO LP3 LP4
| r— 256KB Memory) Library) Reset System Eﬁfrcy;'t'itg’n CRC32 ! ! !
: | 128KB ggﬁg 1oKE Controller Controller Decryption LP3 . 5’ LP4. 5), Some Of
i .
M them can be in one of
| . .
i I
|| o sysmex | | several configurations.
| | | | |
| FPB, DWT [| B . o
| USCI_AO,
e 1 precson | | Comn 80, ||| e o || TTAY || | e | [eusorar ||| S5SGE0
: omp_| A ' USCI_A2, -0
' I . SUSCI A3 sUSCLB2, In tOtaI, the MSP432 can
[1TAG. SWD | 1 Msps, Analog RV?Itage Tl-rg;eé'_tA 2 x 32-bit - eUSCI_B3
1 elerence 1 - - -
| | SARAD. | | Comparster 5 CCR Tirmers Jungr | e, sey be in 18 different low
e ‘
| IS L

power configurations.

Copyright © 2017 Texas Instruments Incorporated

active mode (32MHz): 6 - 15 mW ; low power mode (LP4): 1.5 - 2.1 pyW 9-59

Power Modes in MSP432 (Lab)

"= Transition between modes can be handled using C-level interfaces to the power
control manger.

Hard Reset

= Examples of interface functions:
" uint8 t PCM_getPowerState (void)
" bool PCM_gotolLPMO (void)
" bool PCM_gotolLPM3 (void)
" bool PCM_gotolLPM4 (void)
" bool PCM_shutdownDevice (uint32_t shutdownMode)

LPM3.5 or 4.5
(stop or
shutdown)

Battery-Operated Systems and Energy Harvesting

-61

Embedded Systems In the Extreme - Permasense - =

\.‘ -
‘- v}
& he
Py |
Y -
\ '
n\.
{
:
-\-.
A '
Y

e P T FPT T TSN

Reasons for Battery-Operated Devices and Harvesting

= Battery operation:
" no continuous power source available
= mobility

" Energy harvesting:
= prolong lifetime of battery-operated devices
= infinite lifetime using rechargeable batteries
= autonomous operation

NIRRT A S
— 7 —— > = V
5 — I LOAD o
H —
zZ Energy K

- Inetic

Antenna Matching Rectifier/Filter ~ Pwr Mgmt Module Low Power Load
Battery/Capacitor o \

radio frequency (RF) harvesting

Typical Power Circuitry — Power Point Tracking

Energy Generated [} Power
Energy Dissipated || Management
Controls
Thermoelectric]\
Photovoltaic 0 —’ _’ __’J% Eq \
" " &
Piezoelectric < "‘Q
Conversion Energy Voltage Electronic
Harv r S0 o
e Circuit(s) Storage Stabilization Load

power point tracking / impedance
matching; conversion to voltage
of energy storage

rechargeable battery
or supercapacitor

- 66

Solar Panel Characteristics

25°C .
18 = Variable output power
AM-1.5, 100mW/cm?

= |[luminance level
vV = Electrical operation point
[= (Temperature, age, ...)

—
(o)}

—i
NN

—
(A

= |-\V-Characteristics
= Non-linear
= Dependent on ambient

Current [mA/cm?] |
o

o N~ OO @

= Maximum Power Point Tracking

0 02 04 06 08 10 = Dynamic algorithm to find P*
Voltage [V/cell] |/

Diagram: Amorton Amorphous Silicon Solar Cells Datasheet, © Panasonic

Typical Power Circuitry — Maximum Power Point Tracking

U/I curves of a typical solar cell:

[, P

red: current for different light intensities

blue: power for different light intensities

grey: maximal power

tracking: determine optimal impedance
seen by the solar panel

simple tracking algorithm (assume constant illumination) :

start new iteration k: = k+1

)
sense V(k), I(k)
P(k) = V(k) * I(k)

set V(k+1) = V(k) + A

set V(k+1) =V(k) - A

end iteration k |«

\ 4

Maximal Power Point Tracking

start new iteration k := k+1

Y/

sense VK], I[K]

set £1] = VIK] + A set VIk+1] = VIK] - A

|
Y

t!nd iteration k

Maximal Power Point Tracking

/

start new iter.ation k: = k+1

set V(k+1) = V(k) + A

set V(k+1) =/V(}l/A

end iteration(:/

-70

Maximal Power Point Tracking

/

start new iteiation k: = k+1

sense k), (k)

set V(k+1) = V(k) + A

sey V(k+1) = V(k) - A

end iteration k |e

-71

Maximal Power Point Tracking

start new iterlation k: = k+1

sense V[k), I(k)
P(k) = V[k) * I(k)

yes P(k) > P ? no

yes no yes
V(k) > V(k-1) ? >V(k-1) ?

setV(kil) = V(y{A/

\ set V(k+1) = V(k) - A
> end iterationk |«

-72

Maximal Power Point Tracking

start new iter“ation k: = k+1

sense V(k), I(k)
P(k) = V(k) * I(k)

s‘«;t V(kk\)QA
set V(k+1) = V(k) - A

end iteration k |e

-73

Typical Challenge in (Solar) Harvesting Systems

Challenges:

Example of a solar energy trace:

solar radiation (MJ m?)

What is the optimal maximum capacity of the battery?

What is the optimal area of the solar cell?

How can we control the application such that a continuous system operation is
possible, even under a varying input energy (summer, winter, clouds)?

w
o

hD
o

daily energy (MJ m™?)

-—
o

1 I
0 BD 12[] 180 240 300 360 o

day of the year

351
30 1
25 1
20 1
19 1
10 1

|
‘ll l ‘ I W ‘ | 5 -

| M

2000 2001 2002 2003

-74

Example: Application Control

Scenario: i

energy flow
energy source [energy storage
iInformation
| flow
energy estimator > controller > consumer

= The controller can adapt the service of the consumer device, for example the
sampling rate for its sensors or the transmission rate of information. As a result,
the power consumption changes proportionally.

=" Precondition for correctness of application control: Never run out of energy.

= Example for optimality criterion: Maximize the lowest service of (or
equivalently, the lowest energy flow to) the consumer.

-75

Application Control

energy capacity B
e‘\-\a‘Qea

Formal Model: - -
p(t) u(t) discrete time t

Q
energy source [energy storage

b(t)
p(T)) u(t)

energy estimator p—— > controller > consumer

" harvested and used energy in [t, t+1): p(t), u(t)

= battery model: b(t + 1) = min{b(t) + p(t) — u(t), B}

= failure state: b(t) + p(t) —u(t) <0

= utility: 1 is a strictly concave function;

Ul(ty,t2) Z (u higher used energy gives a reduced

reward for the overall utility.
bisT<ts 9-76

Application Control

= What do we want? We would like to determine an optimal control u*(t) for
time interval [t, t+1) for all tin [0, T) with the following properties:
= VO<t<T : b (t)+p(t)—u"(t) >0
"= There is no feasible use function u(t) with a larger minimal energy:
Yu : ' t)} < mi *(t
w s min fu(t)} < min {u”(t)}
* The use function maximizes the utility U(O, T).

" We suppose that the battery has the same or better state at the end than at the
start of the time interval, i.e., b*(T) > b*(0).

= We would like to answer two questions:
= Can we say something about the characteristics of u*(t) ?
* How does an algorithm look like that efficiently computes u*(t) ?

-78

Application Control

Theorem: Given a use function u*(t), t € [0,7) such that the system never enters a
failure state. If u*(t) is optimal with respect to maximizing the minimal used energy
among all use functions and maximizes the utility U(t, T), then the following
relations hold for all 7 € (0,7):

empty battery
W (r—1) < u* (1) = b*(r) = 0~

full batter
u*(T—1)>u*(T):>b*(T):B/ Y

Sketch of a proof: First, let us show that a consequence of the above theorem is
true (just reverting the relations):

Vre (s,t] : 0<b* (1)< B = Vre|st] : u'(r)=u"(t)

In other words, as long as the battery is neither full nor empty, the optimal use
function does not change.

-79

Application Control

= Proof sketch cont.: ' ——
= 60~ f\ —plt)
: pl— A
oy L/ =
S a0l i
E
|
==
ﬁ 2{]_ . —
2 \/
]]]]
930 240 250 260 270 280 290 300 310 320 33
100
— b (1)
£ 80
&
3 60 .
<
5 40 .
L
7 20 /
] L o™
930 240 250 zeu 2?0 280 zga 3:::0 sm 120 33
Time [weeks]

(top) Example of an optimal use function u*(t) for a given harvest function p(t)
and (bottom) the corresponding stored energy b*(t).

Application Control

= Proof sketch cont.:

suppose we change
the use function

—u*(t)
—pit)

h
=]

kly Energy Wh]
o
=]

B NVAUAM\;\
I Y,
r\MﬁL\Q\/ v,

locally from being —
constant such that
the overall battery

ESD 240 250 260 270 280 290 300 310 320 33
state does not change o

4

then the utility is worse
due to the concave
function (: diminishing
reward for higher

use function values; and
the minimal use function
IS potentially smaller

4

State—of-Charge [%8]

AW

| |
BSD 240 250 260 2?0 280 290 BCICI 310 320 33
Time [weeks]

(top) Example of an optimal use function u*(t) for a given harvest function p(t)
and (bottom) the corresponding stored energy b*(t).

Application Control

= Proof sketch cont.: Now we show that for all 7 € (¢,7T)

u (r—1)<u"(r) = b"(1) =0
or equivalently

b*(1) >0 = u"(r—1) > u™(7)
We already have shown this for 0 < b*(7) < B. Therefore, we only need to
show that|b*(7) = B = u" (7 — 1) > ™ (7) |. Suppose now that we have
u* (T — 1) < u*(7) if the battery is full at 7. Then we can increase the use at
time 7 — 1 and decrease it at time 7 by the same amount without changing the
battery level at time 7 + 1 . This again would increase the overall utility and
potentially increase the minimal use function.

—

7 % <> ®v(r+1) initial, not optimal
o ue oS __ choice of the use
®u function
T—1 T T+ 1 -

Application Control

= Proof sketch cont.: Now we show that for all 7 € (¢,7T)

u (r—1)<u"(r) = b"(1) =0
or equivalently

b*(1) >0 = u"(r—1) > u™(7)
We already have shown this for 0 < b*(7) < B. Therefore, we only need to
show that|b*(7) = B = u" (7 — 1) > ™ (7) |. Suppose now that we have
u* (T — 1) < u*(7) if the battery is full at 7. Then we can increase the use at
time 7 — 1 and decrease it at time 7 by the same amount without changing the
battery level at time 7 + 1 . This again would increase the overall utility and
potentially increase the minimal use function.

b* (T
(1) < B ® b (r+1) feasible, but

* e L Dbetter choice of
use function with

u (r—1) > u* (1)

T—1 T T+ 1 —

-83

Application Control

—u'(t)

[\ —plt)

h
[

(=]
=]

Weekly Energy [Wh]
I
[}

330 240 250 260 270 280 290 300 310 320 33
100
£ 80]
ik]
[]
g 60 —
9
S 40 —
:
& 20 /
| | | I | | | | [

SBD 240 250 260 270 280 2890 300 310 320 33
Time [weeks]

(top) Example of an optimal use function u*(f) for a given harvest function p(f)
and (bottom) the corresponding stored energy b*(t).

Application Control

= How can we efficiently compute an optimal use function?

" There are several options available as we just need to solve a convex optimization
problem.

= Asimple but inefficient possibility is to convert the problem into a linear program.
At first suppose that the utility is simply

U@O,7)= Y u(r)

This is not shown here.]

0<7<T
Then the linear program has the form: maximize Z u(T)
0<r<T
[Concave functions [t could be vr €0,T) : b(T +1) =b(r) — u(r) + p(7)
piecewise linearly approximated. Vrelo,T) : 0<b(r+1)<B
0,T)

p(t) 1

u(t)
b(t)

-86

u(t) , U@

p(t) 1 1) P T b(1)
4 4
3 O 3
2 ® ® 2
1 O T 1
¥ | i . ¢

Application Control

= But what happens if the estimation of the future incoming energy is not correct?

If it would be correct, then we would just compute the whole future application
control now and would not change anything anymore.

This will not work as errors will accumulate and we will end up with many
infeasible situations, i.e., the battery is completely empty and we are forced to
stop the application.

Possibility: Finite horizon control

= At time t, we compute the optimal control (see previous slides) using the currently
available battery state b(t) with predictions ﬁ(’r) forall t<7<t+71 and
b(t+T)=0b(t).

= From the computed optimal use function u(7) forallt <7 <t + T we just take the
first use value u(t) in order to control the application.

= At the next time step, we take as initial battery state the actual state; therefore, we
take mispredictions into account. For the estimated future energy, we also take the
new estimations.

- 88

Application Control

= Finite horizon control:

—
t t+1

compute the optimal use function in [t, t+T)
using the actual battery state at time t

apply this use function in the interval [t, t+1).

compute the optimal use function in [t+1, t+T+1)
using the actual batter state at time t+1

-89

Application Control using Finite Horizon

State-of-Charge [%)]

- | e 111
= 60 ~ ’
= s 1) _ _
3 0 ——il~——, €Stimated Iinput
& energy
$ 20 |
= AV
0 | | | \ :
230 240 250 260 270 280 290 300 310 @ \L» still energy
breakdown
100 ~ v i due to misprediction
80 /_
60 —
40| .
20 |
930 240 250 260 270 260 290 300 310 320 33

Time [weeks]

Application Control using Finite Horizon

— “{t]

-—--ilt) ~J—_, MNOre pessimistic

[*2]
[==]

5 . P
> P prediction
5 40 w117 () _ -
> = simplified
-
8 201 ‘ -~ optimization
- ' using a look-
| l l | l | l l l
930 240 250 260 270 280 290 300 310 320 33 Up-table

[not covered]

<
|

(o]
[
|

@
(=]
|

I
o
|

State-of-Charge [%]

n
o
|

| | | | | | | | |

0

230 240 250 260 270 280 290 300 310 320 33
Time [weeks]

