
© Lothar Thiele
Computer Engineering and Networks Laboratory

Embedded Systems

9. Power and Energy

9 - 2

Lecture Overview

1. Introduction to Embedded Systems

2. Software Development

3. Hardware-Software Interface

4. Programming Paradigms

5. Embedded Operating Systems

6. Real-time Scheduling

7. Shared Resources

8. Hardware Components

9. Power and Energy

10. Architecture Synthesis

Software

Hardware

Hardware-
Software

9 - 3

General Remarks

9 - 4

„Power is considered as the most important constraint in embedded

systems.” [in: L. Eggermont (ed): Embedded Systems Roadmap 2002, STW]

•“Power demands are increasing rapidly, yet battery capacity cannot

keep up.” [in Diztel et al.: Power-Aware Architecting for data-dominated applications, 2007, Springer]

Power and Energy Consumption

 Statements that are true since a decade or longer:

 Main reasons are:

 power provisioning is expensive

 battery capacity is growing only slowly

 devices may overheat

 energy harvesting (e.g. from solar cells) is limited due to the relatively low energy
available density

9 - 5

Some Trends

9 - 6

•Performance

•Power Efficiency •Flexibility

Application-specific integrated circuits (ASICs)

Application-specific instruction set processors (ASIPs)

Microcontroller

DSPs (digital signal processors)

General-purpose processors

Programmable hardware

FPGA (field-programmable gate arrays)

Implementation Alternatives

9 - 7

Energy Efficiency

 It is necessary to
optimize HW and SW.

 Use heterogeneous
architectures in order to
adapt to required performance
and to class of application.

 Apply specialization techniques.

•© Hugo De Man,

IMEC, Philips, 2007

9 - 8

Power and Energy

9 - 9

•t

•P

E

In some cases, faster execution also means less energy, but

the opposite may be true if power has to be increased to allow

for a faster execution.

Power and Energy

9 - 10

•t

•P

E

In some cases, faster execution also means less energy, but

the opposite may be true if power has to be increased to allow

for a faster execution.

Power and Energy

9 - 11

•t

•P

E

In some cases, faster execution also means less energy, but

the opposite may be true if power has to be increased to allow

for a faster execution.

Power and Energy

9 - 12

•t

•P

E

In some cases, faster execution also means less energy, but

the opposite may be true if power has to be increased to allow

for a faster execution.

Power and Energy

9 - 13

Low Power vs. Low Energy

 Minimizing the power consumption (voltage * current) is important for

 the design of the power supply and voltage regulators

 the dimensioning of interconnect between power supply and components

 cooling (short term cooling)

 high cost

 limited space

 Minimizing the energy consumption is important due to

 restricted availability of energy (mobile systems)

 limited battery capacities (only slowly improving)

 very high costs of energy (energy harvesting, solar panels, maintenance/batteries)

 long lifetimes, low temperatures

9 - 14

•Ileak : leakage current

•Iint : short circuit current

•Isw : switching current

subthreshold (ISUB), junction (IJUNC) and
gate-oxide (IGATE) leakage

Power Consumption of a CMOS Gate

IJUNC

9 - 15

Power Consumption of a CMOS Processors

Main sources:

 Dynamic power consumption

 charging and discharging capacitors

 Short circuit power consumption:

short circuit path between supply rails

during switching

 Leakage and static power

 gate-oxide/subthreshold/junction

leakage

 becomes one of the major factors

due to shrinking feature sizes in

semiconductor technology

[J. Xue, T. Li, Y. Deng, Z. Yu, Full-chip leakage analysis for 65 nm CMOS

technology and beyond, Integration VLSI J. 43 (4) (2010) 353–364]

9 - 16

Reducing Static Power - Power Supply Gating

Power gating is one of the most effective ways of minimizing static power consumption
(leakage)

 Cut-off power supply to inactive units/components

9 - 17

Average power consumption of CMOS
circuits (ignoring leakage):

•Delay of CMOS circuits:

Decreasing Vdd reduces P quadratically (f constant).

The gate delay increases reciprocally with decreasing Vdd .

Maximal frequency fmax decreases linearly with decreasing Vdd .

•: supply voltage

•: threshold voltage

•: supply voltage

•: switching activity

•: load capacity

•: clock frequency

Dynamic Voltage Scaling (DVS)

9 - 18

Saving energy for a given task:

– reduce the supply voltage Vdd

– reduce switching activity α

– reduce the load capacitance CL

– reduce the number of cycles #cycles

Dynamic Voltage Scaling (DVS)

9 - 19

Techniques to Reduce Dynamic Power

9 - 20

Vdd Vdd/2 Vdd/2

fmax fmax/2 fmax/2

Parallelism

9 - 21

Vdd/2

Vdd/2

fmax fmax/2

fmax/2

Vdd

Pipelining

9 - 22

VLIW (Very Long Instruction Word) Architectures

 Large degree of parallelism

 many parallel computational units, (deeply) pipelined

 Simple hardware architecture

 explicit parallelism (parallel instruction set)

 parallelization is done offline (compiler) all 4 instructions are

executed in parallel

9 - 23

Example: Qualcomm Hexagon
•Snapdragon 835

(Galaxy S8)
•Hexagon DSP

9 - 24

Dynamic Voltage and Frequency Scaling -
Optimization

9 - 25

Saving energy for a given task:

– reduce the supply voltage Vdd

– reduce switching activity α

– reduce the load capacitance CL

– reduce the number of cycles #cycles

Dynamic Voltage and Frequency Scaling (DVFS)

reduce voltage -> reduce energy per task

gate delay

reduce voltage -> reduce clock frequency

maximum

frequency

of operation

energy per cycle

9 - 26

ARM processor core A53 on the Samsung Exynos 7420 (used in

mobile phones, e.g. Galaxy S6)

Example DVFS: Samsung Exynos (ARM processor)

9 - 27

•Vdd•[Courtesy, Yasuura, 2000]

Example: Dynamic Voltage and Frequency Scaling

9 - 28

We suppose a task that needs 109 cycles to execute within 25 seconds.

Ea= 109 x 40 x 10-9

= 40 [J]

Example: DVFS – Complete Task as Early as Possible

9 - 29

Eb= 750 106 x 40 x 10-9

+ 250 106 x 10 x 10-9

= 32.5 [J]

Example: DVFS – Use Two Voltages

9 - 30

Ec = 109 x 25 x 10-9

= 25 [J]

Example: DVFS – Use One Voltage

9 - 31

DVFS: Optimal Strategy

 case A: execute at voltage x for T ∙ a time units and at
voltage y for (1-a) ∙ T time units;
energy consumption: T ∙ (P(x) ∙ a + P(y) ∙ (1-a))

•Vdd

•x

•y

•t•T•T∙a

•P(y)

•P(x)

Execute task in fixed time T
with variable voltage Vdd(t):

•gate delay:

•execution rate:

•invariant:

9 - 32

DVFS: Optimal Strategy

 case A: execute at voltage x for T ∙ a time units and at
voltage y for (1-a) ∙ T time units;
energy consumption: T ∙ (P(x) ∙ a + P(y) ∙ (1-a))

 case B: execute at voltage z = a ∙ x + (1-a) ∙ y for T time units;
energy consumption: T ∙ P(z)

•Vdd

•x

•y
•z

•t•T•T∙a

•P(y)

•P(x)

•P(z)
Execute task in fixed time T
with variable voltage Vdd(t):

•gate delay:

•execution rate:

•invariant:

9 - 33

DVFS: Optimal Strategy

 case A: execute at voltage x for T ∙ a time units and at
voltage y for (1-a) ∙ T time units;
energy consumption: T ∙ (P(x) ∙ a + P(y) ∙ (1-a))

 case B: execute at voltage z = a ∙ x + (1-a) ∙ y for T time units;
energy consumption: T ∙ P(z)

•Vdd

•x

•y
•z

•t•T•T∙a

•P(y)

•P(x)

•P(z)
Execute task in fixed time T
with variable voltage Vdd(t):

•gate delay:

•execution rate:

•invariant: •z ∙ T = a ∙ T∙ x + (1-a) ∙ T ∙ y

z = a ∙ x + (1-a) ∙ y

9 - 34

DVFS: Optimal Strategy

If possible, running at a constant frequency (voltage) minimizes the energy
consumption for dynamic voltage scaling:

case A is always worse if the power consumption is a convex function of the
supply voltage

Assumption: Dynamic power
is a convex function of Vdd

•P(y)

•P(x)

•P(z)

•P(x) ∙ a + P(y) ∙ (1-a)

•a
ve

ra
ge

9 - 35

DVFS: Real-Time Offline Scheduling on One Processor

 Let us model a set of independent tasks as follows:

 We suppose that a task vi ϵ V

 requires ci computation time at normalized processor frequency 1

 arrives at time ai

 has (absolute) deadline constraint di

 How do we schedule these tasks such that all these tasks can be finished no
later than their deadlines and the energy consumption is minimized?

 YDS Algorithm from “A Scheduling Model for Reduce CPU Energy”, Frances
Yao, Alan Demers, and Scott Shenker, FOCS 1995.”

If possible, running at a constant frequency (voltage) minimizes
the energy consumption for dynamic voltage scaling.

9 - 36

YDS Optimal DVFS Algorithm for Offline Scheduling

 Define intensity G([z, z‘]) in some time interval [z, z‘]:

 average accumulated execution time of all tasks that
have arrival and deadline in [z, z‘] relative to the length
of the interval z‘-z

2

4

3

1 5

7

6

3,6,5

2,6,3

0,8,2

6,14,6

10,14,6

11,17,2

12,17,2

ai,di,ci

0 •time4 8 12 16

9 - 37

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 1: Execute jobs in the interval with the highest intensity by using the earliest-deadline first
schedule and running at the intensity as the frequency.

2

4

3

1 5

7

6

3,6,5

2,6,3

0,8,2

6,14,6

10,14,6

11,17,2

12,17,2

G([0,6]) = (5+3)/6=8/6, G([0,8]) = (5+3+2)/ (8-0) = 10/8,

G([0,14]) = (5+3+2+6+6)/14=11/7, G([0,17]) = (5+3+2+6+6+2+2)/17=26/17

G([2, 6]) = (5+3)/(6-2)=2, G([2,14]) = (5+3+6+6) / (14-2) = 5/3,

G([2,17]) = (5+3+6+6+2+2)/15=24/15

G([3,6]) =5/3, G([3,14]) = (5+6+6)/(14-3) = 17/11, G([3,17])=(5+6+6+2+2)/14=21/14

G([6,14]) = 12/(14-6)=12/8, G([6,17]) = (6+6+2+2)/(17-6)=16/11

G([10,14]) = 6/4, G([10,17]) = 10/7, G([11,17]) = 4/6, G([12,17]) = 2/5

ai,di,ci

0 •time4 8 12 16

9 - 38

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 1: Execute jobs in the interval with the highest intensity by using the earliest-deadline first
schedule and running at the intensity as the frequency.

2

4

3

1 5

7

6

3,6,5

2,6,3

0,8,2

6,14,6

10,14,6

11,17,2

12,17,2

G([0,6]) = (5+3)/6=8/6, G([0,8]) = (5+3+2)/ (8-0) = 10/8,

G([0,14]) = (5+3+2+6+6)/14=11/7, G([0,17]) = (5+3+2+6+6+2+2)/17=26/17

G([2, 6]) = (5+3)/(6-2)=2, G([2,14]) = (5+3+6+6) / (14-2) = 5/3,

G([2,17]) = (5+3+6+6+2+2)/15=24/15

G([3,6]) =5/3, G([3,14]) = (5+6+6)/(14-3) = 17/11, G([3,17])=(5+6+6+2+2)/14=21/14

G([6,14]) = 12/(14-6)=12/8, G([6,17]) = (6+6+2+2)/(17-6)=16/11

G([10,14]) = 6/4, G([10,17]) = 10/7, G([11,17]) = 4/6, G([12,17]) = 2/5

ai,di,ci

0 •time4 8 12 16

9 - 39

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 1: Execute jobs in the interval with the highest intensity by using the earliest-deadline first
schedule and running at the intensity as the frequency.

2

4

3

1 5

7

6

3,6,5

2,6,3

0,8,2

6,14,6

10,14,6

11,17,2

12,17,2

ai,di,ci

0 •time4 8 12 16

2 1

0 4 8 12 16

9 - 40

ai,di,ci

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 2: Adjust the arrival times and deadlines by excluding the possibility to execute at the previous
critical intervals.

0,8,2

6,14,6

10,14,6

11,17,2

12,17,2

2

4

3

1 5

7

6

0
•time

4 8 12 16

9 - 41

ai,di,ci

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 2: Adjust the arrival times and deadlines by excluding the possibility to execute at the previous
critical intervals.

0,8,2

6,14,6

10,14,6

11,17,2

12,17,2

0,4,2

2,10,6

6,10,6

7,13,2

8,13,2

2

4

3

1 5

7

6

0
•time

4 8 12 16

4

3

5

7

6

0 4 8 12 16 •time

9 - 42

0,4,2

2,10,6

6,10,6

7,13,2

8,13,2

ai,di,ci

•time

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 3: Run the algorithm for the revised input again

4

3

5

7

6

0 4 8 12 16

G([0,4])=2/4, G([0,10]) = 14/10, G([0,13])=18/13

G([2,10])=12/8, G([2,13]) = 16/11, G([6,10])=6/4

•G([6,13])=10/7, G([7,13])=4/6, G([8,13])=4/5

9 - 43

0,4,2

2,10,6

6,10,6

7,13,2

8,13,2

ai,di,ci

•time

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 3: Run the algorithm for the revised input again

4

3

5

7

6

0 4 8 12 16

G([0,4])=2/4, G([0,10]) = 14/10, G([0,13])=18/13

G([2,10])=12/8, G([2,13]) = 16/11, G([6,10])=6/4

•G([6,13])=10/7, G([7,13])=4/6, G([8,13])=4/5

9 - 44

0,4,2

2,10,6

6,10,6

7,13,2

8,13,2

ai,di,ci

•time

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 3: Run the algorithm for the revised input again

4

3

5

7

6

0 4 8 12 16

G([0,4])=2/4, G([0,10]) = 14/10, G([0,13])=18/13

G([2,10])=12/8, G([2,13]) = 16/11, G([6,10])=6/4

•G([6,13])=10/7, G([7,13])=4/6, G([8,13])=4/5

0 4 8 12 16 •time

4 5

9 - 45

2 1

0,2,2

2,5,2

2,5,20
•time

4 8 12 16

4

0,4,2

7,13,2

8,13,2

5

frequency

2 1

0
•time

4 8 12 16

4 5

frequency

76
0,2,20,2,2

3

4/34/31.51.5122frequency

v7v6v5v4v3v2v1

Step 3: Run the algorithm for the revised input again

Step 4: Put pieces together

YDS Optimal DVFS Algorithm for Offline Scheduling

9 - 46

YDS Optimal DVFS Algorithm for Online Scheduling

Continuously update to the best schedule for all arrived tasks:
Time 0: task v3 is executed at 2/8

0 time4 8 12 16

0,8,2

ai,di,ci

3

frequency

1

2

3

9 - 47

YDS Optimal DVFS Algorithm for Online Scheduling

Continuously update to the best schedule for all arrived tasks:
Time 0: task v3 is executed at 2/8
Time 2: task v2 arrives

 G([2,6]) = ¾, G([2,8]) = 4.5/6=3/4 => execute v8 , v2 at ¾

0 time4 8 12 16

2,6,3

0,8,2

ai,di,ci

3 2

frequency

1

2

3

3

9 - 48

YDS Optimal DVFS Algorithm for Online Scheduling

Continuously update to the best schedule for all arrived tasks:
Time 0: task v3 is executed at 2/8
Time 2: task v2 arrives

 G([2,6]) = ¾, G([2,8]) = 4.5/6=3/4 => execute v8 , v2 at ¾
Time 3: task v1 arrives

 G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v2 and v1 at 29/12

0 time4 8 12 16

3,6,5

2,6,3

0,8,2

ai,di,ci

3 2

2 1

frequency

1

2

3

3

9 - 49

YDS Optimal DVFS Algorithm for Online Scheduling

Continuously update to the best schedule for all arrived tasks:
Time 0: task v3 is executed at 2/8
Time 2: task v2 arrives

 G([2,6]) = ¾, G([2,8]) = 4.5/6=3/4 => execute v8 , v2 at ¾
Time 3: task v1 arrives

 G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v2 and v1 at 29/12
Time 6: task v4 arrives

 G([6,8]) = 1.5/2, G([6,14]) = 7.5/8 => execute v3 and v4 at 15/16

0 time4 8 12 16

3,6,5

2,6,3

0,8,2

6,14,6

ai,di,ci

3 2

2 1

3 4

frequency

1

2

3

9 - 50

YDS Optimal DVFS Algorithm for Online Scheduling

Continuously update to the best schedule for all arrived tasks:
Time 0: task v3 is executed at 2/8
Time 2: task v2 arrives

 G([2,6]) = ¾, G([2,8]) = 4.5/6=3/4 => execute v8 , v2 at ¾
Time 3: task v1 arrives

 G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v2 and v1 at 29/12
Time 6: task v4 arrives

 G([6,8]) = 1.5/2, G([6,14]) = 7.5/8 => execute v3 and v4 at 15/16
Time 10: task v5 arrives

 G([10,14]) = 39/16 => execute v4 and v5 at 39/16

0 time4 8 12 16

3,6,5

2,6,3

0,8,2

6,14,6

10,14,6

ai,di,ci

3 2

2 1

3 4

4 5

frequency

1

2

3

9 - 51

YDS Optimal DVFS Algorithm for Online Scheduling

Continuously update to the best schedule for all arrived tasks:
Time 0: task v3 is executed at 2/8
Time 2: task v2 arrives

 G([2,6]) = ¾, G([2,8]) = 4.5/6=3/4 => execute v8 , v2 at ¾
Time 3: task v1 arrives

 G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v2 and v1 at 29/12
Time 6: task v4 arrives

 G([6,8]) = 1.5/2, G([6,14]) = 7.5/8 => execute v3 and v4 at 15/16
Time 10: task v5 arrives

 G([10,14]) = 39/16 => execute v4 and v5 at 39/16
Time 11 and Time 12

 The arrival of v6 and v7 does not change the critical interval
Time 14:

 G([14,17]) = 4/3 => execute v6 and v7 at 4/3

0 time4 8 12 16

3,6,5

2,6,3

0,8,2

6,14,6

10,14,6

11,17,2

12,17,2

ai,di,ci

3 2

2 1

3 4

4 5

76

frequency

1

2

3

9 - 52

Remarks on the YDS Algorithm

 Offline
 The algorithm guarantees the minimal energy consumption while satisfying the

timing constraints

 The time complexity is O(N3), where N is the number of tasks in V
 Finding the critical interval can be done in O(N2)

 The number of iterations is at most N

 Exercise:
 For periodic real-time tasks with deadline=period, running at constant speed with

100% utilization under EDF has minimum energy consumption while satisfying the
timing constraints.

 Online
 Compared to the optimal offline solution, the on-line schedule uses at most 27

times of the minimal energy consumption.

9 - 53

Dynamic Power Management

9 - 54

• Dynamic power management tries to assign optimal
power saving states during program execution

• DPM requires hardware and software support

400mW

160μW50mW

90μs
5μJ

90μs
36μJ

10μs
4μJ

10μs
4μJ

160ms
64mJ

RUN: operational

IDLE: a SW routine may stop the
CPU when not in use, while
monitoring interrupts

SLEEP: Shutdown of on-chip
activity SLEEPIDLE

RUN

Dynamic Power Management (DPM)

Example: StrongARM SA1100

9 - 55

busy waiting busy

shut down wake upapplication states

Desired: Shutdown only during long waiting times. This
leads to a tradeoff between energy saving and overhead.

Tsd Twurun runsleep

Tsd: shutdown delay Twu: wakeup delay

Tw: waiting time

power states

Dynamic Power Management (DPM)

Tw

9 - 56

Break-Even Time

Definition: The minimum waiting time required to compensate
the cost of entering an inactive (sleep) state.

 Enter an inactive state is beneficial only if the waiting time is longer than the
break-even time

 Assumptions for the calculation:

 No performance penalty is tolerated.

 An ideal power manager that
has the full knowledge of the future
workload trace. On the previous slide,
we supposed that the power manager
has no knowledge about the future.

9 - 57

Break-Even Time

Scenario 1 (no transition):

Scenario 2 (state transition):

Break-even time: Limit for such that

Break-even constraint:

Time constraint:

application states

power states

busy busywaiting

run runsleep

state transition

break-even

time

9 - 58

Break-Even Time

Scenario 1 (no transition):

Scenario 2 (state transition):

Break-even time: Limit for such that

Break-even constraint:

Time constraint:

application states

power states

busy busywaiting

run runsleep

state transition

break-even

time

remove, if power manager has

no knowledge about future

9 - 59

Power Modes in MSP432 (Lab)

The MSP432 has one

active mode in 6 different

configurations which all

allow for execution of

code.

It has 5 major low power

modes (LP0, LP3, LP4,

LP3.5, LP4.5), some of

them can be in one of

several configurations.

In total, the MSP432 can

be in 18 different low

power configurations.

active mode (32MHz): 6 - 15 mW ; low power mode (LP4): 1.5 – 2.1 µW

9 - 60

Power Modes in MSP432 (Lab)

 Transition between modes can be handled using C-level interfaces to the power
control manger.

 Examples of interface functions:

 uint8_t PCM_getPowerState (void)

 bool PCM_gotoLPM0 (void)

 bool PCM_gotoLPM3 (void)

 bool PCM_gotoLPM4 (void)

 bool PCM_shutdownDevice (uint32_t shutdownMode)

9 - 61

Battery-Operated Systems and Energy Harvesting

9 - 62

Embedded Systems in the Extreme - Permasense

© Lothar Thiele
Computer Engineering and Networks Laboratory

Embedded Systems

64

9 - 65

Reasons for Battery-Operated Devices and Harvesting

 Battery operation:

 no continuous power source available

 mobility

 Energy harvesting:

 prolong lifetime of battery-operated devices

 infinite lifetime using rechargeable batteries

 autonomous operation

radio frequency (RF) harvesting

9 - 66

Typical Power Circuitry – Power Point Tracking

power point tracking / impedance
matching; conversion to voltage
of energy storage

rechargeable battery
or supercapacitor

Voltage

Stabilization

9 - 67

Solar Panel Characteristics

9 - 68

Typical Power Circuitry – Maximum Power Point Tracking

red: current for different light intensities
blue: power for different light intensities
grey: maximal power

tracking: determine optimal impedance
seen by the solar panel

U/I curves of a typical solar cell: simple tracking algorithm (assume constant illumination) :

start new iteration k: = k+1

yes no

sense V(k), I(k)
P(k) = V(k) * I(k)

P(k) > P(k-1) ?

V(k) > V(k-1) ? V(k) > V(k-1) ?

set V(k+1) = V(k) + Δ
set V(k+1) = V(k) - Δ

end iteration k

yes yesno

9 - 69

Maximal Power Point Tracking

9 - 70

Maximal Power Point Tracking

9 - 71

Maximal Power Point Tracking

9 - 72

Maximal Power Point Tracking

9 - 73

Maximal Power Point Tracking

9 - 74

Typical Challenge in (Solar) Harvesting Systems

Challenges:

 What is the optimal maximum capacity of the battery?

 What is the optimal area of the solar cell?

 How can we control the application such that a continuous system operation is
possible, even under a varying input energy (summer, winter, clouds)?

Example of a solar energy trace:

9 - 75

Example: Application Control

Scenario:

 The controller can adapt the service of the consumer device, for example the
sampling rate for its sensors or the transmission rate of information. As a result,
the power consumption changes proportionally.

 Precondition for correctness of application control: Never run out of energy.

 Example for optimality criterion: Maximize the lowest service of (or
equivalently, the lowest energy flow to) the consumer.

energy source energy storage

energy estimator controller consumer

energy flow

information

flow

9 - 76

Application Control

Formal Model:

 harvested and used energy in [t, t+1): p(t), u(t)

 battery model:

 failure state:

 utility:

energy source energy storage

energy estimator controller consumer

b(t)

p(t) u(t) discrete time t

u(t)

is a strictly concave function;

higher used energy gives a reduced

reward for the overall utility.

energy capacity B

9 - 77

9 - 78

Application Control

 What do we want? We would like to determine an optimal control u*(t) for
time interval [t, t+1) for all t in [0, T) with the following properties:



 There is no feasible use function u(t) with a larger minimal energy:

 The use function maximizes the utility U(0, T).

 We suppose that the battery has the same or better state at the end than at the
start of the time interval, i.e., b*(T) ≥ b*(0).

 We would like to answer two questions:

 Can we say something about the characteristics of u*(t) ?

 How does an algorithm look like that efficiently computes u*(t) ?

9 - 79

Application Control

Theorem: Given a use function u*(t), such that the system never enters a
failure state. If u*(t) is optimal with respect to maximizing the minimal used energy
among all use functions and maximizes the utility U(t, T), then the following
relations hold for all :

Sketch of a proof: First, let us show that a consequence of the above theorem is
true (just reverting the relations):

In other words, as long as the battery is neither full nor empty, the optimal use
function does not change.

empty battery

full battery

9 - 80

Application Control

 Proof sketch cont.:

9 - 81

Application Control

 Proof sketch cont.:

suppose we change

the use function

locally from being

constant such that

the overall battery

state does not change

then the utility is worse

due to the concave

function : diminishing

reward for higher

use function values; and

the minimal use function

is potentially smaller

9 - 82

Application Control

 Proof sketch cont.: Now we show that for all

or equivalently

We already have shown this for . Therefore, we only need to
show that . Suppose now that we have

if the battery is full at . Then we can increase the use at
time and decrease it at time by the same amount without changing the
battery level at time . This again would increase the overall utility and
potentially increase the minimal use function.

initial, not optimal

choice of the use

function

9 - 83

Application Control

 Proof sketch cont.: Now we show that for all

or equivalently

We already have shown this for . Therefore, we only need to
show that . Suppose now that we have

if the battery is full at . Then we can increase the use at
time and decrease it at time by the same amount without changing the
battery level at time . This again would increase the overall utility and
potentially increase the minimal use function.

feasible, but

better choice of

use function with

9 - 84

Application Control

9 - 85

Application Control

 How can we efficiently compute an optimal use function?

 There are several options available as we just need to solve a convex optimization
problem.

 A simple but inefficient possibility is to convert the problem into a linear program.
At first suppose that the utility is simply

Then the linear program has the form:

[Concave functions could be
piecewise linearly approximated.
This is not shown here.]

9 - 86

0 1 2 3 4 5 6=T

1

2

3

4

p(t)
u(t)

b(t)

9 - 87

0 1 2 3 4 5 6=T

1

2

3

4

p(t)
u(t)

b(t)

0 1 2 3 4 5 6=T

1

2

3

4

p(t)
u(t)

b(t)

9 - 88

Application Control

 But what happens if the estimation of the future incoming energy is not correct?

 If it would be correct, then we would just compute the whole future application
control now and would not change anything anymore.

 This will not work as errors will accumulate and we will end up with many
infeasible situations, i.e., the battery is completely empty and we are forced to
stop the application.

 Possibility: Finite horizon control

 At time t, we compute the optimal control (see previous slides) using the currently
available battery state b(t) with predictions for all and

.

 From the computed optimal use function for all we just take the
first use value u(t) in order to control the application.

 At the next time step, we take as initial battery state the actual state; therefore, we
take mispredictions into account. For the estimated future energy, we also take the
new estimations.

9 - 89

Application Control

 Finite horizon control:

t t+T

compute the optimal use function in [t, t+T)

using the actual battery state at time t

t

apply this use function in the interval [t, t+1).

t+1

compute the optimal use function in [t+1, t+T+1)

using the actual batter state at time t+1
t+1 t+T+1

9 - 90

Application Control using Finite Horizon

estimated input

energy

still energy

breakdown

due to misprediction

9 - 91

Application Control using Finite Horizon

more pessimistic

prediction

simplified

optimization

using a look-

up-table

[not covered]

