Embedded Systems

1 - Introduction

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Eidgenodssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Herbstsemester 2021
227-0124-00L Embedded Systems

Daten der Belegungseinschrankung

Lecture Organization Platzzahi

zlle Belegung
- G

Anzahl Studierende in der Warteliste zum Zeitpunkt 14.09.2021 13:23

Organization

WWW: https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html

Lecture: Lothar Thiele, thiele@ethz.ch; Michele Magno <michele.magno@pbl.ee.ethz.ch>
Coordination: Seonyeong Heo (ETZ D97.7) <seoheo@ethz.ch>

References:

= P. Marwedel: Embedded System Design, Springer, ISBN 978-3-319-85812-8/978-3-030-
60909-2, 2018/2021.

" G.C. Buttazzo: Hard Real-Time Computing Systems. Springer Verlag, ISBN 978-1-4614-
0676-1, 2011.

" Fdward A. Lee and Sanjit A. Seshia: Introduction to Embedded Systems, A Cyber-
Physical Systems Approach, Second Edition, MIT Press, ISBN 978-0-262-53381-2, 2017.

Sources: The slides contain ideas and material of J. Rabaey, K. Keuzer, M. Wolf, P.
Marwedel, P. Koopman, E. Lee, P. Dutta, S. Seshia, and from the above cited books.

Organization Summary

" Lectures are held on Mondays from 14:15 to 16:00 in ETF C1 until further notice.
Life streaming and slides are available via the web page of the lecture. In
addition, you find audio and video recordings of most of the slides as well as
recordings of this years and last years life streams on the web page of the
lecture.

= Exercises take place on Wednesdays and Fridays from 16:15 to 17:00 via Zoom.
On Wednesdays the lecture material is summarized, hints on how to approach
the solution are given and a sample question is solved. On Fridays, the correct
solutions are discussed.

* Laboratories take place on Wednesdays and Fridays from 16:15 to 18:00 (the
latest). On Wednesdays the session starts with a short introduction via Zoom
and then questions can be asked via Zoom. Fridays are reserved for questions
via Zoom.

Further Material via the Web Page

Lecture Slides
All lecture slides are available for download as a bundle:

- Embedded Systems lecture slides [single page format] L

- Embedded Systems lecture slides [4on1 page format] L

Lecture Recordings

Life Recordings Autumn 2021

The life recordings of the lectures in Autumn Semester are available at the following link:

Embedded Systems Life Recordings AS 2021.

/

The life recordings of last years lecture are available at the following links:

Life Recordings Autumn 2020

1. Lecture 1: Chapters 1. Introduction and 2. Software Development

2. Lecture 2: Chapters 2. Software Development and 3. Hardware-Software Interface

~

Some of the chapters are documented via carefully recoreded videos. They contain some

Audio and Videos of Selected Chapters

of the slides as well as audio explanations.

— 1. Introduction

— 2. Software Development

— 3. Hardware Software Interface

Exercises and Laboratory

Generic Documents

Embedded System Companion

Remote Installation Instructions

Documents for Lab 0

Handout

Slides and videos

Documents for Lab 1

Handout

Slides and videos

Documents for Lab 2

Handout

Slides and videos

Nariimante far | ah 2

Supplementary Material

Source (code)

Solution (code and handout)

Source (code)

Solution (code and handout)

Source (code)

Solution (code and handout)

When and where?

Schedule

When Where
Lectures Monday 14:15 - 16:00 ETF C1
Exercises Wednesday 16:15 - 17:00 Zoom
Friday 16:15 - 17:00 Zoom
Labs Wednesday 16:15 - 18:00 Zoom
Friday 16:15 - 18:00 Zoom
Timetable
Date Lecture Exercice Lab
27.09.2021 1. Introduction
2. Software Development
29.09./01.10.2021 0. Prelab [MM]

04.10.2021

NA/NR 1N 2021

3. Hardware-Software In-
terface

1 Rarea Matal Pranram-

What will you learn?

* Theoretical foundations and principles of the analysis and design of embedded
systems.

" Practical aspects of embedded system design, mainly software design.

The course has three components:

Lecture: Communicate principles and practical aspects of embedded systems.

Exercise: Use paper and pencil to deepen your understanding of analysis and
design principles .

Laboratory (ES-Lab): Introduction into practical aspects of embedded systems
design. Use of state-of-the-art hardware and design tools.

Please read carfully!!

= https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html

Exercises and Laboratory

We urgently ask all students to do the laboratory on their own hardware. For this, we
provide you with a virtual machine that has all the necessary software already pre-
installed. You can find the installation instructions on GitLab. We have tested this setup on
PCs and Laptops with an USB port that run Windows 10, macOS Catalina, as well as Linux
Mint and Linux Ubuntu 18.04 and 20.04; in general, all platforms which can run VirtualBox

should work. In exceptional circumstances where this is not possible, students are allowed
to use the computers in ETZ D61.1 or ETZ D96.1 during the regular laboratory hours (Wed-
nesday or Friday 16.15 - 18.00). In such a case, please send an email with your name and
Legi number to the lecture coordinator. You will receive a time slot and room allocation

that guarantees that the maximum occupation of the computer rooms is respected. You
are not allowed to enter ETZ D61.1 or ETZ D96.1 during the laboratory hours if you do not
have an allocated slot.

What you got already...

Be careful and please do not ...

-10

You have to return the board at the end!

"i

- PAYD) KTIME

Embedded Systems - Impact

-12

Embedded Systems

Embedded systems (ES) = information processing systems
embedded into a larger product

Examples:

&@

= e S
{ y ---, —— -)
] I 1 »
ey .
Xae i saxh =0
— - | LT T]
- EE me Y
{ I | | &
' EEN OO '
s = a0l :
EEE
" Eoo

Often, the main reason for buying is not information processing

-13

1 =<

3

—
@
)
* D

IDZT1

© www.braingrid.org
© www.openpr.com

1-14

Many Names — Similar Meanings

Cyber-Physical Systems

© Edward Lee

1-15

Embedded System

CYBER
WORLD

Embedded System

Computation

reasoning
deciding
big data

Communication

v

PHYSICAL
WORLD

observing influencing

physical/biological/social
processes

Use feedback to influence the dynamics of the physical
world by taking smart decisions in the cyber world

-19

N
7N

r

- - — -

Reactivity & Timing

Embedded systems are often reactive:
= Reactive systems must react to stimuli from the system environment :

,A reactive system is one which is in continual interaction with is environment and
executes at a pace determined by that environment” [Bergé, 1995]

Embedded systems often must meet real-time constraints:

" For hard real-time systems, right answers arriving too late are wrong. All other
time-constraints are called soft. A guaranteed system response has to be explained
without statistical arguments.

,A real-time constraint is called hard, if not meeting that constraint could
result in a catastrophe” [Kopetz, 1997].

-20

Predictability & Dependability

CPS = cyber-physical system

N

Measured

System

sference input Sysl utput
il ",:+ — | Controller » System >
Measured putput
SENSON |f—
NI
2N P
72N =

((‘ﬂ’)) v/ 4

“It is essential to predict how a CPS is going to behave under any

circumstances [...] before it is deployed.”Mail4

“CPS must operate dependably, safely, securely, efficiently and in

real-time.”Railo0

Majl4 R, Majumdar & B. Brandenburg (2014). Foundations of Cyber-Physical Systems.
Raj10 R, Rajkumar et al. (2010). Cyber-Physical Systems: The Next Computing Revolution.

-21

Efficiency & Specialization

* Embedded systems must be efficient:
= Fnergy efficient
= Code-size and data memory efficient
= Run-time efficient
= Weight efficient
= Cost efficient

Embedded Systems are often specialized towards a certain
application or application domain:

* Knowledge about the expected behavior and the system environment at design
time is exploited to minimize resource usage and to maximize predictability and
reliability.

-22

Comparison

Embedded Systems: General Purpose Computing
= Few applications that are known at » Broad class of applications.
design-time.
= Not programmable by end user. = Programmable by end user.
= Fixed run-time requirements (additional = Faster is better.

computing power often not useful).

Typical criteria: = Typical criteria:
= cost = cost
" power consumption = power consumption
= size and weight " average speed

= dependability
= worst-case speed

Lecture Overview

Software <]

Hardware <

. Introduction to Embedded Systems :

\

. Software Development

. Hardware-Software Interface
. Programming Paradigms

. Embedded Operating Systems
. Real-time Scheduling

. Shared Resources

Hardware Components j

. Power and Energy '
. Architecture Synthesis

\‘g Hardware-

/ Software

!
!
1
!
!

-24

Components and Requirements by Example

-25

S
%

T

Components and Requirements by Example
- Hardware System Architecture -

-29

High-Level Block Diagram View

low power CPU
e enabling power to the rest of the system

* battery charging and voltage
measurement

* wireless radio (boot and operate)
* detect and check expansion boards

Push

{UART

higher performance CPU

sensor reading and motor control

flight control

telemetry (including the battery voltage)
additional user development

USB connection

button

PWM

Motor driver

12C

UART:

+5V P

uUSB port ——

e communication protocol (Universal
= Asynchronous Receiver/Transmitter)

* exchange of data packets to and from
interfaces (wireless, USB)

EEPROM

ere=yrme—e.0 System architecture

-30

High-Level Block Diagram View

Acronyms:

Wkup: Wakeup signal

GPIO: General-purpose input/output

signal

SPI: Serial Peripheral Interface Bus
12C: Inter-Integrated Circuit (Bus)

PWM: Pulse-width modulated Signal

VCC: power-supply

sensor board

r switched by

N,

10DOF IMU

- 3-axis accelerometer
- 3-axis gyro

- 3-axis magnetomer

- Pressure sensor

EEPROM:

» electrically erasable programmable
read-only memory

» used for firmware (part of data and
software that usually is not
changed, configuration data)

e can not be easily overwritten in
comparison to Flash

{UART

+5V

Power supplies

and battery charger

12C

Wkup/OW/GPIO

Charge/WVBAT/VCC

uUSB port ——

USE Data
to STM32

PWM
Motor driver/
12C
/élflzijPIDfFWM
14
. EEPROM
Expfansion port

Flash meh*:ory:

non-volatile random-access memory

for program and

data

m architecture

ALALALtARARS (P

—

N H e

1-32

High-Level Physical View

SH S

ON power domain Power switched by nRF51 (VCC)
) :

e
Y

' ARY) =)

‘ 10DOF IMU
i e & W - 3-axis accelerometer
M el = > RE power - 3-axis gyro

: NS e : - 3-axis magnetomer
N b amplifier :
3 p : - Pressure sensor

12C

Pu PWM
but}cx EUQRT Motor driver
12C
: SPI/12C/GPIO/PWM
\ , WKup/OW/GPIO
+5V Power supplies : . EEPROM
and battery charger Charge/VBAT/VCC Expansion port
USB Data
}“USB port to STM32

Crazyflie 2.0 system architecture

High-Level Physical View

Always ON power domain

—_—

RF power

amplifier

Power switched by nRF51 (

10DOF IMU

- 3-axis accelerometer

- 3-axis gyro
- 3-axis magneto
- Pressure senso

and battery charger

Power supplies

{UART

12C

12C

/

Motgr driver

/

SPINI2C/GPIO/PWM

Wkup/OW/GPIO

Push
button
+5V
WHUSB port ——

USB Data
to STM32

Charge/WVBAT/VCC

Expansion port

/

! EEPROM

Crazyflie 2.0 system architecture

Low-Level Schematic Diagram View

61

E_CS3

FBE

PRg B2

MOTOR%L

29

30

PB10

MOTORZ2

PB11

pp1p 33

34 NRF_SWCLK

PB13

PB4 [—33

—23 ¢

36 NRF_SWIO

PB15

PCO/ADC12_IN10 —8

LED_RED_

PC1/ADC12_IN11 |—3

LED_GREEN_L
LED_GREEN

PC2/ADC12_IN12 210

LED_RED

PC3/ADC12_IN13 (L1

I I 7 I T I T I T I
) uz2 U1
m_radio
- L8 ppo/mpCe23 N0 PBO/ADCE2_ING f—28 3¢ E_SCL
NRF_FLOW_CTRLOH-NREELOW-CIRL moToRs ™15 | £1/A0E 2 pmﬁincti::g 27 ES0A 3 |35,
,J\T?; ?ié NRF_TX ETx2 16 1 paz/ADCL23_INZ PE2/800T1 |—28—
OWWKUP e oy sykup ERX2 17 |ous mpcizsmg PB3/ID0-5W0 |—35— STM_SWO
ENRFIOL__F ¢ wRF_i01 - NREFLOW CTRL 20 | puysapce2_ine pR4/NJRsT |56 ECS1
[-E_NRF_I01 \ HRF_SWIO oy n /!
A RF_I02 5 NRF_S TEEETIT _SC 21 3 57 C52
ENRFI0Z F ¢ npr oz, DR NRF_SWCLK PAS/ADCLZ_ING PBs 2 T
NRF_SWC _MISO 22 1oue apcizine pae o8 ESCL
VCOM_EXP bvcom pxp st STHSWIO TMOSI 23 | o7 mocia i 2 SDA Tadress 10100006
—pVuse STM_SWCLK ST IMU_SCL__ 81 | pp0 pag f—61 E_C53
s?\d”engrB STM_BOOTO =22 PAg/0TC_FS_VBUS PBY MOTOR#
P1 S 431 pA10,/0TG_FS_ID pa10 28
- e 4 P11,/0T6_FS_DM PB1L MOTORZ
al, PA12,/0T6_F5_DP 812 :ﬁj
:,"'EE 2 USE_DM ‘ ‘ gm EICDLK | Pr13/THS —SWID PB13 RE_SWCLK
H e 3 USE_DP STM_SWCLK 49 1 pag4/)1cK-5WCLK PE1Y [—5 - MPU_INT
clu D,E [USE_ID MOTOR3 50 fpays, 1701 pa1s |36 NRF_SWIO £ IMU L MPU_INTC
= £ IMU_SDA
O[GND MPL_INT 2] LED_RED_L
o PC13 PCO/ADCI2_INLD MPU_FSYNC U ESY)
= MPUFSYNC 3 | by pC1mnctamts |2 LED GREEN DMPU_FSYNC
w—4 {pcis PC2/ADC12_IN1Z LEDLEGDREED : TEEh
LED BLUE L P02 PLa/ADCLZ INT 4 NRE deb
5 PC5/ADC12_INLS |88 ebug
E s VUSB 5 PHO/OSCIN /e Thee NRF_RX = =
5 £ 38 NRF_TX 7 wow NRF_SWCLK =
o = PH1/0SC_OUT PC7 M H
= x
2 STM_NRST ri NRST pee =2 |MU_SDA e s
BOOTO 60 | s001p PCY —‘lﬂ——-m = NRF. E
peio f—5b — ETX1 R >
:; VCAP_1 P11 —52——5—% S e
Ul decoupling: = WCAP_2 PC12 83 ___E.CS0
100 on £ach VDD o
10n and &.7u on VDDA B VBAT
T oty ¢——32 | ypp Expansion port
|| & T L] 9 P s
veL L
Fon 0on Ja00n On Jiu - :; Vgg "'gg —:g—_
¥ V!
MH1 = =
T 13 1 ypoa vssh L r q 5 g
o] STM3ZFLOBRG < = | 4
g
MH_WITH_PAD =
MH2
¢ =) = TE| 2
L
P
MH_WITH_PAD
[

| ILEDs

RS

GREEN_L

= = = =

3 = = =

— - - -

M M M M

E E = S Main CPU, motor contrel and cennectors

& & & & Licenced under CC—BY-NC-SA &.0
o m 1= | 1= |
Sheet: /

~ File: tern.sch
(1 a e Out Of 3) Title: Crazyflie 2.0
Size: Al [Date: 20 okt 2014 [Rev: Rev.C
KiCad E.D.A. eeschema (2014-03-16 BZR 4752)-product | Id: 1/3
1 z 3 L] | 5 1

61 E_CS3
PBE
6o |62 MOTO
[[[P 29
OoOwW-Level ccnematiC viagram view o * MOTOR2
pe11 |20
812 | RE_SWCLK
I I 7 I T I 7 T T I 3
PB13 gg —~
- E - PB4 32—
m radio [£ SclL U1
N Loy TRl MRE DRGCTRL T T A e v St eS| { pp1s 36 NRF_SWIO
NRF RXC'—NRFJ%(E_TX2 16 | ppzance23 Nz PB2,/BOOTY |—28—
EOWAMKUP _be owwkyp NRF-TRO——— ERX2___ 17 Jppz apcizs i PB3/J00-5W0 |—55—STM._SWO w p
ENRFIOL £ c npr 0 R NRF_SWIO NRF_FLOW CTRL 20 | ppgapciz e PBA4/NIRST |36 E CS1 7 —i
ENREI0Z B¢ wrroioz, NRT-SWI0OS—Re Sheik -sC 21| pas/ADC12_ING pBS |57 Cs2 T < A LE RE L
Y2 NRF_SwWCLK —HRESWCLK MISO 22 | oo unces e poe |58 E_SCL PCO/ADC12_IN10 B D_ D_
VCOM_EXP Lucom Exp STH Swi0o—STM_SWIO MOSI_ 23 | oo mncto nr M E_SDA Address 1010000b =
—PVUSE~ STM_SWCLKDi—2LMSWCLK IMUSCL 81 | s pap |61 E_C53 9 LED_GREEN_L
5TM N?E_DM 42 .Ph‘-) OTC_F5_VBUS P8O 62 MOTOR & P l: 1}’&[}{ 1 2_' N 1 l - -
pe sTM_BooTop—SIH-BOOTO 53| P:lé;o\‘?a_ngJ;l Pa10 23 10 L E D G R E E N R
3 R = — PC2/ADC1Z_IN12
2 use oM ‘ ‘ STM_SWIO &6 | p)1s./russmio PEi2 iR sweik PC3/ADC12 IN13
STM_SWCLK 9| - —
e or BGR| r rete o e swio T P /
g MEUINT 2 Jorqs PCO/ADCZ_INLD |8 LED RED L MPU_FSYNC [1MU-SDA
= MPUFSYNC 3 | pcyl Peasapcionit |2 LED GREEN MPU_FSYNC b Mpu_fsyNC
w—i 1 pcis PC2,/ADC12_INL2 —W———J-—LEDLE%REED : EEh
LEDBLUELL 5% fgop; PLa,/ADCLZ N4 NRF deb
= _25_’(U
H y VUSE 5 { pHo 050N Pcsxnecu_u:é: |37 MNRF_RX K =
< & pH105C_0UT pcy (38 NRETX ENE
2 STM_NRST pes 32 -
2 M_BOOTO sty e (e IMUSDA =
1 =1
3L 1 ycap_t pris 92 ERXL =
Eéodecoupllnﬁg:vnn T 47 1 vcap_2 priz a3 EC30 1
¥ 10n and &.7u on VDDA _3}_’ S e M o
T B 32 1 yoo b Expansion port = 5 % =
N =]
gl g s ks 48 | oo g 1A of = Df'-c_l a =
Fon 0on Ja0an s o - :; :gg :gg _:g__ ERX1I 2, E o 2 c B
e T 13 yppa vssa —L
Qg ::- A STHIZFLOGRG
MH_WITH_PAD = y . . &
MH2
(-
el
MH_WITH_PAD
£
2
-l lxl
bl -
=
VCOMEXP 9 3 a >
YUSB 104 i
M
= = = =
aln
E g g E MainfjCPU, motor control and connectars GXBC E
a o & & | Licefced under CC—BY-NC-5A 4.0 Lice
Bltcghze AB Sl el
Sheef: /
™ File:jtern.sch o Bitc
(1 page out of 3) B X, Motors
p g Size: Al [Date: 20 okt 2014 [Rev: Rev.C
KiCad E.D.A. eeschema (2014-03-16 BZR 4752)-product | Id: 1/3
T 7 T T T 5 T 3

High-Level Software View

= The software is built on top of a real-time operating system “FreeRTOS”.

= We will use the same operating system in the ES-Lab

Crazyflie Software

FreeRTOS

Tasks

Queues

-37

High-Level Software View

The software architecture supports

= real-time tasks for motor control (gathering sensor values and pilot commands,
sensor fusion, automatic control, driving motors using PWM (pulse width
modulation, ...) but also

= non-real-time tasks (maintenance and test, handling external events, pilot
commands, ...).

-39

High-Level Software View

Block diagram of the stabilization system:

Variance
caloualtion > .
and logic to bias
take bias l
MPLUIE0S0 Gyro
setto: 12C read . . Sampled value
sample rate: & KHz —HP S00Hz Axis mapping —1_m cun;ert}ad to
lowpass filker: 256 Hz B0/S
Sensar fusion filter P Stabilization p—— ACDIFtOF ¢ Motors
output
FMPLUE0S0 Accel
Set to: T T
il [2Cread First order) Sampled value
Accsamplerate 1 kKHz > S00Hz » lovwpass @S0 Hz corverted to G
Lowpass filered 260 Hz
Commander
(pilot contral)
sensor reading & transfer to cleaning and information
analog-digital processor preprocessing extraction from automatic control actuation
conversion sensors

on sensor
component 1-40

Components and Requirements by Example
- Processing Elements -

-41

What can you do to increase performance?

- 42

From Computer Engineering

50,000,000,000
72-core Xeon Phi Centriq 2400 06(}2 IPU
SPARC M7 \03-2 core AMD Epyc
IBM z13 Storage Con!rol'er\ _-Apple A12X Bionic
w Tegra Xavier SoC
1 0,000,000,000 18- c;;;fg)?elr:lamt;ﬂoia 0 8 s g ugk omnl\ Snapdragon 8cx/SCX8180
; \ ™ HiSilicon Kirin 980 + Apple A12 Bionic
5,000,000,000 6“;%&?’;98@2;; ™ HiSilicon Kirin 710

8-core Xeon Nehalem-EX~ a 810 core (‘ov 17 Broadwed h

Qualcomm qa ra
Dl oiere Xgon 7400 ey 'S °Dual e Gpy) T G Broadwell-U
Uik s il 4 Quad-core + GPU GT2 Core i7 Skylake K

1 ,0001000,000 Pentium D p'e“ler\POWEH[j g L2 ’ Ouad core + GPU Core i7 Haswell

Htanium 2 with Apple A7 (dual-core ARME4 "mobile SoC*)
500,000,000 518 AMB K10 Qe gore 2M L3
s ’ itanium 2 Madison 6M° $Core 5 Do Woidae
Pentium D Smithfield ore 2 Duo Conroe
Itanium 2 McKinley@p - 2 ggell Core 2 Duo Wolfdale 3M
Pentium 4 Prescott-2M€ QCore 2 Duo Allendale

Pentium 4 Cedar Mill
100,000,000 AMD K8® Beim 4 Prescott :
Pentium 4 Northwoo
= 50,000,000 Pontum 4 Wilamotie@ &0, P57 @atom
s } Pentium Il Mobile Dixon, Entlum Al Fuatatin Y
o) AMD K7 8 @ Pentium Il Coppermine /1M Cortex-A9
8 AMD K6-1ll
S 10,000,000 DI oo @ion B
17} 3
@ 5,000,000 Pontiun 2. S
S r»"enmyn0 AMD K5
= 1 80486, o
Iits
1,000,000 Mel804%%9 Dhaooo
500,000 SN .
Intel 803860 Intel ©ARM 3
Motorola 68020 ¢ L) 4
°pE<: WAL
100.000 i 11119120286 MultiTitan L.
"68000¢p STOMI
50.000 QIinte! 80186
3
intel 80869 € Intel 8088 0, Onam2 AR% 6
5 OAR'V”
Motorola 65C816
10,000 TMsjoo0 Ziog Z8Q 8508 o ’ NEe
RCA 1802 018085 0o
5,000 8008, 8'“ g 808rgu
Mgto'o!a M3S Technology
Intel 4004
1,000
$° g g é\ R S LR R M NN S S SRS LIRS
NN NN \\\\\\\\\'\q,q,q,q,q,q,q,q,q,q,

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.

From Computer Engineering

T e mc—

iPhone Prozessor A12
* 2 processor cores
- high performance
* 4 processor cores - less : _

»

performant W ;
 Acceleration for | |
Neural Networks » l

Cores 3. e

* Graphics processor
.Smil L2' ™~ TeCh

i smatcores INSIghtS.

DDR Logic ' " J - DDR Logic I
- F . . P T

oor Pian By

System Cathe ‘
4x Slice !
LN

What can you do to decrease power consumption?

- 47

Embedded Multicore Example

Trends:

= Specialize multicore processors towards real-time processing and low power
consumption (parallelism can decrease energy consumption)

= Target domains: M= (@) 1010 VX A
~ IMAGE SIGNAL DATA SCIENTIFIC CONTROL
8 A (ROCESSING SECURITY CONPUTING COMM.

i
—
| wp
)

>
interconnected
Core Generation ProTs;‘;iigg;res GFLOPS/W | GOPS/W s i ':y -~ ;OC = .
Andey 256 25 75 ﬂ ﬁ § z
Bostan (2014) 256 50 20 l_E_l
Coolidge (2015) | 64/256/1024 75 115 | » nmm
Copyrght kakvay SA § i $ }

-48

Why does higher parallelism help in reducing power?

-49

System-on-Chip

Samsung Galaxy S6

— Exynos 7420 System on a Chip (SoC)

— 8 ARM Cortex processing cores
(4 x A57, 4 x A53)

— 30 nanometer: transistor gate width i e cDp

Single WUXGA 60fps:
2-laneeDP/4-lane MIPI

Exynos 5422

Display / Camera Cortex-A15 Quad Cortex-A7 Quad Memory | /F

CPUO CPUA1 CPUO CPUC
2.1GHz 2.1GHz 1.5GHz 1.5GHz
32KB/32KB 32KB/32KB 32KB/ 32KB 32KB/ 32KB

LPDDR3 933MHz DDR
32bit2-ch, 14.9GB/s

SRAM/ROM/NOR

CPU2 CPU 3 CPUD CPUD

2.1GHz 2.1GHz 1.5GHz 1.5GHz 2-ch eMMC5.0 DDR

HOMIv1.4 32KB/32KB 32KB/32KB 32KB/ 32KB [32KB/ 32KB 400MB/5(200MHz)
1-ch eMMC4.5 SDR
16MP 30fps ISP sCU SCU 200MB/s
2-Camera support
14-bit Bayer, 2x 3A,
DRC, FD, 9DNR 2MB L2 Cache 512KB L2 Cache
Multimedia
2-ch 4-lane MIP1 C5I2 :
i TR 1080p 120fps Codec
RAM/ROM VP8 Codec

Low Power Multi-layer AX1/ AHB Bus Mali-T600 series

[JPEG HW codec
rypto
I

High speed 1/ F

External Peripheral

Systems 2x USB 3.0

1xUSB 2.0

- Dynamic addressing

CPU cache coherence

|
|

PWM / MCT / Timers Modem |/ F

DVFS control for Low Power

=
1

How to manage extreme workload variability?

-51

System-on-Chip

Samsung Galaxy S6

— Exynos 7420 System on a Chip (SoC)

— 8 ARM Cortex processing cores
(4 x A57, 4 x A53)

— 30 nanometer: transistor gate width i e cDp

Single WUXGA 60fps:
2-laneeDP/4-lane MIPI

Exynos 5422

Display / Camera Cortex-A15 Quad Cortex-A7 Quad Memory | /F

CPUO CPUA1 CPUO CPUC
2.1GHz 2.1GHz 1.5GHz 1.5GHz
32KB/32KB 32KB/32KB 32KB/ 32KB 32KB/ 32KB

LPDDR3 933MHz DDR
32bit2-ch, 14.9GB/s

SRAM/ROM/NOR

CPU2 CPU 3 CPUD CPUD

2.1GHz 2.1GHz 1.5GHz 1.5GHz 2-ch eMMC5.0 DDR

HOMIv1.4 32KB/32KB 32KB/32KB 32KB/ 32KB [32KB/ 32KB 400MB/5(200MHz)
1-ch eMMC4.5 SDR
16MP 30fps ISP sCU SCU 200MB/s
2-Camera support
14-bit Bayer, 2x 3A,
DRC, FD, 9DNR 2MB L2 Cache 512KB L2 Cache
Multimedia
2-ch 4-lane MIP1 C5I2 :
i TR 1080p 120fps Codec
RAM/ROM VP8 Codec

Low Power Multi-layer AX1/ AHB Bus Mali-T600 series

[JPEG HW codec
rypto
I

High speed 1/ F

External Peripheral

Systems 2x USB 3.0

1xUSB 2.0

- Dynamic addressing

CPU cache coherence

|
|

PWM / MCT / Timers Modem |/ F

DVFS control for Low Power

=
1

From Computer Engineering

T e mc—

iPhone Prozessor A12
* 2 processor cores
- high performance
* 4 processor cores - less : _

»

performant W ;
 Acceleration for | |
Neural Networks » l

Cores 3. e

* Graphics processor
.Smil L2' ™~ TeCh

i smatcores INSIghtS.

DDR Logic ' " J - DDR Logic I
- F . . P T

oor Pian By

System Cathe ‘
4x Slice !
LN

Components and Requirements by Example
- Systems -

-55

Zero Power Systems and Sensors

Mainframe

W Workstation

Streaming information to

" and from the physical world:

~ 10°

E 10° ";?ni‘é?f * “Smart Dust”

2 S e Sensor Networks

i; 1o Col\r/rlll[r)]llJter * Cyber-Physical Systems
10° gg,;sgjg'r * Internet-of-Things (loT)
10° Smart Phone .

1960 1970 1980 1990 2000 2010 2020
Year

Zero Power Systems and Sensors

Wirebonding
e = /—‘A\ ‘ .

D> A VSOLAL_ D Power-On Reset (POR) ||
> Solar | Sleep = — i SOLAR CELL;
1.2V ¥Cen Ctrl Imager Ctrl = Imager Layer 1 i e | (1em’)
E 0.6Vli | ' / Time/Termp R Tmer_§(130nm) ; PMIC HHARVESTE . ;
< | ’C - Layeir oy Tracking L Temp E L |
o ‘ Ctrl Sensor ' E
5 . 157! (TBLE :
v Layer 2 i NTV MCU RADIO E
| — : - ; SPI UART :
g 1 1’ Power-On Reset (POR) || Sleep Ctrl ‘ o ! p E
; 'E Layer <s DSPCore 'NRSRAM | (65nm) E . il I |SERIAL PORTl E
] L& cl B (cortex-mo) (16kB) f 0 TTTTTTTTTTTTmTmmmmmmmmmmmmmmmmsmmmmmmmmmmmee

» | Power-On Reset (POR)

Brown-Out Detector (BOD)

GOC Frontend Locations Power Management Unit

1 (PMU) Layer 4 .
2210 pm } i (180nm) b
40 pm 140 pm 240 pm 190 pm ‘ m Layer — — CSleep Ctrr:SRAM
I Ctrl ore |
[J g (B:yal;ntbet) ¥ (Cortex-M0) | (3kB)
E ery
i Global Optical Communication (GOC)
| ¥ Sy
B AP LA R Layer 5

VBATT

|EEE Journal of Solid-State Circuits, IEEE Journal of Solid-State
Jan 2013, 229-243. Circuits, April 2017, 961-971.

1-57

Trends ...

= Embedded systems are communicating with each other, with servers or with the cloud.
Communication is increasingly wireless.

= Higher degree of integration on a single chip or integrated components:

= [ow power and energy constraints (portable or unattended devices) are increasingly important,

Memory + processor + |/O-units + (wireless) communication.
Use of networks-on-chip for communication between units.
Use of homogeneous or heterogeneous multiprocessor systems on a chip (MPSoC).

Use of integrated microsystems that contain energy harvesting, energy storage, sensing,
processing and communication (“zero power systems”).

The complexity and amount of software is increasing.

as well as temperature constraints (overheating).

= There is increasing interest in energy harvesting to achieve long term autonomous operation.

-58

Embedded Systems

2. Software Development

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Eidgenodssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Where we are ...

1. Introduction to Embedded Systems :

\
3

2. Software Development

" 3. Hardware-Software Interface Nk

,_{,,--——4. Programming Paradigms N
Software S ~yHardware-

! Softwar
. Real-time Scheduling J Software

!
1
!

. Embedded Operating Systems

5

6

7. Shared Resources /
8. Hardware Components :
9

Hardware < . Power and Energy /

|- 10. Architecture Synthesis

Remember: Computer Engineering |

Compilation of a C program to machine language program:

C program

X

\ < textual representation
Assembly language program | S -T-TTTF . .
y |angtage prog of instructions

™\

N

Object: Machine language module | | Object: Library routine (machine language)

N Y w®

\ . .
A “binary representation
Executable: Machine language program € === of instructions and data

N

AN

Memory

Embedded Software Development

|

Software Developer]

previous

inde\

v

Software
Source Code

J

!

[Compiler]

|

[Simulator J

%

A 4

[Debugger]4

HOST

Yy operating
system

EMBEDDED SYSTEM

SEeNSsors
actuators

2 -

Software Development with MSP432 (ES-Lab)

LED

o Red, Green
2 4
b2y ESD‘ EnergyTrace+
Y Protection Current
o Vud
S e aA=mERA'S
a
x
i v

Ly o 72 LDO Power

.\'lwf-;i.\a-s“ Rev 1.4 s Ensble 5 V, 33V SWTtCh
_________________________ Power, UART, JTA
. : host PC
Crystal Target Device 40-pin LaunchPad

48 MHz MSP432P401R standard headers

}

User Interface
Buttons and LEDs

Software Development (ES-Lab)

Software development is nowadays usually done with the support of an IDE
(Integrated Debugger and Editor / Integrated Development Environment)

= edit and build the code
= debug and validate

Standard
Runtime
Libraries

RTOS
Libraries
.asm .obj
Link
linker -map
commands

Software Development (ES-Lab)

assembly
code

source code o

target configuration file

file in C

relocatable _—""

object libraries object libraries that e th o to th
that are referenced contain the operating :peutn(es Eg;?nez L(;]n to etd ,
in the code system (if any) arget (e.g. and the target device
/ — the executable output file
. Slanaard RTOS | Target | hat is loaded into flash
Colpln : ﬁgntir_ne Libraries ICfg?:ileI that Is loaded into flas
kil L memory on the processor
5 .LcCXm
Edit |- Asm B |ink B= Debug

linker

object file commands
/
Linker command file that tells the linker report created by the linker describing
how to allocate memory and to stitch where the program and data sections
the object files and libraries together. are located in memory.

Software Development (ES-Lab)

object librarie

assembl %
o y that are referq’, . . . ’E[O thetd _
in the code */ drget aevice
int main(void)
1
/* Halting WDT and disabling master interrupts */ output file
MAP_WDT_A holdTimer(); ! flash
Compiler MAP Interrupt disableMaster(); Into tlas
source code € processor
. —_— /* Seed the pseudo random num generator */
file in C srand(TLV- >RANDOM_NUM_1);
Edit /* Set the core voltage level to VCORE1l */
I MAP PCM_ setCoreVoltagelevel (PCM _VCORE1);
/* Set 2 flash wait states for Flash bank & and 1%/
MAP FlashCtl setWaitState(FLASH BANK®, 2);
relocatable / MAP FlashCtl setWaitState(FLASH BANK1, 2);
object file _ _
/¥ Default SysTick period for all 4 color states = 8.5s5 %/
/ periods[@] = 1500088;
) . periods[1] = 15680080;
Linker command file tha periods[2] = 1500000; g
periods[3] = 1580080;

how to allocate memor
the object files and libra] .. .

Software Development

;***x*******#**********x*x******************x*****H:************x**************

;¥ FUNCTION MAME: SysTick Handler

- ¥
2

object libraries ;

]

that are referenced ;

Regs Modified : A1,A2,A3,A4,V9,SP,LR,SR,D8,D0_hi,D1,D1_hi,D2,D2_hi,
D3,D3_hi,D4,D4_hi,D5,D5_hi,D6,D6_hi,D7,D7_hi,
FPEXC,FPSCR

*

assembly x

d k3
code in the code ;¥ Regs Used : A1,A2,A3,A4,V9,SP,LR,SR,D8,08 hi,D1,D1 _hi,D2,D2_hi,

*

*

*

ice

D3,D3_hi,D4,D4_hi,D5,D5_hi,D6,D6_hi,D7,D7_hi,

¥
; FPEXC, FPSCR
3 Local Frame Size : @ Args + 8 Auto + 4 Save = 4 byte

;x:1:xxxxxxxxxx:xxxx:kxxx:1:xxxxxxxxxx:xxxx:kxx:H:x:1:xxxxxxxx:xxxxxx:xxxx:txxxxxxxxxxxxxxxx e

S#5ysTick Handler:

Compiler e *

¥ dwcfi
source code e et @

f||e in C .dwc’F.} cta _offset, B8
.dwcfi save reg to mem, 14, -4
.dwcfi save reg to mem, 3, -8

*OH K OH K K K O K

; [DPU_3 _PIPE]

Edit : Asm .dwpsn file "../main.c",line 374,column 5,is stmt,isa 1
LDR Al, CCONGA ; [DPU_3 PIPE] |374|
LDR Al, [Al, #8] ; [DPU_3 PIPE] |374|
CcMP Al, #1 ; [DPU_3 PIPE] |374]|
BNE | [cL20] | ; [DPU_3_PIPE] |374]

relocatable _—" |, o el e .

ObJeCt f||e co .dwpsn file "../main.c",line 375,column 9,is stmt,isa 1
LDR A2, $CHCONGS ; [DPU_3 PIPE] |375]|
/// LDR Al, [A2, #08] ; [DPU_3 PIPE] |375]|
ADDS Al, Al, #1 ; [DPU_3 PIPE] |375]|
Linker command file that tells] , STR AL, [A2, #0] ; [DPU_3_PIPE] |375] .

how to allocate memory and {
the object files and libraries t

MEMORY
1

MAIN (RX) : origin = OxP0000088, length = OxPPP410008
INFO (RX) : origin = Ox006200000, length = Bx00864000

#ifdef _ TI COMPILER VERSION_ ; ; :

#it _ T1I COMPILER_WVERSION_ __ >= 15889208 target Conflguratlon flle
?LIﬂS specifies the connection to the
SRAM_CODE (RWX): origin = 0x01000000 target (e.g. USB) and the target device
SRAM_DATA (RW) : origin = ©x20000000
} length = @x0e816886

#else
/# Hint: If the user wants to use ram functions, please observe that SRAM CODE ®f the executable Output f||e
/* and SRAM_DATA memory areas are overlapping. You need to take measures to separate *f

that is loaded into flash
memory on the processor

/* data from code in RAM. This is only valid for Compiler version earlier than 15.89.08.5T5.%/
SRAM_CODE (RWX): origin = ©xP1088808, length = Bx00010000
SRAM_DATA (RW) : origin = ©x20000000, length = B8xP0010000

#endif

#endif

¥

Launch
Pad

relocatable _—"" frizer

object file commands
Linker command file that tells the linker report created by the linker describing
how to allocate memory and to stitch where the program and data sections
the object files and libraries together. are located in memory.

MEMORY CONFIGURATION

SEGMENT ALLOCATION MAP

load origin

run origin

origin

slelalelelelo)

Lab)

ct libraries that

attr

60040000

oooeofoa

oee3fefe

target configuration file

R X

INFO 00200000 0ODBA00D0 0ODOOEO0 00PRAGEE R X ifi h . h
SRAM_CODE 01P00PP0 00010000 ©OOED268 0BBBTd98 RW X in th ti Specirties the connection to the
SRAM_DATA 20000000 00010000 00PEB268 00EOFd9S RW aln the operating

. (if any) target (e.g. USB) and the target device

init length attrs members

the executable output file

__ > |

00000800 00008800 00POT10 0POBBT10 r-x RTOS | ; ;
00000008 00BOBB00 aeaeegezt eaaeagea r-- .intvecs /that is loaded into flash
000OOBed 00POBBed POOBOdSa POOROdSa r-x .text
0000070 0000070 00PEEBSc PPPRBBSC r-- .const X7 memory on the processor
00000edB 00008ed0 000EEB40 PRRBBAD r-- .cinit b)

20000000 20000000 00POORES POPPR. P J Launch
20000000 20000000 000EEB50 PPERBBEY rw- .data Pad
20000058 200000850 00PEEB1S ©PPRBBEo rw- .bss

2000100 2000200 00000200 ©OOBBBEY - :

2800f=00 2080feb

relocatable
object file

2880200

20080800 .stack

linker
commands

/

Linker command file that tells the linker
how to allocate memory and to stitch
the object files and libraries together.

report created by the linker describing
where the program and data sections
are located in memory.

Software Development (ES-Lab)

target configuration file

Sssembl object libraries object libraries that o th o
code y that are referenced contain the operating :peutl((es Egg?ne; Lan to et devi
in the code system (if any) arget (e.g. and the target device

\ / the executable output file

. e en e bt iach

Compiler : Runtime : PPaey , CfggF”e | /t at is loaded into flas
source code Lo L memory on the processor
file in C — . oD launch |

<?xml wversion="1.8" encoding="UTF-8" standalone="no"?>
<configurations XML version="1.2" id="configurations 8">

<configuration XML_version="1.2" id="configuration_@">
<instance XML version="1.2" desc="Texas Instruments XD5118 USE Debug Probe" href="connections/ ...

<connection XML version="1.2" id="Texas Instruments XDS118 USB Debug Probe":
<instance XML_version="1.2" href="drivers/tixds518cs_dap.xml" id="drivers" xml= ...
{instance XML version="1.2" href="drivers/tixds5l@cortexM.xml" id="drivers" xml= ...
<property Type="choicelist" Value="2" id="SWD Mode Settings"»
<choice Name="SWD Mode - Aux COM port is target TDO pin" walue="nothing"/>
</property>
<platform XML _version="1.2" id="platform_8">

<instance XML version="1.2" desc="MSP432P4081R" href="devices/mspd32pd8lr.xml" .
</platform> describing

</connection> a sections

</configuration>
</configurations>
2-12

Much more in the ES-PrelLab ...

* The Pre-lab is intended for students with missing background in software
development in C and working with an integrated development environment.

Timetable
Date Lecture Exercice Lab
27.09.2021 1. Introduction
2. Software Development
29.09./01.10.2021 0. Prelab [MM]
04.10.2021 3. Hardware-Software In-
terface

Much more in the ES-PrelLab ...

» The Pre-lab is intended for students with missing background in software
development in C and working with an integrated development environment.

Embedded Systems 1.0.1 — Filling the gaps

Goals of this Lab

The goal of this lab session is to give a quick crash-course on all necessary background for the following
labs. You are expected to have some basic knowledge about programming, but programming an embedded
systems is slightly different than Python, Java, or Matlab.

Here are the main topics the pre-lab covers:

e Definitions and keywords — Know what you are talk about
e C programming — Review of the fundamentals
e Embedded systems programming — Specific types and basic operations

e Schematics — Find your way around a processor schematics

e Demo application — If you can make it, you're good to go!

- 14

Embedded Systems

3. Hardware Software Interface

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Do you Remember ?

Where we are. ...

1. Introduction to Embedded Systems :

\

2. Software Development
/ 3. Hardware-Software Interface <

,_{,,--——4. Programming Paradigms [
Software S ~yHardware-

/ Softwar
. Real-time Scheduling J Software

!
1
!

. Embedded Operating Systems

5

6

7. Shared Resources /
8. Hardware Components ;
9

Hardware < . Power and Energy /

|- 10. Architecture Synthesis

ALALALtARARS (P

—

N H e

High-Level Physical View

SH S

ON power domain Power switched by nRF51 (VCC)
) :

e
Y

' ARY) =)

‘ 10DOF IMU
i e & W - 3-axis accelerometer
M el = > RE power - 3-axis gyro

: NS e : - 3-axis magnetomer
N b amplifier :
3 p : - Pressure sensor

12C

Pu PWM
but}cx EUQRT Motor driver
12C
: SPI/12C/GPIO/PWM
\ , WKup/OW/GPIO
+5V Power supplies : . EEPROM
and battery charger Charge/VBAT/VCC Expansion port
USB Data
}“USB port to STM32

Crazyflie 2.0 system architecture

High-Level Physical View

Always ON power domain

Power switched by nRF51 (

—

RF power

amplifier

10DOF IMU

- 3-axis accelerometer
- 3-axis gyro

- 3-axis magnetoy/
- Pressure senso

12C

and battery charger

Power supplies

{UART

Wkup/OW/GPIO

12C

2

?

bitcrazeiser WU

/

Motgr driver

/

SPINI2C/GPIO/PWM

Expansion port

Push
button
+5V
HUSB port

USB Data
to STM32

Charge/WVBAT/VCC

Crazyflie 2.0 system architecture

/

! EEPROM

What you will learn ...

Hardware-Software Interfaces in Embedded Systems

= Storage
= SRAM / DRAM / Flash
= Memory Map
= |nput and Output
= UART Protocol
= Memory Mapped Device Access
= SPI Protocol
= Interrupts

= (Clocks and Timers
= Clocks
= Watchdog Timer
= System Tick
= Timer and PWM

Storage

Remember... ?

Always ON power domain Power switched by nRF51 (

e——
10DOF IMU
F - 3-axis accelerometer
- 3-axis gyro
RF power - 3-axis magnetoy/
amplifier : - Pressure senso

12C

Push : 7
button QUQRT Motgr driver
12C /
: SPI/12C/GPIO/PWM /
, Wkup/OW/GPIO I
+5V Power supplies 5 . EEPROM
and battery charger Charge/VBAT/VCC Expansion port

USB Data
HUSB port —— "o1um3)

Crazyflie 2.0 system architecture

MSP432P401R (ES-Lab)

LFXIN, LFXOUT,
HFEXIN HFXOUT P1.xto P10.x PJ.x

4 DCOR » 4

LPM3.5 Domain

F 3

| |
: sl || Capacitive Touch /0 0, T —
| Capacitive Touch /O 1
PSS |
PCM cs | rTc c WDT_A E:ﬁ:‘gp :
Power Power [v /O Ports I/0 Ports
Control Supply Clock | Real-Time Watchdog sram |!
Manager System System Clock Timer skg |1| P1toP10 PJ
DMA & | || 78v0s 6 1/0s
8 Channels | I
Address = - = - - = -
s | 0ata § & 3 % § % __§J % ¢} R Q| X B3

r————-—- == Control

|
I l r__ =
' I SRAM
| ; (includes — AES256
: ARM | Flash Backup (P%rlpheral RSTCTL SYSCTL
Cortex-M4F river X »
| | 256KB sl Library) Reset System Eﬁj ““”,,{;’h CRC32 P
| 128KB GAKB Controller || Controlier ryption, et
| 32KB Decryption e
32KB 3
! | 2
| MPU I .
°
- I B B B D 3
I'| NwIC, SysTick | | 2
| . N T T
I FPB, DWT | i B i i g g L=
: eUSCI_AD, s : eonves T C
| I Precision Comp_EQ, T';?z $::13 Timer32 eUSCI_AT1, Eﬁgg:—gg ESE SINTWNMISN]
IT™, TPIU I ADC Comp_E1 REF_A. : eUSCI_A2 cUeci B2, . 2
| - A3 SUSCIB3
| I 1 Msps Analog Voltage Timer_A 2 % 32-bit eUSCI_A3 eUSCI_B3
JTAG, SWD I SAR AD Comparator ||| Reference 16 Bit
| P 5 CCR Timers (UART, Fc, SPI
| IDA, SPI) ("C. sP1)
| IS | — t T

Copyright @ 2017 Texas Instruments Incorporated 3-10

Storage
SRAM / DRAM / Flash

-11

Static Random Access Memory (SRAM)

= Single bit is stored in a bi-stable circuit

= Static Random Access Memory is used for
= caches
= register file within the processor core
= small but fast memories

" Read:

1. Pre-charge all bit-lines to average voltage

2. decode address (n+m bits)

3. select row of cells using n single-bit word lines (WL)

4. selected bit-cells drive all bit-lines BL (2™ pairs)

5. sense difference between bit-line pairs and read out
= Write:

= select row and overwrite bit-lines using strong signals

WL

Vdd

n+m

P~

||}—

BL

bit-cell array

2" row X 2™M-col

(n~m to minmize
overall latency)

4 2m diff pairs

e

Ysense amp and mux/

11

3-12

Dynamic Random Access (DRAM)

Single bit is stored as a charge in a capacitor

= Bit cell loses charge when read, bit cell drains
over time

= Slower access than with SRAM due to small
storage capacity in comparison to capacity of
bit-line.

= Higher density than SRAM (1 vs. 6 transistors
per bit)

DRAMs require periodic refresh of charge
= Performed by the memory controller
= Refresh interval is tens of ms
= DRAM is unavailable during refresh

row enable

l / capacitor

bitline

RAS 4 :
bit-cell array

2" row X 2M-col

(n~m to minmize
overall latency)

m 4 om
7 \sense amz‘and mux/
1
A DRAM die comprises
CAS of multiple such arrays

(RAS/CAS = row/column address select)

3-13

DRAM - Typical Access Process

1. Bus Transmission 2. Precharge and Row Access
DRAM
DRAM Column Decoder
Column Decoder || L
[[Data In/Out == Sense Amps
Data In/Out [=* Sense Amps Buffers /LI/\LI\
Buffers o MEMORY] {
MEMORY ... Bit Lines... CPU BUS | CONTROLLER _ :
CPU BUS CONTROLLER S % m—
3 [X S| £ Memor
ol 8 \\:> o [y
S Memory Q| g Array
Q| E Array g £
2| =2 S
> I
s e

DRAM - Typical Access Process

3. Column Access

CPU

DRAM

Column Decoder

BUS

MEMORY
CONTROLLER

Data In/Out [=* Sense Amps
Buffers | i ——
... Bit Lines...

= .

© »

Q| &

° Memory

Qf 2 Array

3| 2

3 =

c

4. Data Transfer and Bus Transmission

CPU

DRAM

Column Decoder

BUS

MEMORY <

CONTROLLER

Data In/Out == Sense Amps
Buffers =
... Bit Lines...
]

5

©)

Qf 2

S = Memory

Q| 2 Array

3| 2

3 =

s

-15

Flash Memory

Electrically modifiable, non-volatile storage
Principle of operation:
= Transistor with a second “floating” gate
= Floating gate can trap electrons

= This results in a detectable change in
threshold voltage

Erasing Programming (=writing) Reading
to logical “1” to logical “0”

+5V
I +12V I
[1]
GND
ov “12V -:l—
Turn on low Vt or High Vt?

“Quantum tunneling” “Hot-electron injection”
Drains charge from FG traps charge in FG Detect |, to read O or 1

oV

Open 12V

Programming via hot electron injection

12V

drain-source resistance

F 3

et LT EREEEEER LR R EREE LY R R L LT T T T
.
.

w ..
\
\
=~ % = 'ﬁggate
Vih Vin voltage
erased Viead programmed

NAND and NOR Flash Memory

NAND NOR
Bit line
- Word line) Contact
Word line - —
Cell 5 T
Array My o7 |
& UnitCell j '
Size — Unit Cell :
Source line = ﬂ Source liné a
Cross- L1 O O —
section - - -ﬁ-
Small Cell Size, High Density Fast random access
Features| Low Power
= Mass Storage > Code Storage

-17

Example: Reading out NAND Flash

Selected word-line (WL) : Target voltage (Viarget)
Unselected word-lines : Vread is high enough to have a low resistance in all
v transistors in this row
SSL :al- :Sl- :E{ Vread
H+HETHETVread . .
Unselected WLs .'] :] :] i drain-source resistance
15 1 1 rea A
O Ha ”a “g il S— S—
IIL! III_! |||.! Vread \
Unselected WLs ,,j ,,,j ,,,.] i \ gate
L B — = VRV
"j ||n “:] Vread Vth Vth Vread VOltage
”: ” j : : :] Vread erased Vtarget programmed
H H HtTVread
csL 5 b g V’Ead
||_| ||_l ||_l rea
=0V

Storage
Memory Map

-19

Example: Memory Map in MSP432 (ES-Lab)

Available memory:

"= The processor used in the lab (MSP432P401R) has built in 256kB flash memory,
64kB SRAM and 32kB ROM (Read Only Memory).

Address space:

" The processor uses 32 bit addresses. Therefore, the addressable memory space is
4 GByte (= 232 Byte) as each memory location corresponds to 1 Byte.

* The address space is used to address the memories (reading and writing), to
address the peripheral units, and to have access to debug and trace information
(memory mapped microarchitecture).

" The address space is partitioned into zones, each one with a dedicated use. The
following is a simplified description to introduce the basic concepts.

-20

Example: Memory Map in MSP432 (ES-Lab)

OxFFFF_FFFF

Memory map: Debug/Trace

Peripherals
OxEO00_0000

OxDFFF_FFFF

Unused
hexadecimal 0xC000_0000
representation OXBFFF_FFFF
of a 32 bit Unused

. 0xA000 0000
binary number;\ -
h diit O0x9FFF_FFFF
€ac Igl Unused
corresponds 0x8000_0000
to 4 bit OX7FFF_FFFF
Unused

0x6000_0000

Ox5FFF_FFFF

00111111 ... 1111\ Peripherals

0x4000_0000

0010 OOOO cenn OOOO \OXSFFFFFFF

SRAM
diff. = 0001 1111 1111 —>
0x2000_0000
229 different addresses Ox1FFF_FFFF
capacity = 22° Byte = Code
512 MByte 0x0000_0000

Example: Memory Map in MSP432 (ES-Lab)

OxFFFF_FFFF

Memory map:
OxE000_0000
OxDFFF_FFFF
hexadecimal 0xC000_0000
representation OxBFFF_FFFF
of a 32 bit
. 0xA000 0000
binary number;\ -
L. O0x9FFF_FFFF
each digit
corresponds 0x8000_0000
to 4 bit OX7FFF_FFFF
0x6000_0000
O0x5FFF_FFFF
00111111 ...

0010 0000

1111
0x4000_0000
0000 \ Ox3FFF_FFFF

diff. = 0001 1111

22° different addresses

capacity = 22° Byte =

512 MByte

1111 >

0x2000_0000
Ox1FFF_FFFF

0x0000_0000

Debug/Trace
Peripherals

Unused

Unused

Unused

Unused

ADDRESS RANGE PERIPHERAL
0x4000_0000 to 0x4000_03FF Timer_AD
0x4000_0400 to 0x4000_07FF Timer_A1
0x4000_0800 to Ox4000_0BFF Timer_A2
0x4000_0C00 to 0x4000_0FFF Timer_A3
0x4000_1000 to 0x4000_13FF eUSCI_AD
0x4000_1400 to 0x4000_17FF elUSCI_A1
0x4000_1800 to Ox4000_1BFF eUSCI_A2
0x4000_1C00 to 0x4000_1FFF eUSCI_A3

000
Ox4000_4400 to 0x4000_47FF RTC_C
0x4000_4800 to Ox4000_4BFF WDT_A
0x4000_4C00 to 0x4000_4FFF Port Module

Peripherals

SRAM

Table 6-21. Port Registers (Base Address: 0x4000_4C00)

Code

REGISTER NAME ACRONYM | OFFSET from base address
Port 1 Input P1IN 000h
Port 2 Input P2IM 001h
Port 1 Output P1OUT 002h
Port 2 Qutput P20UT 003h

Example: Memory Map in MSP432 (ES-Lab)

OxFFFF_FFFF

Memory map:
OxE000_0000
OxDFFF_FFFF
hexadecimal 0XC000_0000
representation OXBFFF_FFFF
of a 32 bit

0xA000_0000

binar ;
y.nl-,lmbe'.' \ Ox9FFF_FFFF
each digit -

corresponds 0x8000_0000
to 4 bit OX7FFF_FFFF

0x6000_0000

Ox5FFF_FFFF

00111111 1111
0x4000_0000
0010 0000 0000 QWFUFFF

diff. =0001 1111 1111 —>
0x2000_0000
22° different addresses Ox1FFF_FFFF

capacity = 22° Byte =
512 MByte 0x0000_0000

Debug/Trace
Peripherals

Table 6-21. Port Registers (Base Address: 0x4000_4C00)

Unused

Unused

REGISTER NAME ACRONYM |OFFSET
Port 1 Input P1IN 000h
Port 2 Input P2IN 001h
Port 1 Output P1OUT 002h
Port 2 Output P20OUT 003h

Unused

Schematic of LaunchPad as used in the Lab:

Unused

Peripherals

A_LFOT 4 P1.0/JUCADSTE
S BUTTOMA P1.1/UCAOCLK
-~ _BCI UART RX P1.2/UCAORXDIUCA l;. M
3 _BCIUART TXO 7 | pq'310CAOTXDIUGADSIMO
4 BUTTON2 & | byl CBOSTE

elo Rl L2 P1.5UCBICLK
e :I:'TI‘II'.I I J2.15 L P1.6/UCBOSIMO/UCBOSDA
S _SPTMISn _J2.14 P1.7/UCEBOSOMIUCBOSCL

SRAM

LED1 is connected to Port 1, Pin O

Code

How do we toggle LED1 in a C program?

Example: Memory Map in MSP432 (ES-Lab)

OxFFFF_FFFF

Memory map:
OxE000_0000
OxDFFF_FFFF
hexadecimal 0xC000_0000
representation OxBFFF_FFFF
of a 32 bit
. 0xA000 0000
binary number;\ -
L. O0x9FFF_FFFF
each digit
corresponds 0x8000_0000
to 4 bit OX7FFF_FFFF

00111111...1111
0010 0000 0000

0x6000_0000
Ox5FFF_FFFF

\ 0x4000_0000

\\\\\\fXSFFFFFFF
diff. =0001 1111 1111 —>

22° different addresses

capacity = 22° Byte =
512 MByte

0x2000_0000
Ox1FFF_FFFF

0x0000_0000

Debug/Trace
Peripherals

Unused

Unused

Many necessary elements are missing in the
sketch below, in particular the configuration of
the port (input or output, pull up or pull down
resistors for input, drive strength for output).
See lab session.

Unused

Unused

Peripherals

SRAM

Code

//declare plout as a pointer to an 8Bit integer
volatile uint8 t* plout;

//P1OUT should point to Port 1 where LED1 is connected
plout = (uint8 t*) 0x40004C02;

//Toggle Bit 0 (Signal to which LED1 is connected)
*plout = *plout ©~ 0x01;

/

V4
~ ¢ XOR

Example: Memory Map in MSP432 (ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number; ~—___
each digit
corresponds
to 4 bit

0011 1111.... 1111\

OxFFFF_FFFF

0xE000_0000
O0xDFFF_FFFF

0xC000_0000
OxBFFF_FFFF

0xA000_0000
Ox9FFF_FFFF

0x8000_0000
Ox7FFF_FFFF

0x6000_0000

Ox5FFF_FFFF

0x4000_0000

0010 OOOO cenn OOOO \OXSFFFFFFF

diff. = 0001 11111111 —
22° different addresses

capacity = 22° Byte =
512 MByte

0x2000_0000
Ox1FFF_FFFF

0x0000_0000

Debug/Trace
Peripherals

Unused

Unused

Unused

Unused

Peripherals

SRAM

Code

0x1FFF_FFFF

0x0210_0000

0x0200_0000

0x0110_0000

0x0100_0000

0x0040_0000

0x0000_0000

Reserved

ROM Region

Reserved

SRAM Region

Reserved

Flash Memory
Region

Ox003F_FFFF

0x0020_4000
0x0020_0000

0x0004_0000

0x0000_0000

Reserved

Information Memory

Reserved

Main Memory

Ox3FFFF address difference = 4 * 216 different addresses —
256 kByte maximal data capacity for Flash Main Memory

Used for program, data and non-volatile configuration.

3-

25

Example: Memory Map in MSP432 (ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number; ~—___
each digit
corresponds
to 4 bit

00111111 ...1111
0010 0000 oooo\

OxFFFF_FFFF

0xE000_0000
O0xDFFF_FFFF

0xC000_0000
OxBFFF_FFFF

0xA000_0000
Ox9FFF_FFFF

0x8000_0000
Ox7FFF_FFFF

0x6000_0000

Ox5FFF_FFFF

0x4000_0000

\\\\\\fXSFFFFFFF
diff. =0001 1111 1111 —>

22° different addresses

capacity = 22° Byte =
512 MByte

0x2000_0000
Ox1FFF_FFFF

0x0000_0000

Debug/Trace
Peripherals

Unused

Unused

Unused

Unused

Peripherals

SRAM

0x1FFF_FFFF

0x0210_0000

0x0200_0000

0x0110_0000

0x0100_0000

0x0040_0000

0x0000_0000

Reserved

ROM Region

Reserved

SRAM Region

Reserved

Flash Memory
Region

Code

* Ox FFFF address difference = 21® different addresses —
64 kByte maximal data capacity for SRAM Region

e Used for program and data.

0x010F_FFFF

0x0101_0000

0x0100_0000

Reserved

SRAM Region

-26

Input and Output

-27

Device Communication

Very often, a processor needs to exchange information with other processors or
devices. To satisfy various needs, there exists many different communication

protocols, such as
= UART (Universal Asynchronous Receiver-Transmitter)
= SPI (Serial Peripheral Interface Bus)
= J2C (Inter-Integrated Circuit)
= USB (Universal Serial Bus)

= As the principles are similar, we will just explain a representative of an
asynchronous protocol (UART, no shared clock signal between sender and
receiver) and one of a synchronous protocol (SP/, shared clock signal).

Remember?

low power CPU
e enabling power to the rest of the system

* battery charging and voltage
measurement

* wireless radio (boot and operate)
* detect and check expansion boards

Push

{UART

higher performance CPU

sensor reading and motor control

flight control

telemetry (including the battery voltage)
additional user development

USB connection

button

PWM

Motor driver

12C

UART:

+5V P

uUSB port ——

e« communication protocol (Universal
= Asynchronous Receiver/Transmitter)

* exchange of data packets to and from
interfaces (wireless, USB)

EEPROM

ere=yrme—e.0 System architecture

-29

Input and Output
UART Protocol

-30

UART

= Serial communication of bits via a single signal, i.e. UART provides parallel-to-
serial and serial-to-parallel conversion.

= Sender and receiver need to agree on the transmission rate.
" Transmission of a serial packet starts with a start bit, followed by data bits and

finalized using a stop bit:

Start
bit

Idle state

v

T\v/XXXXXXXX/‘Q """""

First
data bit

.

6-9 data bits

1-2 stop
bits

Last
data bit Idle state

v

synchronisation

Start

.......

Extra ‘parity’ Earliest possible
bit could be new Start bit

= There exist many variations of this simple scheme.

inserted here \

for detecting single bit errors

-31

UART

* The receiver runs an internal clock whose frequency is an exact multiple of the
expected bit rate.

= When a Start bit is detected, a counter begins to count clock cycles e.g. 8 cycles
until the midpoint of the anticipated Start bit is reached.

= The clock counter counts a Midpoint of
further 16 cycles, to the i | Ted Do o
middle of the first Data bit, e l D:tI;S :)it \
and so on until the Stop bit. | [St |

Incoming : l :
data : :

Receiver Clock,

running at multiple of H”“HH””H||HI||H "||||||"Illl”l””“l”HH“HH \

expected bit rate

UART with MSP432 (ES-Lab)

QTNSTRUMENTS LED
5 o Red, Green
E 2 Nlll::! ‘:
§ Lt
v ,f-; S ESD‘ EnergyTrace+
75-:\," é Protection /V Current
4 P Plaaseety
a
x
: v
2 LDO Power
gpssie 5V,33V Switch
_________________________ Power, UART, JTA
host PC
Crystal Target Device 40-pin LaunchPad
48 MHz MSP432P401R standard headers

}

User Interface
Buttons and LEDs

UART with MSP432 (Lab)

LFXIMN, LFXOUT,
HFXIN HFXOUT P1.x to P10.x PJ.x
'y DCOR 4 +
| LPM3.5 Domain | 2 x
- = Capacitive Touch 10 0,
| I Capacitive Touch /O 1
PCM PSS [
cs | rc c WOT A Ef;nk;p I
Power Power [v O Ports 110 Ports
Cantrol Supply Clock Real-Time Watchdog SRAM |
Manager System System Il Clock Timer skg || P1to P10 PJ
DA | | T8 0= 6 1/0s
8 Channels | |
Address - F - —_——— —
Bus Data || - £ 11 11 11 11]|

r——=—=-=-=-= | Caontral
CPU | Logic

|
' I SRAM
. ROM
: ARM o Flash ‘Q;L“k‘f]? (Peripheral | | RsTeTL || svscrL AES258
Cortex-MAF I Driver :
| - 256KB Memory) Library) Reset System ooty CRG32
I 128KB BAKD Contraller || Controller Fobeal i
Ccryption
I KB 32KB
l |
| MPU |
l |
I Nvic, sysTick | |
| | | | | | | |
| FPB, DWT I R H 1 1
I eUSCI_AD,
| I Precision Comp_EO0, TTAADE li; Timer32 elUsCIl_A1, Eﬂgg: gﬂ
| IT™, TPIU I ADC Comp_E1 REF_A, ' eUSCI_A2, e e R,
I : 1 Msps, Analog Voltage Timer_A 2 x 32-bit SUSELAS elSC1 B3
|| e swo SARAID | | Comparator ||| Reference Jont Timers (UART, (FC. SPI)
a I IDA, SPI) :
------ I L L

Copyright © 2017 Texas Instruments Incorpomted

Input and Output
Memory Mapped Device Access

-35

Memory-Mapped Device Access

eUSCI_AO Registers (Base Address: 0x4000_1000)

REGISTER NAME OFFSET * Configuration of Transmitter and Receiver must
eUSCI_AD Control Word 0 00h match; otherwise, they can not communicate.
eUSCI_AD Control Word 1 02h * Examples of configuration parameters:

eUSCI_AD Baud Rate Control 06h L.)

sUSCI_AO Modulation Control 08h * transmission rate (baud rate, i.e., symbols/s)
eUSCI_AD Status 0Ah LSB or MSB first

eUSCI_AD Receive Buffer 0Ch - * number of bits per packet in our case: bit/s
eUSCI_AD Transmit Buffer OEh) .

eUSCI_AD Auto Baud Rate Control | 10h * parity bit

eUSCI_AO IrDA Control 12h * number of stop bits

6USCL A Interrupt Enable 1An * interrupt-based communication

eUSCI_AO Interrupt Flag 1Ch

eUSCI_AO Interrupt Vector 1EN * clock source

buffer for received bits and bits that should be transmitted

Transmission Rate

JCSSELx

UCLK
ACLK

0o
01

SMCLK

CAZEN clock subsampling

Receive Baud-Rate Generator
UCOBRx

;16

SMCLK

clock
source

data to be
transmitted

Prescaler/Divider
10 | BRCLH E=
11 Modulator

Receive Clock

Transmit Clock

4 {a

UCBRFx UCBRSx UCOS16

UCPEN UCPAR UCMSE UCTEIT

®—{ = Transmit Shift Register

= R n ®_parallel-to-serial

UCIREN

. J—

Transmit Buffer UCAxTXBUF

\[-\2
UCMODEx UCSPB

L IrDA Encoder

is
UCIRTXPLx

Transmit State Machine L P Set UCTXIFG
—l UCTXBRK
= | m UCTXADDR

CAxTXD

serial
output

Clock subsampling:

The clock subsampling block

is complex, as one tries to

match a large set of transmission
rates with a fixed input frequency.

Clock Source:

SMCLK in the lab setup = 3MHz

Quartz frequency = 48 MHz, is
divided by 16 before connected to
SMCLK

Example:

Transmission rate 4800 bit/s
16 clock periods per bit (see 3-26)

Subsampling factor =
3*1076 / (4.8%1073 * 16) = 39.0625

Software Interface

Part of C program that prints a character to a UART terminal on the host PC:

static const eUSCI UART Config uartConfig = m
{

EUSCI_A UART CLOCKSOURCE_ SMCLK, // SMCLK Clock Source

39, // BRDIV = 39 , integral part

1, // UCxXBRF = 1 , fractional part * 16 data structure uartConfig

0, j; UCxBRS = 0 L contains the configuration

EUSCI A UART NO PARITY No Parity

T ' . of the UART

EUSCI_A UART LSB FIRST, // LSB First

EUSCI_A UART ONE STOP BIT, // One stop bit

EUSCI_A UART MODE, // UART mode

EUSCI_A UART OVERSAMPLING BAUDRATE GENERATION}; // Oversampling Mode
GPIO setAsPeripheralModuleFunctionInputPin (GPIO PORT P1, —

GPIO_PIN2 | GPIO_PINB, GPIO_PRIMARY_MODULE_FUNCTION) ; //Configure CPU signals use uartConflg to Write to
UART initModule (EUSCI A0 BASE, &uartConfig); // Configuring UART Module AQ . .
- - ‘ eUSCI_AO configuration
UART enableModule (EUSCI A0 BASE) ; // Enable UART module A0 . g
registers
UART transmitData (EUSCI A0 BASE,'a'); // Write character ‘a’ to UART\\
\ start UART

\base address of A0 (0x40001000), where AO is the instance of the UART peripheral

Software Interface

Replacing UART transmitData(EUSCI_AO_BASE,'a') by a direct access to registers:

volatile uintl6 t* wucalifg = (uintl6 t*) 0x4000101C; declare pointers to UART
volatile uintl6é t* wucaOtxbuf = (uintl6é t*) 0x4000100E; configuration registers

// Initialization of UART as before
T «~— Wait until transmit buffer is empt
while (! ((*ucalOifg >> 1) & 0x0001)); PYY

H 'y
*ucaltxbuf = (char) 'g'; // Write to transmit buffer write character ‘g’ to the

transmit buffer

shift 1 bit to the right

Table 22-18. UCAXIFG Register Description \
Bit Field Type Reset Description | % O L f >> 1 O O O Ol
15-4 Reserved R Oh Reserved - ((*ucal1 g) & X) .
1 UCTXIFG RW 1h Transmit interrupt flag. UCTXIFG is set when UCAXTXBUF empty. . . (') gy
0b = No interrupt pending expression is ‘1’ if bit
1b = Interrupt pending
' UCTXIFG = 0 (buffer not empty). ,

Input and Output
SPI Protocol

-40

SPI (Serial Peripheral Interface Bus)

= Typically communicate across short distances

" Characteristics:
= 4-wire synchronized (clocked) communications bus
= supports single master and multiple slaves
= always full-duplex: Communicates in both directions simultaneously
= multiple Mbps transmission speeds can be achieved |,

_ . . SCLK » SCLK
= transfer datain 4 to 16 bit serial packets (SEL. MO g L
aster < ave
= Bus wiring: SS b SS

= MOSI (Master Out Slave In) — carries data out of master to slave
= MISO (Master In Slave Out) — carries data out of slave to master
= Both MOSI and MISO are active during every transmission

SS (or CS) — signal to select each slave chip
= System clock SCLK — produced by master to synchronize transfers

SPI (Serial Peripheral Interface Bus)

. }
More detailed circuit diagram:. hifregiwer || MOSI on <hift regioter
= detail bet latch msb (SDO, SO) (SDI,S1)| lacch msb Isb
etails vary between o Dle7 D{-Mlso < —5 ol 5
H i
filfferent venfiors and A (SDI,SI) (SDO, SO) A
implementations >
S5CLK
clock (5CK)
SPl master — » 5Pl slave
55 (CS)

Timing diagram:

system clock SCLK | ’ |

_ N —

writing data output: \/ - I

MOSI or MISO e ! \'1. | ! l
reading data input S oy |

| in the middle of bit: VYWY YO ‘x’
-'Vv'xv‘ XVI\H’H’V\A‘M%K«\J ”\f\/\v

3-42

SPI (Serial Peripheral Interface Bus)

Two examples of bus configurations:

SCLK » SCLK
MQSI » MOSI| SPI
Sp| MISO e MISO Slave MICROCONTROLLER
Master SS1 » 55 _
SS2 = e
gey | scKl o 0 ol ...
' > SI((:)L;(I SP| SLAVE 1 SLAVE 2 SLAVE N
MISO Slave —{Cs __1Cs cs
» SS SCLK SCLK SCLK
MOS| DIN DOUT DIN DOUT —wee— |DIN DOUT
| SCLK
—» MOSI SPI
MISO Slave
— | §§
Master and multiple independent Master and multiple daisy-chained
slaves slaves
http://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/SPI_three_slaves http://www.maxim-ic.com/appnotes.cfm/an_pk/3947

.svg/350px-SPI_three_slaves.svg.png

Interrupts

- 44

Interrupts

A hardware interrupt is an electronic alerting signal sent to the CPU from another
component, either from an internal peripheral or from an external device.

The Nested Vector
Interrupt Controller
(NVIC) handles the
processing of
interrupts

LFXIN, LFXOUT,
HFXIN HFXOUT

P1.x to P10.x PJ.x
'y

F 3

AN

ITM, TPIU

JTAG, SWD

|
I
I
|
I
FPB, DWT I
I
I
|
I
I

—_—_———_— —_— — =

r'y DCOR
| LPM3.5 Domain | L
MSP 432 ES-Lab = = Capacitive Touch 1/ 0,
) Il Capacitive Touch I/0 1
PSS |
PCM cs | rrcc WDT_A packup
mary ||
/0 Ports /O Ports
Power Power clock | || Real-Ti Watchdo I
Control Supply oc eal-lime aichdog SRAM
Manager System System | Clock Timer SKB || P1toP10 PJ
DMA | || 7810s 6 1/0s
8 Channels | |
13- 1]
Bus I
r-r———-——-=-=- | Control
| CPU I Logic
' | SRAM
' — Flash (nchudes panoeral | | rstert || svsem
| C ARMmF | Backup (%nr%;ra
ortex-
| ﬂ 256KB Memory) Library) Reset System CRC32
128KB Controller Controller
I 64KB
| I 30KB 32KB

Precision
ADC

1 Msps,
SAR AID

Comp_ED,
Comp_E1

Analog
Comparator

REF_A,

Voltage
Reference

TAD, TA1,
TA2 TA3

Timer_A
16 Bit
5CCR

Timer32

2 x 32-bit
Timers

eUSCI_AO,

susciat. || [SUSE-BY

eUSCI_A2, eUSCI_B2,

eUSCI_A3 eUSCI B3
(UART, :

IrDA, SPI) (FC. SPY)

Copyright @ 2017 Texas Instruments Incorporated

-45

Interrupts

main() {

//Init

initClocks () ;

while (1) {
background
or LPMx

ISR1

get data
process

ISR2
set a flag

System Initialization

¢ The beginning part of main() is usually dedicated
to setting up your system

Background

4 Most systems have an endless loop that runs
‘forever’ in the background

¢ In this case, ‘Background’ implies that it runs at a
lower priority than ‘Foreground’

¢ In MSP432 systems, the background loop often
contains a Low Power Mode (LPMx) command —
this sleeps the CPU/System until an interrupt
event wakes it up

Foreground

Interrupt Service Routine (ISR) runs in response
to enabled hardware interrupt

4 These events may change modes in Background —
such as waking the CPU out of low-power mode

¢ ISR’s, by default, are not interruptible

4 Some processing may be done in ISR, but it’s
usually best to keep them short

-46

Processing of an Interrupt (MSP432 ES-Lab)

Timer_AO

L

L=

Nested Vector

Interrupt Controller
(NVIC)

|/O Port P1

CPU

&

[

peripheral unit

eUSCI_AO

interrupt handling

The vector interrupt controller (NVIC)
= enables and disables interrupts .

= allows to individually and globally .
mask interrupts (disable reaction to
interrupt), and

= registers interrupt service routines
(ISR), sets the priority of interrupts.

Interrupt priorities are relevant if

several interrupts happen at the same time

the programmer does not mask interrupts
in an interrupt service routine (ISR) and
therefore, preemption of an ISR by another
ISR may happen (interrupt nesting).

Processing of an Interrupt

1. Aninterrupt occurs 2. It sets a flag bit P

in a register
...currently executing code]
§§ J . e | IFG register

——t=—=- > interrupt occurs

next_line_of code

e UART

e GPIO j

e Timers

e ADC \/

* When an interrupt signal is received, a

« Most peripherals can generate corresponding bit is set in an IFG register.
interrupts to provide status and Thereis an such an IFG register for each
information. interrupt source.

* Interrupts can also be generated from * Assome interrupt sources are only on for a
GPIO pins. short duration, the CPU registers the interrupt

signal internally.

Processing of an Interrupt

1. Aninterrupt occurs 2. It sets a flag bit

in a register P
\ _..currently executing code ,
e | IFG register

----- > interrupt occurs

next_line_of code

UART

GPIO) >
Timers

e ADC _/—

Etc.

3. CPU/NVIC acknowledges interrupt by:
e current instruction completes
* saves return-to location on stack
* mask interrupts globally
* determines source of interrupt
e calls interrupt service routine (ISR)

Processing of an Interrupt

1. Aninterrupt occurs 2. It sets a flag bit

in a register P
\ _..currently executing code ,
e | IFG register

——t=—=- > interrupt occurs

next_line_of code

UART >
Gpi0 | ,
interrupt

Timers
e ADC \/- vector

Etc. table

N

3. CPU/NVIC acknowledges interrupt by: pointer to ISR

e current instruction completes

. Timer_AO
* saves return-to location on stack v

|/O Port P1

A 4

Nested Vector

L) Interrupt Controller <:> CPU

(NVIC)

* mask interrupts globally

* determines source of interrupt

eUSCI_AD

e calls interrupt service routine (ISR)

peripheral unit interrupt handling

Processing of an Interrupt

1. Aninterrupt occurs 2. It sets a flag bit

in a register P
\ _..currently executing code ,
e | IFG register

——t=—=- > interrupt occurs

next_line_of code

UART
GPIO j
Timers
e ADC \/

e Etc.

3. CPU/NVIC acknowledges interrupt by: 4. Interrupt Service Routine (ISR):
* current instruction completes * save context of system
e saves return-to location on stack * run your interrupt’s code
* mask interrupts globally > * restore context of system

* determines source of interrupt (automatically) un-mask interrupts and

* callsinterrupt service routine (ISR) continue where it left off

Processing of an Interrupt

Detailed interrupt processing flow:

IFG bit IE bit
Interrupt Interrupt “Individual” “Global”
Source ‘Flag’ Int Enable Int Enable
GPIO > o
TIMER_A - o CPU
> .-.”/e
get the interrupt status — globally allow / dis-
of the selected pin L — allow the processor
: : to react to interrupts
Interrupt Flag Reg (IFG) : '
bit set when int occurs; e.g. : Global Interrupt Enable
clears the interrupt status GPIO_getInterruptStatus(); Enables ALL maskable interrupts
on the selected pin Gl LR é Interrupt_enableMaster();

Interrupt Enable (IE); e.g. Interrupt_disableMaster();

enable interrupt 5 - 0
. . . _enableinterrupt),
in the peripheral unit GPIO_disablelnterrupt():

enable interrupt in the interrupt controller =~ Interrupt_enablelnterrupt(); 359

Example: Interrupt Processing

= Port 1, pin 1 (which has a switch connected to it) is configured as an input with interrupts enabled
and port 1, pin O (which has an LED connected) is configured as an output.

= When the switch is pressed, the LED output is toggled.

clear interrupt
flag and enable
interrupt in
periphery

enable interrupts
in the controller
(NVIC)

enter low power
mode LPM3

~

\

int main(void)

{

GPIO setAsOutputPin (GPIO PORT P1, GPIO PINO);

GPIO setAsInputPinWithPullUpResistor (GPIO PORT P1l, GPIO PINI);

\\‘ GPIO clearInterruptFlag (GPIO PORT P1l, GPIO PINI);

GPIO enablelInterrupt (GPIO PORT P1, GPIO PINI);

N Interrupt enableInterrupt (INT PORT1) ;

Interrupt enableMaster () ;

— while (1) PCM gotoLPM3();

-53

Example: Interrup

= Port 1, pin 1 (which has a swit

t Processing

ch connected to it) is configured as an input with interrupts enabled

and port 1, pin O (which has an LED connected) is configured as an output.

= When the switch is pressed, the LED output is toggled.

predefined name of ISR
attached to Port 1

get status (flags) of
interrupt-enabled
pins of port 1

/

e

clear all current flags
from all interrupt-
enabled pins of port 1

void PORT1 IRQHandler (void)

{
uint32 t status;

— status = GPIO getEnabledInterruptStatus (GPIO PORT P1l);

‘//, GPIO clearInterruptFlag (GPIO PORT P1l, status);

/// i1f (status & GPIO PINI)
{

GPIO toggleOutputOnPin (GPIO PORT P1l, GPIO PINO);

check, whether pin 1

was flagged

-54

Polling vs. Interrupt

Similar int main (void)
. . {
fu.nctlona//ty uint8 t new, old;
with polling:
GPIO setAsOutputPin (GPIO PORT P1, GPIO PINO);
GPIO setAsInputPinWithPullUpResistor (GPIO PORT P1, GPIO PINI);
old = GPIO getInputPinValue (GPIO PORT P1, GPIO PINI);
— while (1)
{
new = GPIO getInputPinValue (GPIO PORT P1l, GPIO PIN1);
continuously get the if (Inew & old)
signal at pinl and - {
}
old = new;
- }
}

Polling vs. Interrupt

What are advantages and disadvantages?

» We compare polling and interrupt based on the utilization of the CPU by using a
simplified timing model.
= Definitions:
= ytilization u: average percentage, the processor is busy
= computation c: processing time of handling the event
= overhead h: time overhead for handling the interrupt
= period P: polling period
= jnterarrival time T: minimal time between two events
= deadline D: maximal time between event arrival and finishing event processing with D < T.

polling interrupt events
I Tt
C— ¢ — V 7 R, h=h +l; <D <D V
1 €N =Ny N, S =

Polling vs. Interrupts

For the following considerations, we suppose that the interarrival time between
events is T. This makes the results a bit easier to understand.

Some relations for interrupt-based event processing :
= The average utilizationisu,=(h+c)/T.

" As we need at least h+c time to finish the processing of an event, we find the
following constraint: h+c <D <T.

Some relations for polling-based event processing:

= The average utilizationisu,=c/P.

" We need at least time P+c to process an event that arrives shortly after a polling
took place. The polling period P should be larger than c. Therefore, we find the
following constraints: 2c<c+P<D<T

Polling vs. Interrupts

Design problem: D and T are given by application requirements. h and c are given by
the implementation. When to use interrupt and when polling when considering the
resulting system utilization? What is the best value for the polling period P?

Case 1: If D < c + min(c, h) then event processing is not possible.

Case 2: If 2c £ D < h+c then only polling is possible. The maximal period P = D-c leads
to the optimal utilization u, = c /(D-c).

Case 3: If h+c < D < 2c then only interrupt is possible with utilizationu,=(h+c)/T.
Case 4: If c + max(c, h) < D then both are possible with u,=c/(D-c)oru;=(h+c)/T.

Interrupt gets better in comparison to polling, if the deadline D for processing
interrupts gets smaller in comparison to the interarrival time T, if the overhead h gets
smaller in comparison to the computation time c, or if the interarrival time of events
is only lower bounded by T (as in this case polling executes unnecessarily).

-58

Clocks and Timers

-59

Clocks and Timers
Clocks

-60

Clocks

Microcontrollers usually have many different clock sources that have different

"= frequency (relates to precision)

= energy consumption

= stability, e.g., crystal-controlled clock vs. digitally controlled oszillator

As an example, the MSP432 (ES-Lab) has the following clock sources:

S voqueneypreciion | cument | comment

LFXTCLK

HFXTCLK

DCOCLK
VLOCLK
REFOCLK
MODCLK
SYSOSC

32 kHz

48 MHz

3 MHz
9.4 kHz
32 kHz
25 MHz
5 MHz

0.0001% / °C
... 0.005% / °C

0.0001% / °C
... 0.005% / °C

0.025% / °C
0.1% /°C
0.012% / °C
0.02% / °C
0.03% /°C

150 nA

550 A

N/A

50 nA
0.6 pA
50 pA
30 pA

external crystal

external crystal

internal
internal
internal
internal

internal

-61

Clocks and Timers MSP432 (ES-Lab)

LFXIN, LFXOUT,
HFXIN HFXOUT

| ry DCOR

P1i.x to P10.x PJ.x

F F 3

J L I LPM3.5 Domain I .
| Capacifive Touch /O 0,
: Il capacitive Touch /0 1
PSS |
PCM cs | rrc_c WDT_A padkup |
Power Power I v /0 Ports /O Ports
Control Supply Clock Real-Time Watchdog SRAM |
Manager System System | Clock Timer 6KB || P1toP10 PJ
DMA I || 7810s 6 1/0s
8 Channels I |
Address i - = - = = -
Bus Data
r—-—=—=-=-=-= | Control
| CPU I Logic
' |) SRAM
. ROM
: ARM Flash B | | Petphera | | RsTCTL || svscTu | | AES296
Cortex-M4F [Driver ,
| B 256KB Memory) Library) Reset System Er?{fcﬁitgn CRC32
128KB Controller Confroller rypuon,
| B64KB Decryption
I 32KB 32KB
')
| MPU |
' |
I chl SysTick |)
' |
| FPB, DWT | I - B
[eUSCI_AD,
| I Precision Comp_EO, 13;]2 Eﬁ; Timer32 eUSCI_A1, zﬂgg:_g?
| IT™, TPIU I ADC Comp_E1 REF_A, ’ eUSCI_AZ2, eUSCI B2,
I : eUSCI_A3 vy
Ul stac.swo | | hsps, Analog Referon: v ~LdE PUSeLEs
| : SAR A/D Comparator ennce 5 GCR Timers (UART, FC. SPl
3 I IrDA, SPI) ("C. SPI)
| —— T 1

Copyright @ 2017 Texas Instruments Incorporated

Clocks and Timers MSP432 (ES-Lab)

LFXIN, LFXOUT,
HFXIN HFXOUT

P1xto P10.x

F

PJ.x
&

DMA

8 Channels

ARM
Cortex-M4F

MPU

NVICl SysTick

FPB, DWT

ITM, TPIU

JTAG, SWD

Bus
Confrol
Logic

/

LPM3.5 Domain

Il

|
| : Capacifive Touch /O 0,
: Il capacitive Touch /0 1
s |
PCM cs il rrc_c WDT_A padkup |
P i 10 Ports IO Ports
Power ower | '
Cantrol Supply s | G] " Frmar® sram P1to P10 PJ
Manager System ystem L imer I to
° Y | BKB || 78 vos 6 110s
l |
Address = = - — - - = -
AVSS2 l ‘ ‘ e
Avss3 |20 ¢ ! o - |
leonli@an| | ieen|1@6n|l10u.] | | FX GND |
15 | I I T T I I -1 | T
ol o I R D U0 L 0 U
Dvsss |82 | 1 | 1 | ! 1 [:
:_ GNDJ‘ ‘ GND J‘ : o : |
—————————————————— = L
PJLOLFXIN [T I L 5% I—‘Cii'
PJ.1/LFXOUT } | | o .
85 L 2 2E_£é___J I N:
PJ.2HFXOUT |- — I
PJ.3/HFXIN : PP | [
L - - - - - p ______
I I eUSCI_AO, I
Precision Comp_EO, REF A bl Timera2 eUSCI_AT, ooy
ADC Comp_E1 A, = eUSCI_A2, cUSCI B2,
Volt Timer_A eUSCI_A3 eUSCI_B3
1 Msps, Analog oflage 16 Bt 2 x 32-bit =
SAR A/D Comparator Reference 5 CC:E Timers (UART, FC. SPl
IrDA, SPI) ("C. SPI)
I L 1L

Copyright @ 2017 Texas Instruments Incorporated

Clocks

From these basic clocks, several internally available clock signals are derived.
They can be used for clocking peripheral units, the CPU, memory, and the various

timers.
E(; ; SR SFLA ACLK unconditional request
Example MSP432 (ES-Lab): |-==| & — .
= only some of the oo []
clock generators are) _—
D_ 0 MCLEK unconditional request
shown (LFXT, HFXT, =1 L -
D CO) HFXTDRIVE Im up tli:flzrﬁ
. . calibration DCOCLK "]
= dividers and clock ogo | | [oco
10 l ' HSMCLK unconditional request
Sources for the DCOR ZZZ;ZEE:Z DCO BIAS :;ﬂ%m;ﬁmtimalreuu&m
internally available -
clock signals can be S
set by software T

Clocks and Timers
Watchdog Timer

-65

Watchdog Timer

Watchdog Timers provide system fail-safety:

= |f their counter ever rolls over (back to zero), they reset the processor. The goal
here is to prevent your system from being inactive (deadlock) due to some

unexpected fault.

= To prevent your system from continuously resetting itself, the counter should be

reset at appropriate intervals.
CPU

Watchdog Timer (WDT_A)

WDT_A_holdTimer();

WDT_A clearTimer();

overflow

reset counter to O

_—_1

|
up ¢ counter

reset <[«

<_—_—

A

A

If the count completes without a restart,
the CPU is reset.

clock input, e.g.,
SMCLK, ACLK

- 66

Clocks and Timers
System Tick

-67

SysTick MSP432 (ES-Lab)

= SysTick is a simple decrementing 24 bit counter that is part of the NVIC
controller (Nested Vector Interrupt Controller). Its clock source is MCLK and it
reloads to period-1 after reaching O.

" |t's a very simple timer, mainly used for periodic interrupts or measuring time.

int main(void) {

GPIO setAsOutputPin (GPIO PORT P1, GPIO PINO);
SysTick enableModule () ;
SysTick setPeriod(1500000) ; if MCLK has a frequency of 3 MHz,

i

SysTick enableInterrupt () ; an interrupt is generated every 0.5 s.
Interrupt enableMaster();

—

while (1) PCM gotoLPMO(); <—— go tolow power mode LPO after executing the ISR

void SysTick Handler (void) {
MAP GPIO toggleOutputOnPin (GPIO PORT P1, GPIO PINO); }

- 68

SysTick MSP432 (ES-Lab)

Example for measuring the execution time of some parts of a program:

int main(void) {

int32 t start, end, duration;

SysTick enableModule () ;
SysTick setPeriod (0x01000000);
SysTick disableInterrupt ()

if MCLK has frequency of 3 MHz,
the counter rolls over every ~5.6 seconds
as (224 /(3 10%) =5.59

start = SysTick getValue();

// part of the program whose duration is measured

the resolution of the duration is one
end = SysTick getValue () ; microsecond; the duration must not be
duration = ((start - end) & OxOOFFFFFF) / 3; longer than ~6 seconds; note the use of
modular arithmetic if end > start;
o overhead for calling SysTick_getValue()
) is not accounted for;

Clocks and Timers
Timer and PWM

-71

Timer

Usually, embedded microprocessors have several elaborate timers that allow to
= capture the current time or time differences, triggered by hardware or software

events,

= generate interrupts when a certain time is reached (stop watch, timeout),

= generate interrupts when counters overflow,

= generate periodic interrupts, for example in order to periodically execute tasks,
= generate specific output signals, for example PWM (pulse width modulation).

clock input

»

counter
register

interrupt on

each pulse of the

overflow /
roll-over

clock increments the

counter register

OXEFFF

OxFFFE

OxFFFDl

0x0002

0x0001

0x0000

/

v

example 16 bit /
counter register

interrupt on roll over

Timer

capture
clock input counter interrupt on
> . >
register roll-over
capture capture captu re»
> .
event register actions

the value of counter register is stored in
capture register at the time of the capture
event (input signals, software)

the value can be read by software

at the time of the capture, further actions
can be triggered (interrupt, signal)

Typically, the mentioned functions are realized via capture and compare registers:

compare
clock input counter interrupt on
> . >
register roll-over
compare compare
register actions

the value of the compare register can be
set by software

as soon as the values of the counter and
compare reqgister are equal, compare
actions can be taken such as interrupt,
signaling peripherals, changing pin values,
resetting the counter register

-73

Timer

= Pulse Width Modulation (PWM) can be used to change the average power of a
signal.

" The use case could be to change the speed of a motor or to modulate the light
intensity of an LED.

OXEEEE | counter one compare register
register /is used to define the

/ / period

another compare register
I — is used to change the
duty cycle of the signal

0x0000

»

output signal I I I I I I I I I I

Timer Example MSP432 (ES-Lab)

Example: Configure Timer in “continuous mode”. Goal: generate periodic interrupts.

TXCLK (external)
ACLK

SMCLK ——
inverted TXCLK

15

Divide

(up to + 64)

—P>

16-bit Counter

y

Enable | _ Interrupt

/

clock sources

CCRO

(®)
(@)
~
[T

0
@)
~
N

0
@)
~
w

()
@)
)
=

()
@)
~
o

VS A

()
@)
~
(o))

T3 1T 1T T 7T

¢

J

\

7 configurable
compare or
capture
registers

-75

Timer Example MSP432 (ES-Lab)

Example: Configure Timer in “continuous mode”. Goal: generate periodic interrupts.

OxFFFF |— — — — — — /

0x0000

Timer Clock *

Timer X FFFE X FFFF * 0 X Xj" X FFFE X FFFF * 0

£ < '
)

Interrupt

Timer Example MSP432 (ES-Lab)

Example: Configure Timer in “continuous mode”. Goal: generate periodic interrupts,

but with configurable periods.

int main (void) {

const Timer A ContinuousModeConfig continuousModeConfig = {

TIMER A CLOCKSOURCE ACLK,

TIMER A CLOCKSOURCE DIVIDER 1,
TIMER A TAIE INTERRUPT DISABLE,
TIMER A DO CLEAR};

clock source is ACLK (32.768 kHz);
- divideris 1 (count frequency 32.768 kHz);
no interrupt on roll-over;

configure continuous mode
/ of timer instance AO

Timer A configureContinuousMode (TIMER A0 BASE, &continuousModeConfigqg);

Timer A startCounter (TIMER A0 BASE,

TIMER A CONTINUOUS MODE) ;

\ start counter AO in

while (1) PCM gotoLPMO (); }

continuous mode

so far,
nothing
happens

only the
counter is
running

Timer Example MSP432 (ES-Lab)

Example:

= For a periodic interrupt, we need to add a compare register and an ISR.
= The following code should be added as a definition:

#define PERIOD 32768

= The following code should be added to main():

const Timer A CompareModeConfig compareModeConfig = {
TIMER A CAPTURECOMPARE REGISTER 1,]
TIMER A CAPTURECOMPARE INTERRUPT ENABLE,| g3 first interrupt is generated after about one
0, second as the counter frequency is 32.768 kHz
PERIOD};

Timer A initCompare (TIMER AO BASE, &compareModeConfig);

Timer A enableCaptureComparelnterrupt (TIMER A0 BASE, TIMER A CAPTURECOMPARE REGISTER 1) ;
Interrupt enablelnterrupt (INT TAO N);

Interrupt enableMaster () ;

w
N
0]

Timer Example MSP432 (ES-Lab)

Example:

= For a periodic interrupt, we need to add a compare register and an ISR.

= The following Interrupt Service Routine (ISR) should be added. It is called if one of
the capture/compare registers CCR1 ... CCR6 raises an interrupt

void TAO_N_TIRQHandler (void) { the register TAOIV contains the interrupt flags for
the registers; after being read, the highest priority
switch (TAOIV) /interrupt (smallest register number) is cleared

case 0x0002: //flag for register CCRI1 automatically.
TAOCCR1 = TAOCCR1 + PERIOD;

// do something every PERIOD

default: break; the register TAOCCR1 contains the compare
} value of compare register 1.

other cases in the switch statement may be used
to handle other capture and compare registers

-79

Timer Example MSP432 (ES-Lab)

Example: This principle can be used to generate several periodic interrupts with
one timer.

TAOCCR2 TAOCCR2

|
TAOCCR1 | TAOCCR1 |
OXFFFF —— — — — — — g — — — — g —— h— — — —— -

TAOCCR2
TAOCCR1

;

Embedded Systems

4. Programming Paradigms

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Where we are. ...

Software <]

Hardware <

. Programming Paradigms <

. Introduction to Embedded Systems :

\

. Software Development
. Hardware-Software Interface

. Embedded Operating Systems
. Real-time Scheduling
. Shared Resources

Hardware Components j

. Power and Energy '
. Architecture Synthesis

R Hardware-
/ Software

!
!
1
!
!

Reactive Systems and Timing

Timing Guarantees

» Hard real-time systems can be often found in safety-critical applications. They
need to provide the result of a computation within a fixed time bound.

= Typical application domains:

= avionics, automotive, train systems, automatic control including robotics,
manufacturing, media content production

— . wing vibration of airplane,
sideairbag in car,

Free stream air velocity

sensing every 5 ms

reaction after event in <10 mSec

‘ 1.5m ‘

Simple Real-Time Control System

— A/D —
Input ! Control-Law { D/A
| Computation
A/D >
Sensor Actuator

Real-Time Systems

In many cyber-physical systems (CPSs), correct timing is a matter of correctness, not
performance: an answer arriving too late is consider to be an error.

|—‘ Controller —l

Sensors Actuators

Physical process

Real-Time Systems

|—> Controller —l

Sensors Actuators

Physical process

Real-Time Systems

Controller —l

Sensors Actuators

Physical process

Communication

Real-Time Systems

Controller

Sensors Actuators

Physical process

Communication

Real-Time Systems

Sensors

Controller

Actuators

Physical process

Communication

Communication

-10

Real-Time Systems

start time

Sensors

Controller

Actuators

Physical process

Communication

Communication

deadline

A

A 4

-11

Real-Time Systems

" EFmbedded controllers are often expected to finish the processing of data and
events reliably within defined time bounds. Such a processing may involve
sequences of computations and communications.

» Essential for the analysis and design of a real-time system: Upper bounds on the
execution times of all tasks are statically known. This also includes the
communication of information via a wired or wireless connection.

* This value is commonly called the Worst-Case Execution Time (WCET).

= Analogously, one can define the lower bound on the execution time, the Best-Case
Execution Time (BCET).

-12

Distribution of Execution Times

Unsafe:
Best Case Execution Time
Execution Time Measurement

Worst Case
Execution Time

Distribution of execution times

Upper bound

>

Execution Time

-13

Modern Hardware Features

* Modern processors increase the average performance (execution of tasks) by
using caches, pipelines, branch prediction, and speculation techniques, for
example.

" These features make the computation of the WCET very difficult: The
execution times of single instructions vary widely.

* The microarchitecture has a large time-varying internal state that is changed by
the execution of instructions and that influences the execution times of
instructions.

= Best case - everything goes smoothely: no cache miss, operands ready, needed
resources free, branch correctly predicted.

= Worst case - everything goes wrong: all loads miss the cache, resources needed
are occupied, operands are not ready.

= The span between the best case and worst case may be several hundred cycles.

- 14

Methods to Determine the Execution Time of a Task

execution time

A

Worst-Case

Best-Case

Real System Measurement Simulation Worst-Case
(correct model) Analysis

-15

(Most of) Industry’s Best Practice

= Measurements: determine execution times directly by observing the execution
or a simulation on a set of inputs.

Does not guarantee an upper bound to all executions unless the reaction to all
initial system states and all possible inputs is measured.

Exhaustive execution in general not possible: Too large space of (input domain) x
(set of initial execution states).

= Simulation suffers from the same restrictions.

= Compute upper bounds along the structure of the program:

Programs are hierarchically structured: Instructions are “nested” inside
statements.

Therefore, one may compute the upper execution time bound for a statement
from the upper bounds of its constituents, for example of single instructions.

But: The execution times of individual instructions varies largely!

-16

Determine the WCET

Complexity of determining the WCET of tasks:
" |n the general case, it is even undecidable whether a finite bound exists.

= For restricted classes of programs it is possible, in principle. Computing accurate
bounds is simple for ,,old” architectures, but very complex for new architectures with
pipelines, caches, interrupts, and virtual memory, for example.

Analytic (formal) approaches exist for hardware and software.

" |n case of software, it requires the analysis of the program flow and the analysis of the
hardware (microarchitecture). Both are combined in a complex analysis flow, see for
example www.absint.de and the lecture “Hardware/Software Codesign”.

= For the rest of the lecture, we assume that reliable bounds on the WCET are available,
for example by means of exhaustive measurements or simulations, or by analytic
formal analysis.

-17

Different Programming Paradigms

-18

Why Multiple Tasks on one Embedded Device?

* The concept of concurrent tasks reflects our intuition about the functionality of
embedded systems.

= Tasks help us manage the complexity of concurrent activities as happening in the
system environment:

= |nput data arrive from various sensors and input devices.

= These input streams may have different data rates like in multimedia processing,
systems with multiple sensors, automatic control of robots

= The system may also receive asynchronous (sporadic) input events.

= These input event may arrive from user interfaces, from sensors, or from
communication interfaces, for example.

-19

Example: Engine Control

Typical Tasks:

spark control
crankshaft sensing
fuel/air mixture
OXygen sensor

Kalman filter — control
algorithm

engine
controller

-20

Overview

* There are many structured ways of programming an embedded system.

® |n this lecture, only the main principles will be covered:

= time triggered approaches
= periodic
= cyclic executive
= generic time-triggered scheduler

= event triggered approaches
" non-preemptive
= preemptive — stack policy
= preemptive — cooperative scheduling
= preemptive - multitasking

-21

Time-Triggered Systems

Pure time-triggered model:

" nointerrupts are allowed, except by timers
= the schedule of tasks is computed off-line and therefore, complex sophisticated

algorithms can be used

»" the scheduling at run-time is fixed and therefore, it is deterministic

= the interaction with environment happens through polling

interrupt

polling

Timer \

ﬁ

CPU

/
—
\ interfaces

> — to sensor/

/ actuator
—1

set timer

-22

Simple Periodic TT Scheduler

= Atimer interrupts reqularly with period P.

= All tasks have same period P.

Ty T, . Ty T, . Ty T, l ¢

t(0)

A

P

= Properties:

later tasks, for example T, and T;, have unpredictable starting times

the communication between tasks or the use of common resources is safe, as
there is a static ordering of tasks, for example T, starts after finishing T,

as a necessary precondition, the sum of WCETs of all tasks within a period is
bounded by the period P:

Y WCET(T}) < P
(k)

-23

Simple Periodic Time-Triggered Scheduler

usually done offline
main: /////A y

determine table of tasks (k, T(k)), for k=0,1,..,m-1;
1=0; set the timer to expire at initial phase t(0);

while (true) sleep();
set CPU to low power mode;

processing starts again after interrupt

Timer Interrupt:

i=i+1;

set the timer to expire at 1*P + t(0);

Y

for (k=0,..,m-1){ execute task T (k); }

N

return; \\\\\\\‘

NS

for example using a function pointer in C;

SlwlNvlRr|lo]l s

task(= function) returns after finishing.

(&)1

U-'I—]I—]wl—]'—]'—]l—]

3
I

-24

Time-Triggered Cyclic Executive Scheduler

= Suppose now, that tasks may have different periods.

» To accommodate this situation, the period P is partitioned into frames of length f.

m Linl Rl nln [ninl T
0 2

4 6 8 10 12 14 16 18 20

f P

* We have a problem to determine a feasible schedule, if there are tasks with a
long execution time.

long tasks could be partitioned into a sequence of short sub-tasks

but this is tedious and error-prone process, as the local state of the task must be
extracted and stored globally

Time-Triggered Cyclic Executive Scheduling

= Examples for periodic tasks: sensory data acquisition, control loops, action

planning and system monitoring.

* When a control application consists of several concurrent periodic tasks with
individual timing constraints, the schedule has to guarantee that each periodic

instance is regularly activated at its proper rate and is completed within its
deadline.

" Definitions:

I :denotes the set of all periodic tasks
7i :denotes a periodic task
Ti,j : denotes the jth instance of task i
r. ., d.. :denote the release time and absolute deadline of the
jth instance of task i
@, : phase of task i (release time of its first instance)
D; :relative deadline of task i

-26

Time-Triggered Cyclic Executive Scheduling

= Example of a single periodic task z;:

T Ti
D Dy =

mlom

lim. «— [li2

Ci
" Asetof periodic tasks T: task instances should execute in these intervals
T4
A Y I Y A Y O O O 1141 l/T
1 | 1 | 1 | /1

Time-Triggered Cyclic Executive Scheduling

* The following hypotheses are assumed on the tasks:

The instances of a periodic task are reqularly activated at a constant rate. The

interval T; between two consecutive activations is called period. The release times
satisfy

iy =@ +(j-1T;

All instances have the same worst case execution time C; . The worst case
execution time is also denoted as WCET({i) .

All instances of a periodic task have the same relative deadline Dj. Therefore, the
absolute deadlines satisfy

di,j =@ +(i-1T; + D

Time-Triggered Cyclic Executive Scheduling

Example with 4 tasks:
= T1:T1:6,D1:6,01:2 TQZTQZQ,DQZQ,CQZQ
T3:T3:12,D3:8703:2 T4ZT4:18,D4:10,01:4 -

= P=36,f=4

T4 TlF T3

- requirement

- schedule

v

0 4 36 .
¢ =2 ‘ | | 1
@2—1 | Il
Py =4 r ! R
=0_p |
_'_I

not given as part of the requirement

Time-Triggered Cyclic Executive Scheduling

Some conditions for period P and frame length f:

m A task executes at most once within a frame:
f <T; Vtasks t;

= Pisamultiple of f. period of task
" Period P is least common multiple of all periods T}, .
= Tasks start and complete within a single frame:

f = C;_V tasks 7; worst case execution time
of task

= Between release time and deadline of every task there is at least one full frame:

2f —gcd(T;, f) < D; V tasks T;

relative deadline of task/

-30

Sketch of Proof for Last Condition

N

- b

starting time

\

latest finishing time

f |

i
I

J—9cd(T;, /)

Y Y

T~
S

1
I
!
LIA
VI‘

.

at least gcd(T73;, f)

release times and
deadlines of tasks

frames

-31

Example: Cyclic Executive Scheduling

Conditions:

f <min{4,5,20} =4 ' |T; | D;|C;
f>max{1.0,1.0,1.8,2.0} = 2.0 T |4 4 1.0
2f —gcd(T;, f) < D; Y tasks 7; ™ |5 |> |18
73 |20 20 |1.0
possible solution: f =2 T4 120 |20 |2.0
Feasible solution (f=2):
E. T2 || T1 T4 T2 || T1 T2 u7'1 1 T2
4 — t
0 2 4 6 8 10 12 14 16 18 20
< P >

-32

Time-Triggered Cyclic Executive Scheduling

Checking for correctness of schedule:
= fi; denotes the number of the frame in which that instance j of task 7; executes.
= |s Pacommon multiple of all periods 7 ?
= |s Pamultiple of f?

Is the frame sufficiently long?

Determine offsets such that instances of tasks start after their release time:

D, = i 1) f— (= 1T, V tasks 7
1§jrr%1gm{(fg)f— (5 — DT} asks T

= Are deadlines respected?

G-V +®,+D; > fi;f Vtaskst;, 1 <j < P/T;

Generic Time-Triggered Scheduler

" |nan entirely time-triggered system, the temporal control structure of all tasks is
established a priori by off-line support-tools.

» This temporal control structure is encoded in a Task-Descriptor List (TDL) that
contains the cyclic schedule for all activities of the node.

* This schedule considers the required precedence and mutual exclusion
relationships among the tasks such that an explicit coordination of the tasks by
the operating system at run time is not necessary.

" The dispatcher is activated by a

]) Time Action WCET
synchronized clock tick. It looks at the ” e "
. sta
TDL, and then performs the action 17 cond M5 @
that has been planned for this 22 stop T1 ,
- 38 stat T2 | 20 Dispatcher
instant [Kopetz].
47 send M3

Simplified Time-Triggered Scheduler

main: = usually done offline

determine statxc schedule (t(k), T(k)), for k=0,1,..,n-1;

determine period of the schedule P;

set 1=k=0 initially; set the timer to expire at t(0);

while (true) sleep():;

T set CPU to low power mode;

Timer Interrupt: processing continues after interrupt

k old := k;

i := 1+1; k := 1 mod n;

set the timer to expire at Li/nJ * P + t(k);
execute task T (k old);

return; \\\‘
for example using a function pointer in C;

task returns after finishing.

k t (k) | T (k)

0 0 T,

1 3 T,

2 7 T,

3 8 T,

4 12 T,
n=5, P 16

-35

Summary Time-Triggered Scheduler

Properties:

= deterministic schedule; conceptually simple (static table); relatively easy to
validate, test and certify

= no problems in using shared resources

= external communication only via polling
= jnflexible as no adaptation to the environment
= serious problems if there are long tasks

Extensions:
= gallow interrupts - be careful with shared resources and the WCET of tasks!!
= allow preemptable background tasks
= check for task overruns (execution time longer than WCET) using a watchdog timer

-36

Event Triggered Systems

The schedule of tasks is determined by the occurrence of external or internal events:

= dynamic and adaptive: there are possible problems with respect to timing, the use
of shared resources and buffer over- or underflow

= guarantees can be given either off-line (if bounds on the behavior of the
environment are known) or during run-time

interrupt

interrupt or polling

CPU

/
—
\ interfaces

«—— — to sensor/

/ actuator
—

set timer

-37

Non-Preemptive Event-Triggered Scheduling

Principle:
= To each event, there is associated a corresponding task that will be executed.
"= Events are emitted by (a) external interrupts or (b) by tasks themselves.

= All events are collected in a single queue; depending on the queuing discipline, an
event is chosen for execution, i.e., the corresponding task is executed.

= Tasks can not be preempted.

Extensions:

" A background task can run if the event queue is empty. It will be preempted by
any event processing.

» Timed events are ready for execution only after a time interval elapsed. This
enables periodic instantiations, for example.

-38

Non-Preemptive Event-Triggered Scheduling

main:
set the CPU to low power mode;

while (true) {

. . continue processing after interrupt
1f (event queue 1s empty) {
sleep();

for example using a function pointer in C;
task returns after finishing.
/ &

} else {
extract event from event queue;
execute task corresponding to event;

ISR

(interrupt service
Interrupt: routine) O Q Q tasks

put event into event queue; event

return; interrupts .

event ‘<::>

extract event;
dispatch corresponding task

event queue

-39

Non-Preemptive Event-Triggered Scheduling

Properties:

= communication between tasks does not lead to a simultaneous access to shared
resources, but interrupts may cause problems as they preempt running tasks

= buffer overflow may happen if too many events are generated by the environment or
by tasks

= tasks with a long running time prevent other tasks from running and may cause
buffer overflow as no events are being processed

during this time task with a long
" partition tasks into smaller ones execution time
= but the local context must be stored ‘ partition
subtask 1 subtask 2
save /ﬁ (T restore
context context

global memory

» This case is similar to non-preemptive case, but tasks can be preempted by
others; this resolves partly the problem of tasks with a long execution time.

Preemptive Event-Triggered Scheduling — Stack Policy

» |f the order of preemption is restricted, we can use the usual stack-based context

mechanism of function calls. The context of a

function contains the necessary state such as local

variables and saved registers. context of
,,,////”””,,///”' main()
main () {
El(); context of
£10){ context of

h»

main memory
addresses

Preemptive Event-Triggered Scheduling — Stack Policy

task T, 1 l
task T, 1 l
task T, % |
\ Z >
preemption t

" Tasks must finish in LIFO (last in first out) order of their instantiation.
= this restricts flexibility of the approach

= jtis not useful, if tasks wait some unknown time for external events, i.e., they are
blocked

» Shared resources (communication between tasks!) must be protected, for
example by disabling interrupts or by the use of semaphores.

- 42

Preemptive Event-Triggered Scheduling — Stack Policy

main:
while (true) {

£ . | .

’ (evenSleqeupeue Le empty) set CPU to low power mode;
—_

} else |{ processing continues after interrupt

select event from event queue;

execute selected task; ———, for example using a function pointer
remove selected event from queue;

in C; task returns after finishing.
}
}
InsertEvent: Interrupt:
put new event into event queue; InsertEvent (..);
select event from event queue; return;

if (selected task # running task) {
execute selected task; may be called by interrupt service
remove selected event from queue; routines (ISR) or tasks

}

return;

-43

Thread

= Athread is a unique execution of a program.

= Several copies of such a “program” may run simultaneously or at different times.
= Threads share the same processor and its peripherals.

" A thread has its own local state. This state consists mainly of:
= register values;
= memory stack (local variables);
= program counter;

= Several threads may have a shared state consisting of global variables.

- 44

Threads and Memory Organization

= Activation record (also denoted as the thread context) contains the

thread local state which includes
registers and local data structures.

= Context switch:

= current CPU context
goes out

= new CPU context
goes in

PC
read1 | | T
‘ﬁ-\
registers
thread 2

memory

CPU

-45

Co-operative Multitasking

= Fach thread allows a context switch to another thread at a call to the
cswitch () function.

This function is part of the underlying runtime system (operating system).
A scheduler within this runtime system chooses which thread will run next.

=" Advantages:

predictable, where context switches can occur
less errors with use of shared resources if the switch locations are chosen carefully

= Problems:

programming errors can keep other threads out as a thread may never give up
CPU

real-time behavior may be at risk if a thread runs too long before the next context
switch is allowed

-46

Example: Co-operative Multitasking

Thread 1 Thread 2

if (x > 2) procdata(r,s,t);
subl (y) ; cswitch () ;

else if (vall == 3)
sub2 (y) ; abc (val2) ;

cswitch() ; rst(val3) ;

proca(a,b,c) ;

Scheduler

save state(current);
lp = choose process() ;
load and go(p) ;

-47

Preemptive Multitasking

»" Most general form of multitasking:

The scheduler in the runtime system (operating system) controls when contexts
switches take place.

The scheduler also determines what thread runs next.

= State diagram corresponding to each single thread: \ terminate thread

4

Run: A thread enters this state as it starts executing
on the processor

Ready: State of threads that are ready to execute
but cannot be executed because the processor
is assigned to another thread.

dispatch

_ . . preemption
Blocked: A task enters this state when it waits

for an event. :
activate thread signal

Embedded Systems

4a. Timing Anomalies

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Timing Peculiarities in Modern Computer Architectures

* The following example is taken from an exercise in
“‘Systemprogrammierung’.

* |t was not! constructed for challenging the timing

predictability of modern computer architectures; the
strange behavior was found by chance.

» A straightforward GCD algorithm was executed on an
UltraSparc (Sun) architecture and timing was
measured.

 Goal in this lecture: Determine the cause(s) for the
strange timing behavior.

Program

* Only the relevant assembler program is shown (and
the related C program); the calling main function just
jumps to label ggt 1.000.000 times.

text Here, we will introduces nop

.global ggt statements: there are NOT

align 32 executed.

agt: ! %00:= x,%01 =y

cmp %00, %01 Int ggt_c (int x, inty) {
blu,a ggt lif (%00 < %o01) {goto ggt;} while (x I=y) {

sub %01, %00, %01 1 %01 = %01 - %00 f(x<y){y-=x;}
bgu,a ggt if (%00 > %o1) {goto ggt;} else {x -=vy:}
sub %00, %01, %00 ! %00 = %01 - %00 }

retl return (x);

nop }

Observation

* Depending on the number of nop statements before
the ggt label, the execution time of ggt(17, 17*97)
varies by a factor of almost 2. The execution time of
ggt(17*97, 17) varies by a factor of more than 4.

* This behavior is periodic In the number of nop
statements, i.e. it repeats after 8 nop statements.

« Measurements:

nop

time[s]
got(17,17*97)

time[s]
gat(17*97,17)

nop

time[s]
gat(17,17797)

time[s]
gat(17*97,17)

0 0.36 0.62
1 0.35 2.78
2 0.36 0.64
3 0.35 2.79

4 0.37 0.63
S 0.35 0.62
6 0.65 0.64
7 0.64 0.63

4a -

Simple Calculations

 The CPU iIs UltraSparc with 360 MHz clock rate.
* Problem 1 (ggt(17,17*97)):

Fast execution: 96*3*1.000.000 / 0.35 = 823 MIPS and
0.35 * 360 /96 = 1.31 cycles per iteration.

Slow execution: 96*3*1.000.000 / 0.65 = 443 MIPS and
0.65 * 360/ 96 = 2.44 cycles per iteration.

Therefore, the difference is about 1 cycle per iteration.

« Problem 2 (ggt(17*97, 17))

Fast execution: 96*4*1.000.000 / 0.63 = 609 MIPS and
0.63 * 360 / 96 = 2.36 cycles per iteration.

Slow execution: 96*4*1.000.000/ 2.78 = 138 MIPS and
2.78 * 360 / 96 = 10.43 cycles per iteration.

Therefore, the difference is about 8 cycles per iteration.

4a -

Explanations

* Problem 1 (ggt(17,17*97)):

* The first three instructions (cmp, blu, sub) are called 96
times before ggt returns. The timing behavior depends on
the location of the program in address space.

* The reason is most probably the implementation of the 4
word instruction buffer between the instruction cache and
the pipeline: The instruction buffer can not be filled by
different cache lines in one cycle.

* |n the slow execution, one needs to fill the instruction buffer
twice for each iteration. This needs at least two cycles
(despite of any parallelism in the pipeline).

4a -

Block Diagram of UltraSparc

¥ ¥ ¥
EXTERNAL CACHE UNIT |.o | MEMORY AND UPAG4S
- i TN (ECU) - ™| conTRoL uNIT (MCU)
Instruction buffer

for hiding latency & i

¥
to CaChe INSTRUCTION CACHE DATA CACHE
\ (I CACHE) (D CACHE)
l"‘ INSTRUCTION INSTRUCTION DATA
BUFFER F{;’Tgﬂgﬂ Uﬁ? 3 | TRANSLATION TRANSLATION
. 1 LO0OKASI UFF| BUFFER (dTLB)
GROUPING Locic| (PDU) LOOK SUTDLEB.E” =
)
] ‘ ¥ L
INTEGER FLOATING POINT LOAD STORE
-] f
REGISTER FILE REGISTER FILE UNIT (LSU)
(FPU)
FP MULTIPLY Loan | store
LS S FP ADD QUEUE | auEeue
EXECUTION UNIT
(IEU) FP DIVIDE
' GRAPHICS UNIT(GRU)
' L 1
¥ r ¥

User Manual (page 361 ...)

Instruction Availability

Instruction dispatch is limited to the number of instructions available in the
instruction buffer. Several factors limit instruction availability. UltraSPARC-I1i
fetches up to four instructions per clock from an aligned group of eight instructions.
When the fetch address (modulo 32) is equal to 20, 24, or 28, then three, two, or one

instruction(s) respectively are added to the instruction buffer. The next cache line
and set are predicted using a next field and set predictor for each aligned four
instructions in the instruction cache. When a set or next field mispredict occurs,
instructions are not added to the instruction buffer for two clocks.

4a -

Address Alignment

0 nop

5 nop

6 nop

Cache line:
cmp blu sub
Instruction buffer:
cmp blu sub
Cache line:
nop nop nop nop nop cmp blu sub
Instruction buffer:
cmp blu sub ><
Cache lines:
nop nop nop nop nop nop cmp blu
sub

Instruction buffer:

cmp

blu

al

as sub is missing

fetches are necessarg

4a -

Explanations

 Problem 2 (ggt(17*97,17)):

* The loop is executed (cmp, blu, sub, bgu, sub) 96 times,
where the first sub instruction is not executed (since blu is
used with '.a’ suffix, which means, that instruction in the
delay slot is not executed if branch is not taken). Therefore,
there are four instructions to be executed, but the loop has 5
iInstructions in total.

* The main reason for this behavior is most probably due to
the branch prediction scheme used in the architecture.

* In particular, there is a prediction of the next block of 4
instructions to be fetched into the instruction buffer. This
scheme is based on a two bit predictor and is also used to
control the pipeline and to prevent stalls.

« But there is a problem due to the optimization of the state
iInformation that is stored (prediction for blocks of
iInstructions and single instructions):

4a-10

User Manual (page 342 ...)

The following cases represent situations when the prediction bits and/or the next

field do not operate optimally:

1. When the target of a branch is word 1 or word 3 of an I-cache line (FIGURE 21-2)
and the fourth instruction to be fetched (instruction 4 and 6 respectively) is a
branch, the branch prediction bits from the wrong pair of instructions are used.

5 6 / ‘

Odd Fetches

FIGURE 21-2 Odd Fetch to an I-cache Line

We exactly have this situation, if
there are 1 or three nops
statements inserted

..-—"""/

4a-11

Conclusions

Innocent changes (Just moving code in address
space) can easily change the timing by a factor of 4.

In our example, the timing oddities are caused by two
different architectural features of modern superscalar
Processors:

* branch prediction
* nstruction buffer

It is hard to predict the timing of modern processors;
this is bad in all situations, where timing is of
Importance (embedded systems, hard real-time
systems).

What is a proper approach to predictable system
design ?

Embedded Systems
5. Operating Systems

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Embedded Operating Systems

Where we are. ...

1. Introduction to Embedded Systems :

\

2. Software Development
" 3. Hardware-Software Interface L
--4. Programming Paradigms 1.

Software & -
‘ '\>‘~5. Embedded Operating Systems \,%Is-lafrtdware
K] . . / 0Ttware
*6. Real-time Scheduling /

!
1
!

7. Shared Resources /
.-8. Hardware Components ;
Hardware 9. Power and Energy '
ht 10. Architecture Synthesis

Embedded Operating System (OS)

= Why an operating system (OS) at all?
= Same reasons why we need one for a traditional computer.
= Not every devices needs all services.

" |n embedded systems we find a large variety of requirements and environments:

= Critical applications with high functionality (medical applications, space shuttle,
process automation, ...).

= Critical applications with small functionality (ABS, pace maker, ...).

= Not very critical applications with broad range of functionality (smart phone, ...).

Embedded Operating System

" Why is a desktop OS not suited?

= The monolithic kernel of a desktop OS offers too many features that take space in
memory and consume time.

= Monolithic kernels are often not modular, fault-tolerant, configurable.

= Requires too much memory space and is often too ressource hungry in terms of
computation time.

= Not designed for mission-critical applications.

" The timing uncertainty may be too large for some applications.

Embedded Operating Systems

Essential characteristics of an embedded OS: Configurability
= No single operating system will fit all needs, but often no overhead for
unused functions/data is tolerated. Therefore, configurability is needed.
= For example, there are many embedded systems without external memory, a
keyboard, a screen or a mouse.

Configurability examples:
= Remove unused functions/libraries (for example by the linker).
= Use conditional compilation (using #if and #ifdef commands in C, for example).
= But deriving a consistent configuration is a potential problem of systems with a

large number of derived operating systems. There is the danger of missing
relevant components.

Example: Configuration of VxWorks

Active Build [defaul

! =t HeanglConﬁg Vxworks |
i+ @ C++ components [
= g application components

=-g# development tool components
=

|- =a timex

#-g# WDB agent components
- gl Windview components

g kernel object show routine

+- gl loader CU""PUHEHH C++ symbol demangler timex

U ol B symbol table target debugaging

gl target shell componen!: downloaded spmbol tabile ts;‘zl;?:ﬂgfr

L e =4 target loader

7 @ network components

g obsolete components

=gl operating system components gAY B ey B AT el e

% ¢ ANSI C components (ibe] | ~Image size change [butes) ———~ New image size [btes)
= iR el dsa b el || tew dwa |bes |t |

I - -939572 14360 -1056 -1149.. a7s052 4808 28716 408576
Pﬁem vmmlml ;

Coced | heb |

Automatic dependency analysis and size calculations allow users to auickly custom-
tailor the VXWORKS operating system. © Windriver

http://www.windriver.com/products/development_tools/ide/tornado2/tornado_2_ds.pdf

Real-time Operating Systems

A real-time operating system is an operating system that supports the
construction of real-time systems.

Key requirements:

1. The timing behavior of the OS must be predictable.
For all services of the OS, an upper bound on the execution time is necessary. For
example, for every service upper bounds on blocking times need to be available,
i.e. for times during which interrupts are disabled. Moreover, almost all
processor activities should be controlled by a real-time scheduler.

2. OS must manage the timing and scheduling

= (S has to be aware of deadlines and should have mechanism to take them
into account in the scheduling

= OS must provide precise time services with a high resolution

Embedded Operating Systems
Features and Architecture

Embedded Operating System

Device drivers are typically handled directly by tasks instead of drivers that are
managed by the operating system:

= This architecture improves timing predictability as access to devices is also handled by
the scheduler

= |f several tasks use the same external device and the associated driver, then the access
must be carefully managed (shared critical resource, ensure fairness of access)

Embedded OS Standard OS

application software application software
middleware | middleware middleware |middleware
device driver |device driver operating system
real—time kernel device driver |device driver

-10

Embedded Operating Systems

Every task can perform an interrupt:
= For standard OS, this would be serious source of unreliability. But embedded
programs are typically programmed in a controlled environment.

= |tis possible to let interrupts directly start or stop tasks (by storing the tasks start
address in the interrupt table). This approach is more efficient and predictable
than going through the operating system’s interfaces and services.

Protection mechanisms are not always necessary in embedded operating systems:

* Embedded systems are typically designed for a single purpose, untested programs
are rarely loaded, software can be considered to be reliable.

= However, protection mechanisms may be needed for safety and security reasons.

-11

Main Functionality of RTOS-Kernels

Task management:

Execution of quasi-parallel tasks on a processor using processes or threads (lightweight
process) by

" maintaining process states, process queuing,
= allowing for preemptive tasks (fast context switching) and quick interrupt handling

CPU scheduling (guaranteeing deadlines, minimizing process waiting times, fairness in
granting resources such as computing power)

Inter-task communication (buffering)
Support of real-time clocks

Task synchronization (critical sections, semaphores, monitors, mutual exclusion)

= |n classical operating systems, synchronization and mutual exclusion is performed via
semaphores and monitors.

= |n real-time OS, special semaphores and a deep integration of them into scheduling is
necessary (for example priority inheritance protocols as described in a later chapter).

-12

Task States

Minimal Set of Task States:

preemption

signal

instantim

-13

Task states

Running:

= Atask enters this state when it starts executing on the processor. There is as
most one task with this state in the system.

Ready:

= State of those tasks that are ready to execute but cannot be run because the
processor is assigned to another task, i.e. another task has the state “running”.

Blocked:

= A task enters the blocked state when it executes a synchronization primitive to
wait for an event, e.g. a wait primitive on a semaphore or timer. In this case,
the task is inserted in a queue associated with this semaphore. The task at the
head is resumed when the semaphore is unlocked by an event.

Multiple Threads within a Process

Text Data T Text Data
Stack -
registers stack Thread 2 stack registers ||| registers ||| registers

@ il
stack stack stack
Thread 3 stack
L1

thread — ; ﬁ ﬁ <«— thread

dynamic Data dynamic Data
static Data static Data
Text Text
process with a single thread process with several threads

Threads

A thread is the smallest sequence of programmed instructions that can be
managed independently by a scheduler; e.g., a thread is a basic unit of CPU
utilization.

=" Multiple threads can exist within the same process and share resources such
as memory, while different processes do not share these resources:

= Typically shared by threads: memory.
= Typically owned by threads: registers, stack.

" Thread advantages and characteristics:

= Faster to switch between threads; switching between user-level threads requires
no major intervention by the operating system.

= Typically, an application will have a separate thread for each distinct activity.

= Thread Control Block (TCB) stores information needed to manage and schedule a
thread

Threads

= The operating system maintains for each thread a data structure (TCB — thread control block)

that contains its current status such as program counter, priority, state, scheduling information,
thread name.

= The TCBs are administered in linked lists:

| l

A

A

L

disk 1

) ¥
serial I/O

~
~

e e B

timer queue

executing process

<+ [

i

ready queue

activate

terminate

running

»

blocked dispatch

preemption

signa

ready

Context Switch: Processes or Threads

process or thread PO operating system process or thread P1
Interrupt or system call process control block or
oxeculing § 1 / thread control bIock
3 [save state into PCB,
) - idle
| reload state from PCB, |)
e interrupt or system call executing

l _*‘.—\-—-

ﬂhﬂésmahtnlﬂ'ﬂﬂ,

- idle
) | reload state from PCB,

executing ff T 10, _
—

4

-18

Embedded Operating Systems
Classes of Operating Systems

-19

Class 1: Fast and Efficient Kernels

Fast and efficient kernels

For hard real-time systems, these kernels are questionable, because they are
designed to be fast, rather than to be predictable in every respect.

Examples include
FreeRTOS, QNX, eCOS, RT-LINUX, VXWORKS, LynxOS.

-20

Class 2: Extensions to Standard OSs

Real-time extensions to standard OS:

Attempt to exploit existing and comfortable main stream operating systems.
A real-time kernel runs all real-time tasks.
The standard-OS is executed as one task.

non—-RT task 1| non-RT task 2

RT—-task 1| RT-task 2

device driver |device driver Standard-0OS

real-time kernel

+ Crash of standard-OS does not affect RT-tasks;

- RT-tasks cannot use Standard-OS services;

less comfortable than expected revival of the concept:
hypervisor

-21

Example: Posix 1.b RT-extensions to Linux

The standard scheduler of a general purpose operating system can be replaced by

a scheduler that exhibits (soft) real-time properties.

NN] S

POSIX 1.b scheduler

Linux-Kernel

_ driver)
/0O, interrupts

Hardware

Special calls for real-time
as well as standard
operating system calls
available.

Simplifies programming,
but no guarantees for
meeting deadlines are
provided.

-22

Example: RT Linux

RT-tasks cannot use standard OS calls.

User Uger U5 ar Jgar ' '
el el (Al s Co.mm(.erually available from fsmlabs and
3 WindRiver (www.fsmlabs.com)
T v I ¥ * T ¥
Real-tme| |Fed-ime| Rea-tme
LN Kerne ‘ fask tass task [
' ¥ . . A
¥o intarmipl= : : v
r Direct
Harchware Abstraction Layer Real-time scheduler ‘ "::r:';?f
I Intermpts
¥

Syvstern hardware

|

-23

Class 3: Research Systems

Research systems try to avoid limitations of existing real-time and embedded
operating systemes.
= Examples include L4, sel4, NICTA, ERIKA, SHARK

Typical Research questions:
= |ow overhead memory protection,
= temporal protection of computing resources
= RTOS for on-chip multiprocessors
= quality of service (QoS) control (besides real-time constraints)
= formally verified kernel properties

List of current real-time operating systemes:
http://en.wikipedia.org/wiki/Comparison_of real-time_operating_systems

-24

Embedded Operating Systems
FreeRTOS in the Embedded Systems Lab (ES-Lab)

-25

Example: FreeRTOS (ES-Lab)

FreeRTOS (http://www.freertos.org/) is a typical embedded operating system. It is
available for many hardware platforms, open source and widely used in industry. It
is used in the ES-Lab.

"= FreeRTOS is a real-time kernel (or real-time scheduler).

= Applications are organized as a collection of independent
threads of execution.

" Characteristics: Pre-emptive or co-operative operation,
gueues, binary semaphores, counting semaphores,
mutexes (mutual exclusion), software timers,
stack overflow checking, trace recording,

-26

Example: FreeRTOS (ES-Lab)

Typical directory structure (excerpts):

FreeRTOS

Lsource /functions that implement the handling of tasks (threads)
—tasks.c

_ /implementation of linked list data type
—list.c

_queue . c\- . .
—timers.c implementation of queue and semaphore services
—event groﬁBB*q\\\\

_ —p— . . .
croutine.c software timer functionality

directory containing all port specific source files

" FreeRTOS is configured by a header file called FreeRTOSConfig.h that
determines almost all configurations (co-operative scheduling vs. preemptive,
time-slicing, heap size, mutex, semaphores, priority levels, timers, ...)

-27

Embedded Operating Systems
FreeRTOS Task Management

-28

Example FreeRTOS — Task Management

Tasks are implemented as threads.

* The functionality of a thread is implemented in form of a function:
= Prototype:

void ATaskFunction(void *pvParameters) ;
/ \
some name of task function pointer to task arguments

= Task functions are not allowed to return! They can be “killed” by a specific call to a
FreeRTOS function, but usually run forever in an infinite loop.

= Task functions can instantiate other tasks. Each created task is a separate
execution instance, with its own stack.

[Examp/e: void vTaskl(void *pvParameters) ({
volatile uint32 t ul; /* volatile to ensure ul is implemented. */
for(;;) {
. /* do something repeatedly */
for(ul = 0; ul < 10000; ul++) { /* delay by busy loop */ }

Example FreeRTOS — Task Management

* Thread instantiation: a pointer to the function
BaseType t xTaskCreate(TaskFunction t pvTaskCode ,/that implements the task

const char * const chame,\ o
/ uintlé t usStackDepth, a descriptive name for the task

void *pvParameters,

UBaseType_t uxPrioriXy, each task has its own unique
returns pdPASS or pdFAIL TaskHandle t *pxCreatidTask) ; : q
— stack that is allocated by the

depending on the success
P 8 . kernel to the task when the
of the thread creation ,
task is created; the
usStackDepth value
determines the size of the
stack (in words)

the priority at which the
task will execute; priority O
is the lowest priority

task functions accept a parameter

pxCreatedTask can be of type pointer to void; the
used to pass out a handle value assigned to pvParameters is
to the task being created. the value passed into the task.

Example FreeRTOS — Task Management

Examples for changing properties of tasks:

= Changing the priority of a task. In case of preemptive scheduling policy, the ready
task with the highest priority is automatically assigned to the “running” state.

void vTaskPrioritySet(TaskHandle t pxTask, UBaseType t uxNewPriority)

J——

handle of the task whose priority is being modified new priority (O is lowest priority)

= A task can delete itself or any other task. Deleted tasks no longer exist and cannot
enter the “running” state again.

void vTaskDelete(TaskHandle t pxTaskToDelete)

N

handle of the task who will be deleted; if NULL, then the caller will be deleted

Embedded Operating Systems
FreeRTOS Timers

-32

Example FreeRTOS — Timers

* The operating system also provides interfaces to timers of the processor.

= Asan example, we use the FreeRTOS timer interface to replace the busy loop by

a delay. In this case, the task is put into the “blocked” state instead of
continuously running.

void vTaskDelay(TickType t xTicksToDelay) ;
\
time is measured in “tick” units that are defined in the

configuration of FreeRTOS (FreeRTOSConfig.h). The
function pdMS TO TICKS () converts msto “ticks”.

void vTaskl (void *pvParameters) {
for(;;) {
. /* do something repeatedly */
vTaskDelay (pdMS TO TICKS(250)); /* delay by 250 ms */
}

-33

Example FreeRTOS - Timers

" Problem: The task does not execute strictly periodically:

execution of “something”

«

_ —

task in ready state again

t

\ 4

-
<

task moved to run state wait 250ms

[
»

* The parameters to vTaskDelayUntil() specify the exact tick count value at which
the calling task should be moved from the “blocked” state into the “ready” state.
Therefore, the task is put into the “ready” state periodically.

void vTaskl(void *pvParameters) ({
TickType t xLastWakeTime = xTaskGetTickCount()
for(;;) {

. /* do something repeatedly */

vTaskDelayUntil (&xLastWakeTime, pdMS TO TICKS (250)) ;

% /

: = : : S :
automatically updated when task is unblocked time to next unblocking

The xLastWakeTime variable needs to
be initialized with the current tick
count. Note that this is the only time
the variable is written to explicitly.
After this xLastWakeTime is
automatically updated within
vTaskDelayUntil().

Embedded Operating Systems
FreeRTOS Task States

-35

Example FreeRTOS — Task States

What are the task states in FreeRTOS and the corresponding transitions?

= A task that is waiting for an event is said to be
in the “Blocked” state, which is a sub-state of
the “Not Running” state.

= Tasks can enter the “Blocked” state to wait for
two different types of event:

Temporal (time-related) events—the event
being either a delay period expiring, or an
absolute time being reached.

Synchronization events—where the events
originate from another task or interrupt. For
example, queues, semaphores, and mutexes, can
be used to create synchronization events.

Ve
' Not Running

(super state)
Suspended

vTaskSuspend()
called

vTaskResume()
called

not much

used

N

vTaskSuspend()
called

Running

vTaskSuspend() Event

called
Blocked

Blocking API
function called

7

-

36

Example FreeRTOS — Task States

Example 1: Two threads with equal priority.

void vTaskl (void *pvParameters) {
volatile uint32 t ul;
for(;;) {
/* do something repeatedly */
for(ul = 0; ul < 10000; ul++) { }

void vTask2(void *pvParameters) ({
volatile uint32_ t u2;
for(;;) {
/* do something repeatedly */
for(u2 = 0; u2 < 10000; u2++) { }

} }
int main(void) { At time ;[]1, II{asm At time t§ Task2entersI the Rgnning
" " . enters the Running state and executes until time t3 - at
xTaskCreate (vTaskl, "Task 1", 1000, NULL, 1, NULL); state and executes which point Task1 re-enters the
xTaskCreate (vTask2, "Task 2", 1000, NULL, 1, NULL); until time t2 Running state
vTaskStartScheduler () ; "
for(;;); \ S
} Task 1 e i —
Both tasks have priority 1. In this case, Task 2
FreeRTOS uses time slicing, i.e., every as
task is put into “running” state in turn. 1 2 t3 Time

-37

Example FreeRTOS — Task States

Example 2: Two threads with delay timer.

void vTaskl(void *pvParameters) {
TickType_ t xLastWakeTime = xTaskGetTickCount() ;
for(;;) {
. /* do something repeatedly */
vTaskDelayUntil (&xLastWakeTime,pdMS TO TICKS (250)) ;

}
}

void vTask2(void *pvParameters) ({
TickType t xLastWakeTime = xTaskGetTickCount() ;
for(;;) {
. /* do something repeatedly */
vTaskDelayUntil (&xLastWakeTime,pdMS TO TICKS (250)) ;

}

If no user-defined task is in the running state,
FreeRTOS chooses a built-in Idle task with priority
0. One can associate a function to this task, e.g.,
in order to go to low power processor state.

int main(void) {
xTaskCreate (vTaskl,"Task 1",1000,NULL,1,NULL) ;
xTaskCreate (vTask2,"Task 2",1000,NULL,2,NULL) ;
vTaskStartScheduler () ;

for(;;)
}
Task 1
Task 2
ldle B ——————
1 2 13 Time tn

Embedded Operating Systems
FreeRTOS Interrupts

-39

Example FreeRTOS - Interrupts

How are tasks (threads) and hardware interrupts scheduled jointly?

Although written in software, an interrupt service routine (ISR) is a hardware
feature because the hardware controls which interrupt service routine will run,
and when it will run.

Tasks will only run when there are no ISRs running, so the lowest priority interrupt
will interrupt the highest priority task, and there is no way for a task to pre-empt
an ISR. In other words, ISRs have always a higher priority than any other task.

Usual pattern:

= |SRs are usually very short. They find out the reason for the interrupt, clear the
interrupt flag and determine what to do in order to handle the interrupt.

= Then, they unblock a regular task (thread) that performs the necessary processing
related to the interrupt.

= For blocking and unblocking, usually semaphores are used.

-40

Example FreeRTOS - Interrupts

2 - The ISR executes, handles
the interrupting peripheral,
clears the interrupt, then

- unblocks [Task 2.

ISR

Task2

(deferred processing task)

-, 4 - Task 2 enters the

3 - The priority of Task 2 is higher than
the priority of Task 1, so the ISR returns
directly to Task 2, in which the interrupt
processing is completed.

S Blocked state to wait for
B | the next interrupt, allowing
~ipmmmmb | Task 1 to re-enter the

Running state.

———

blocking and
unblocking is
typically
implemented
via semaphores

Task1 —¢ A

| t1

1-Task1 is Running ﬁhen an
interrupt occurs.

t2 13 14

-41

Example FreeRTOS - Interrupts

Tl
[
The semaphore is not
available. .
.50 the task is blocked
waiting for the semaphore
nterruptl
xSemaphoreGiveFromISR() - m

An interrupt occurs. __that
‘gives’ the semaphore._ ..

ask

|:| xSemaphoreTake()

...that now successfully
‘takes’ the semaphore, so it

nterrupt!
xSemaphoreGiveFromISR()

fﬁ]sk
S

temaphﬂreTake{]

__which unblocks the task
(the semaphore is now
available)...

* Is unavailable once more.

ask

[|

The task can now perform its action, when complete
it will once again attempt to ‘take’ the semaphore
which will cause it to re-enter the Blocked state.

Embedded Systems
6. Aperiodic and Periodic Scheduling

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technolo gy Zurich

Where we are. ...

1. Introduction to Embedded Systems :

\

2. Software Development
" 3. Hardware-Software Interface Nk

Software ‘:_':,--——4. Programming Paradigms Hard
. W raraware-
] 5. Embedded Operating Systems 5
N . . / Software
V}*G. Real-time Scheduling

/

7. Shared Resources /
|--8. Hardware Components :
Hardware 9. Power and Energy '
Bt 10. Architecture Synthesis

Basic Terms and Models

Basic Terms

Real-time systems

" Hard: A real-time task is said to be hard, if missing its deadline may cause
catastrophic consequences on the environment under control. Examples are
sensory data acquisition, detection of critical conditions, actuator servoing.

" Soft: A real-time task is called soft, if meeting its deadline is desirable for
performance reasons, but missing its deadline does not cause serious damage to
the environment and does not jeopardize correct system behavior. Examples are
command interpreter of the user interface, displaying messages on the screen.

Schedule

Given a set of tasks J ={J{,J5,...}:
= A schedule is an assignment of tasks to the processor, such that each task is
executed until completion.

= A schedule can be defined as an integer step function o:R — N
where o (t) denotes the task which is executed at time t. If
o(t) =0 then the processor is called idle.

» If o(t) changes its value at some time, then the processor performs a context
switch.

= Each interval, in which o (t) is constant is called a time slice.

= A preemptive schedule is a schedule in which the running task can be arbitrarily
suspended at any time, to assign the CPU to another task according to a
predefined scheduling policy.

Schedule and Timing

A schedule is said to be feasible, if all task can be completed according to a set
of specified constraints.

A set of tasks is said to be schedulable, if there exists at least one algorithm that
can produce a feasible schedule.

Arrival time @; or release time I; is the time at which a task becomes ready for
execution.

Computation time C;is the time necessary to the processor for executing the
task without interruption.

Deadline d;is the time at which a task should be completed.
Start time Sjis the time at which a task starts its execution.
Finishing time f;is the time at which a task finishes its execution.

Schedule and Timing

= Using the above definitions, we have d; > 1; +C;

= Lateness L; = f; —d; represents the delay of a task completion with respect to
its deadline; note that if a task completes before the deadline, its lateness is
negative.

= Tardiness or exceeding time E; = max(0, L;) is the time a task stays active after
its deadline.

= Laxity or slack time X; = d; —a; —C; is the maximum time a task can be delayed
on its activation to complete within its deadline.

Schedule and Timing

" Periodic task 7j: infinite sequence of identical activities, called instances or jobs,
that are regularly activated at a constant rate with period T; . The activation
time of the first instance is called phase ®; .

relative deadline\
first Dj k th

- e

instance - instance

t

o;+(k-)T | \
deadline of period k

arrival time of instance k

instance 1 instance 2

Example for Real-Time Model

task J, task J,

/>{\

10 15 20 25

r r
1 2 d, d,

Computation times: C;=9, C, =12
Start times:s,=0,5,=6

Finishing times: f, = 18, f, = 28
Lateness: L;=-4,[,=1

Tardiness: E,=0, E,=1

Laxity: X; =13, X,=11

Precedence Constraints

= Precedence relations between tasks can be described through an acyclic directed
graph G where tasks are represented by nodes and precedence relations by
arrows. G induces a partial order on the task set.

* There are different interpretations possible:

= All successors of a task are activated (concurrent task execution). We will use this
interpretation in the lecture.

= (One successor of a task is activated:
non-deterministic choice.

-10

Precedence Constraints

Example for concurrent activation:

Image acquisition acgl acq2

Low level image processing edgel edge?2
Feature/contour extraction Shape

Pixel disparities disp

Object size H

Object recognition rec

edge?

Classification of Scheduling Algorithms

With preemptive algorithms, the running task can be interrupted at any time to
assign the processor to another active task, according to a predefined
scheduling policy.

With a non-preemptive algorithm, a task, once started, is executed by the
processor until completion.

Static algorithms are those in which scheduling decisions are based on fixed
parameters, assigned to tasks before their activation.

Dynamic algorithms are those in which scheduling decisions are based on
dynamic parameters that may change during system execution.

-12

Classification of Scheduling Algorithms

" An algorithm is said optimal if it minimizes some given cost function defined
over the task set.

" An algorithm is said to be heuristic if it tends toward but does not guarantee to
find the optimal schedule.

= Acceptance Test: The runtime system decides whenever a task is added to the
system, whether it can schedule the whole task set without deadline violations.

= Example for the ,,domino
effect”, if an acceptance test
wrongly accepted a new task.

Y

Metrics to Compare Schedules
1 n

= Average response time: ﬁ Z(fi — ri)
Nz
" Total completion time: . = max(f;)— m_in(ri)
| |
n
. . 2w (fi—1)
= Weighted sum of response time: ty ==
2 Wi
i=1
= Maximum lateness: L ax :Imax(fi —di)
i
n
= Number of late tasks: Njate = D miss(f;)

0 if f; <d;
1 otherwise

miss(fi):{

Metrics Example

task J, task J,

/>{\

7))\ i

o 5 II'1IOIIII1 IZIOI II25I -
ry ry d1 dz
Average response time: t, = % (18+24) =21
Total completion time: t.=28-0=28
Weighted sum of response times: w; =2,w, =1: t, = 2’183+24 =20
Number of late tasks: Niate =1

Maximum lateness: Lax =1

Metrics and Scheduling Example

In schedule (a), the maximum lateness is minimized, but all tasks miss their deadlines.
In schedule (b), the maximal lateness is larger, but only one task misses its deadline.

dl d2 d3 d4 ds
lu:s lu:z ‘LL3=I lL4=l lLS=2
(a) I D) I3 Ja Js
r) T ! T T T | L | T T T 1 T -
6 2 4 6 8 10 12 14 16 18 20 2 24 2 :
pe—f
Lopa = LI =3
dl d2 d3 d4 ds
lLl=23 lL2=-4 lu:-slu:-s lL5=4
(b) L) J3 J4 Js I
[| { T | i T I [|] { ¥ 1 -
0O 2 4 6 & 10 12 14 16 18 20 2 24 26 ¢
e >

Real-Time Scheduling of Aperiodic Tasks

-17

Overview Aperiodic Task Scheduling

Scheduling of aperiodic tasks with real-time constraints:

= Table with some known algorithms:

Equal arrival times Arbitrary arrival times

non preemptive preemptive

EDD
(Jackson)

Dependent LDF (Lawler) EDF* (Chetto)
tasks \. J

Independent EDF (Horn)

tasks

Earliest Deadline Due (EDD)

Jackson’s rule: Given a set of n tasks. Processing in order of non-decreasing
deadlines is optimal with respect to minimizing the maximum lateness.

-19

Earliest Deadline Due (EDD)

Example 1:
) S I T IV T IR O
c,| | 1| 1| 32
d:| 3110 7| 8|5
ds
J1 Js J 3 J 4

Earliest Deadline Due (EDD)

Jackson’s rule: Given a set of n tasks. Processing in order of non-decreasing
deadlines is optimal with respect to minimizing the maximum lateness.

Proof concept:

L'max = max (L’a, L ’b)
ab

if (Ly > L) then Ly, = fa-dy < fu-d,

ab - . . ’
in both cases: Logge € Ligax

§ » ’ v ab ab
if (L, <« L) then Ly = fp-dy < - d, : ?
ab

-21

Earliest Deadline Due (EDD)

Example 2:

USTR IS I U T B VR I
Cil1]21]11]4]2
dil 25| 4|86

d, dy d, ds dy
Jp(J3) Ja2 Js J4
| | I I | {

Earliest Deadline First (EDF)

Horn’s rule: Given a set of n independent tasks with arbitrary arrival times, any
algorithm that at any instant executes a task with the earliest absolute deadline
among the ready tasks is optimal with respect to minimizing the maximum

lateness.

-23

Earliest Deadline First (EDF)

Example:

Yilds| 05| dglds
a; | 00| 2]3]6
it 221212
d;| 2| 5|4 10]09

Y

]

-24

Earliest Deadline First (EDF)

Horn’s rule: Given a set of n independent tasks with arbitrary arrival times, any
algorithm that at any instant executes the task with the earliest absolute deadline
among the ready tasks is optimal with respect to minimizing the maximum
lateness.

Concept of proof:

For each time interval [t,t +1) it is verified, whether the actual running task is
the one with the earliest absolute deadline. If this is not the case, the task with the
earliest absolute deadline is executed in this interval instead. This operation cannot
increase the maximum lateness.

-25

Earliest Deadline First (EDF)

which task is
executing ?

which task has
earliest deadline ?

slice for
interchange

situation after
interchange

———— o()=4
W G(tE) =2
v : .
T .
= T
iﬁ I I | 4% 1 T T T —r T L -
) 7 8 w 11 12 13 14 15
tg= 6 (a)
o(t) =2
ﬁ—_—_—l G(IE) =4 |
: : —
g -
; i l .
| ‘L + ! | — T
0 3 4 6 0 11 12 13 14 15
t=4 tg b)

-26

remaining worst-
case execution time
of task k

Earliest Deadline First (EDF)

Acceptance test:
= worst case finishing time of task i: f. :t+ch (1)

= EDF guarantee condition: Vi=1..,n t+Y ¢ (t)<d

= algorithm:

Algorithm: EDF guarantee (J, J_..,)
{ J'=Ju{J,.,}; /* ordered by deadline */
t = current time();
f, = t;
for (each J,eJ‘) ({
£, = £, + c;(t);

if (f; > d,) return(INFEASIBLE) ;

}
return (FEASIBLE) ;

Earliest Deadline First (EDF*)

* The problem of scheduling a set of n tasks with precedence constraints

(concurrent activation) can be solved in polynomial time complexity if tasks are
preemptable.

» The EDF* algorithm determines a feasible schedule in the case of tasks with
precedence constraints if there exists one.

= By the modification it is guaranteed that if there exists a valid schedule at all
then

= 3 task starts execution not earlier than its release time and not earlier than the
finishing times of its predecessors (a task cannot preempt any predecessor)

= 3all tasks finish their execution within their deadlines

-28

EDF*

-29

EDF*

-30

Earliest Deadline First (EDF*)

Modification of deadlines:
» Task must finish the execution time within its deadline.
= Task must not finish the execution later than the maximum start time of its

Successor.
task b depends on task a: ‘Ja —> Jb
f,<d,
fa < db Cb
= Solution: di*: min(di,min(dj*—Cj :Ji —)JJ)) ;

Earliest Deadline First (EDF*)

Modification of release times:
= Task must start the execution not earlier than its release time.

= Task must not start the execution earlier than the minimum finishing time of its

predecessor.
task b depends on task a: J a J b
] Sbp 2T b l
{ } l
sp2T,+C, ; !
) d a Clb
: * _ * :
= Solution: ri*=max(rj, max(r; *+C; : J; > J;)

-32

Earliest Deadline First (EDF*)

Algorithm for modification of release times:

1.
2.

3.
4.

For any initial node of the precedence graph set I‘i* =1

Select a task j such that its release time has not been modified but the release times of
all immediate predecessors i have been modified. If no such task exists, exit.

set Ij*=max(r;, max(r,*+C; : J; - J;))

Return to step 2

Algorithm for modification of deadlines:

1.
2.

For any terminal node of the precedence graph set di* = di

Select a task i such that its deadline has not been modified but the deadlines of all
immediate successors j have been modified. If no such task exists, exit.

Set di*:min(di,min(dj *=C; i —>Jj))
Return to step 2

-33

Earliest Deadline First (EDF*)

Proof concept:

Show that if there exists a feasible schedule for the modified task set under EDF
then the original task set is also schedulable. To this end, show that the original

task set meets the timing constraints also. This can be done by using i1 |
d;*<d; ;we only made the constraints stricter.

Show that if there exists a schedule for the original task set, then also for the
modified one. We can show the following: If there exists no schedule for the
modified task set, then there is none for the original task set. This can be done by
showing that no feasible schedule was excluded by changing the deadlines and
release times.

In addition, show that the precedence relations in the original task set are not
violated. In particular, show that

= 3 task cannot start before its predecessor and

= atask cannot preempt its predecessor.

-34

Real-Time Scheduling of Periodic Tasks

-35

Overview

Table of some known preemptive scheduling algorithms for periodic tasks:

Deadline equals Deadline smaller than
period period

static RM DM

priority rate-monotonic (deadline-monotonic)

EDF

dynamic EDF*

priority

-36

Model of Periodic Tasks

= Examples: sensory data acquisition, low-level actuation, control loops, action
planning and system monitoring.

= When an application consists of several concurrent periodic tasks with individual
timing constraints, the OS has to guarantee that each periodic instance is
regularly activated at its proper rate and is completed within its deadline.

= Definitions:

I :denotes a set of periodic tasks
7; :denotes a periodic task
7j,j : denotes the jth instance of task i
i f di j : denote the release time, start time, finishing time, absolute
’ " deadline of the jth instance of task i
D; : denotes the phase of task i (release time of its first instance)
D : denotes the relative deadline of task i
T, denotes the period of task i

lij» S ij

-37

Model of Periodic Tasks

= The following hypotheses are assumed on the tasks:

= The instances of a periodic task are regularly activated at a constant rate. The
interval Tj between two consecutive activations is called period. The release times
satisfy

iy =0 +(j—1JT;

= Allinstances have the same worst case execution time C;

= Allinstances of a periodic task have the same relative deadline Dj. Therefore, the
absolute deadlines satisfy

di,j =@ +(j-1T; + D

= Often, the relative deadline equals the period D; =T, (implicit deadline), and

therefore _
dij =P+ T

Model of Periodic Tasks

= The following hypotheses are assumed on the tasks (continued):

= All periodic tasks are independent; that is, there are no precedence relations and
no resource constraints.

= No task can suspend itself, for example on I/O operations.
= All tasks are released as soon as they arrive.
= All overheads in the OS kernel are assumed to be zero.

= Example:
L
TiA ‘
Dii Dy i 7i 3
ot
i1 «—— Tl Siz fis
Ci

-39

Rate Monotonic Scheduling (RM)

= Assumptions:

Task priorities are assigned to tasks before execution and do not change over time
(static priority assignment).

RM is intrinsically preemptive: the currently executing job is preempted by a job of
a task with higher priority.

= Deadlines equal the periods D; =T, .

Rate-Monotonic Scheduling Algorithm: Each task is assigned a priority. Tasks with
higher request rates (that is with shorter periods) will have higher priorities. Jobs of
tasks with higher priority interrupt jobs of tasks with lower priority.

-40

Periodic Tasks

Example: 2 tasks, deadlines = periods, utilization = 97%

RM

T N P L T T S

00 dsb b3
SR TUR SO :..:,../:..;ime.o.verﬂow._i.“;......i..-:...:__..:...:

0.3

EDF |

-41

Rate Monotonic Scheduling (RM)

Optimality: RM is optimal among all fixed-priority assignments in the sense that
no other fixed-priority algorithm can schedule a task set that cannot be
scheduled by RM.

" The proofis done by considering several cases that may occur, but the main
ideas are as follows:
= Acritical instant for any task occurs whenever the task is released
simultaneously with all higher priority tasks. The tasks schedulability can easily

be checked at their critical instants. If all tasks are feasible at their critical
instant, then the task set is schedulable in any other condition.

= Show that, given two periodic tasks, if the schedule is feasible by an arbitrary
priority assignment, then it is also feasible by RM.

= Extend the result to a set of n periodic tasks.

- 42

Proof of Critical Instance

Definition: A critical instant of a task is the time at which the release of a job

will produce the largest response time.

Lemma: For any task, the critical instant occurs if a job is simultaneously
released with all higher priority jobs.

Proof sketch: Start with 2 tasks 7, and z,.

Response time of a job of 7, is delayed by jobs of 7, of higher priority:

7, | | | |

-43

Proof of Critical Instance

Delay may increase if 7, starts earlier:

n b | | |

o - -

) C,+3C, .

Maximum delay achieved if 7, and 7, start simultaneously.

Repeating the argument for all higher priority tasks of some task 7, :

The worst case response time of a job occurs when it

is released simultaneously with all higher-priority jobs.

- 44

Proof of RM Optimality (2 Tasks)

We have two tasks z;, 7, with periods T, < T..
Define F= |_T2/T1J: the number of periods of z; fully contained in T,

Consider two cases A and B:

Case A: Assume RM is not used =2 prio(z,) is highest:

T
al]
—c 7.
2
*, |- — i
CZ
Schedule is feasible if C,+C, < 7, and (,< 7, (A)

-45

Proof of RM Optimality (2 Tasks)

Case B: Assume RM is used =2 prio(z;,) is highest:
[;\ = ;\
C, - T,FT,

TZT_—_—f_-i

!
FT, T,

Schedulable is feasible if
FC+Cy+min(T,—FT, C,)< 7T, and C; < T, (B)

We need to show that (A) = (B): C,+C, < 7T, =C, < T,
C+C, < I, => FC+C, S FC+FCG, S FT =
FC,+C,+min(T,~FT,, C,) < F T, +min(T,—FT,, C,) < min(T,, C,+FT,) <T,

Given tasks 7, and 7, with T, < T,, then if the schedule is feasible by an
arbitrary fixed priority assignment, it is also feasible by RM.

-46

Proof of RM Optimality (2 Tasks)

Case B: Assume RM is used =2 prio(z;,) is highest:

@ G I

1 ~— T,=FT, =
2, : T >t
FT, T,
Schedulak]e is feasible if
C,+min(T,—FT,, C;) < 7T, and C,; < T, (B)

We need to show that (A) = (B): C,+C, < 7T, =C, < T,
C+C, < I, => FC+C, S FC+FCG, S FT =
FC,+C,+min(T,~FT,, C,) < F T, +min(T,—FT,, C,) < min(T,, C,+FT,) <T,

Given tasks 7, and 7, with T, < T,, then if the schedule is feasible by an
arbitrary fixed priority assignment, it is also feasible by RM.

-47

Proof of RM Optimality (2 Tasks)

Case B: Assume RM is used =2 prio(z;,) is highest:
) (=) —
’ N~ =

T,—

R A

FT, T,

Schedulahle is feasible if
min(Tz—FTl, C,))<7T,andC, < T, (B)

We need to show that (A) = (B): C,+C, < 7T, =C, < T,
C+C, < I, => FC+C, S FC+FCG, S FT =
FC,+C,+min(T,~FT,, C,) < F T, +min(T,—FT,, C,) < min(T,, C,+FT,) <T,

Given tasks 7, and 7, with T, < T,, then if the schedule is feasible by an
arbitrary fixed priority assignment, it is also feasible by RM.

-48

Proof of RM Optimality (2 Tasks)

Case B: Assume RM is used =2 prio(z;,) is highest:

1 ~ T,—fL
FT T,

1

Schedulahle is feasible-if
C,4min(T,—FT,, C,) < 7, and C, < T, (B)

We need to show that (A) = (B): C,+C, < 7T, =C, < T,
C+C, < I, => FC+C, S FC+FCG, S FT =
FC,+C,+min(T,~FT,, C,) < F T, +min(T,—FT,, C,) < min(T,, C,+FT,) <T,

Given tasks 7, and 7, with T, < T,, then if the schedule is feasible by an
arbitrary fixed priority assignment, it is also feasible by RM.

-49

Proof of RM Optimality (2 Tasks)

Case B: Assume RM is used =2 prio(z;,) is highest:
[;\ = ;\
C, - T,FT,

TZT_—_—f_-i

!
FT, T,

Schedulable is feasible if
FC+Cy+min(T,—FT, C,)< 7T, and C; < T, (B)

We need to show that (A) = (B): C,+C, < 7T, =C, < T,
C+C, < I, => FC+C, S FC+FCG, S FT =
FC,+C,+min(T,~FT,, C,) < F T, +min(T,—FT,, C,) < min(T,, C,+FT,) <T,

Given tasks 7, and 7, with T, < T,, then if the schedule is feasible by an
arbitrary fixed priority assignment, it is also feasible by RM.

-50

Admittance Test

-51

Rate Monotonic Scheduling (RM)

Schedulability analysis: A set of periodic tasks is schedulable with RM if

n
Ci (1/n) :
< _ i
> L <nl2 1 T 1
i=1 i
- X 5 ® < o «
: - : .. 1 A ©® ~ ~ ¥ Q@ ¥ W
This condition is sufficient but not necessary. ©S S S S5 & S o
0.8
0.6-
n 0.4-
Ci
The term U:ZT— denotes the processor 0.2
i:l i I 1 I I 1 1 |)
1 2 3 4 5 6 7 8 n

utilization factor U which is the fraction of processor
time spent in the execution of the task set.

-52

Proof of Utilization Bound (2 Tasks)

We have two tasks 7;, 7, with periods T, < T..
Define F= |_T2/T1J: number of periods of z, fully contained in T,

Proof Concept: Compute upper bound on utilization U such that the task set is
still schedulable:

= assign priorities according to RM;

= compute upper bound U, by increasing the computation time C, to just
meet the deadline of z,; we will determine this limit of C, using the results
of the RM optimality proof.

" minimize upper bound with respect to other task parameters in order to
find the utilization below which the system is definitely schedulable.

Proof of Utilization Bound (2 Tasks)

As before: | |
20— — —
C, - T,FT, |
7, |_—_—_- i t
FT, T,

Schedulable if FC,+C,+min(T,—FT,, C,)< 7, and C,; < T,

Utilization: /
2 p—
2

[— Cy | 1 . To—FCi;—min{T>—FT,,C1}
T, | T5
1 | Cl (TQ—FTl) Tl mln{TQ—FTl,Cl}
| Th7>

Proof of Utilization Bound (2 Tasks)

U 4 | Co (C4 | Tg—FCl—min{Tg—FTl,Cl}
Ty N Ty T Ty 1o
L 1 | Cl (TQ—FTl)—Tl min{Tg—FTl,Cl}
- I

1115

-55

Proof of Utilization Bound (2 Tasks)

Minimize utilization bound w.r.t C;:
» |f C, < T,—FT,then U decreases with increasing C,
» |If T,—FT, < C, then U decreases with decreasing C,
" Therefore, minimum U is obtained with C, = T,—FT:

. (To—FT,)* =T, (T2—FT1)}
U_ 1_|_ 2 1 Tl,le 2 1

=1+ (B -F? - (R - F)

We now need to minimize w.r.t. G =T,/T, where F=|.T,/T,]and T,< T,. As Fis
integer, we first suppose that it is independent of G = T,/T,. Then we obtain

1 2 G—F F
U="0(%-F)?+F) =L

-56

Proof of Utilization Bound (2 Tasks)

Minimizing U with respect to G yields
20G(G-F)— (G-F)3?2—F=G>— (F2+F)=0

If we set F=1, then we obtain

G=7=V2 U=2v2-1)

It can easily be checked, that all other integer values for F lead to a larger upper
bound on the utilization.

Deadline Monotonic Scheduling (DM)

= Assumptions are as in rate monotonic scheduling, but deadlines may be smaller
than the period, i.e.

C, <D <T,

Algorithm: Each task is assigned a priority. Tasks with smaller relative deadlines will
have higher priorities. Jobs with higher priority interrupt jobs with lower priority.

= Schedulability Analysis: A set of periodic tasks is schedulable with DM if
n -

Z& < n(21/n —1)

i Di

This condition is sufficient but not necessary (in general).

Deadline Monotonic Scheduling (DM) - Example

U=0.874 anﬁ =1.08> n(21/”—1)=0.757
=1~
TA 4
= = l
Ty 1 10 l I
& 0
3
i

1 10
4

e L

Deadline Monotonic Scheduling (DM)

There is also a necessary and sufficient schedulability test which is computationally
more involved. It is based on the following observations:

= The worst-case processor demand occurs when all tasks are released
simultaneously; that is, at their critical instances.

" For each task i, the sum of its processing time and the interference imposed
by higher priority tasks must be less than or equal to D; .

= A measure of the worst case interference for task i can be computed as the
sum of the processing times of all higher priority tasks released before some
time t where tasks are ordered accordingtom<n< D_ <D, :

! Jj“]cj

j=1 "]

-60

Deadline Monotonic Scheduling (DM)

* The longest response time R; of a job of a periodic task i is computed, at the
critical instant, as the sum of its computation time and the interference due to
preemption by higher priority tasks:

Ri =Ci+|i

* Hence, the schedulability test needs to compute the smallest R;that satisfies

for all tasks i. Then, R. < D, must hold for all tasks i.

" |t can be shown that this condition is necessary and sufficient.

-61

Deadline Monotonic Scheduling (DM)

The longest response times R; of the periodic tasks i can be computed iteratively
by the following algorithm:

Algorithm: DM guarantee (I')
{ for (each 7t €l’) {
I =20;
do {
R=1I4+ C;;
if (R > D;) return(UNSCHEDULABLE) ;
I = Zj=1,...,(i—1)|_R/Tj_| C,;
} while (I + C; > R);
}
return (SCHEDULABLE) ;

-62

DM Example

Example:
= Task1l:C;=1T;=4;D; =3
* Task2:C, =1;T, =5;D, =4
" Task3:C3=2;T3=6;D3=5
= Task4:C,=1T,=11,D, =10

= Algorithm for the schedulability test for task 4:

= Step O: R4:1
= Stepl: R; =5
= Step 2: R4:6
= Step3: Ry=7/
= Step4: Ry =9
= Step5: R, =10

-63

DM Example

n
Zc—i_ -1.08> n(2"-1)=0.757

U=0.874
=1 D'
Ty |
1 10
| | |
1 10 o
T3 4 ‘
1 10
T4 4 ‘
1 10

-64

EDF Scheduling (earliest deadline first)

= Assumptions:
= dynamic priority assignment
" intrinsically preemptive

= Algorithm: The currently executing task is preempted whenever another
periodic instance with earlier deadline becomes active.

di,j ICDi +(J _l)Ti + Di

= Optimality: No other algorithm can schedule a set of periodic tasks if the set that
can not be scheduled by EDF.

" The proof is simple and follows that of the aperiodic case.

-65

Periodic Tasks

Example: 2 tasks, deadlines = periods, utilization = 97%

RM

- 66

EDF Scheduling

A necessary and sufficient schedulability test for D; =T, :

n

C.
A set of periodic tasks is schedulable with EDF if and only if Z?' =U<1

=1 T

n C
Theterm U = ZT—' denotes the average processor utilization.
Ey

EDF Scheduling

= |f the utilization satisfiesU >1, then there is no valid schedule: The total
demand of computation time ininterval T =T,-T,-...- T is

Zn:&T =UT>T

=1 '
and therefore, it exceeds the available processor time in this interval.
= |f the utilization satisfies U <1 , then there is a valid schedule.

We will proof this fact by contradiction: Assume that deadline is missed at some
time t, . Then we will show that the utilization was larger than 1.

EDF Scheduling

= |fthe deadline was missed at t, then define t; as a time before t, such that (a) the processor is
continuously busy in [t;, t,] and (b) the processor only executes tasks that have their arrival

time AND their deadlinein [t, t,].

= Why does such a time t, exist? We find such a t, by starting at t, and going backwards in time,
always ensuring that the processor only executed tasks that have their deadline before or at t, :

Because of EDF, the processor will be busy shortly before t, and it executes on the task that has
deadline at t,.
Suppose that we reach a time such that shortly before the processor works on a task with deadline
after t, or the processor is idle, then we found t;: We know that there is no execution on a task with
deadline after t, .

= But it could be in principle, that a task that arrived before t, is executing in [t, t,].

= |f the processor is idle before t,, then this is clearly not possible due to EDF (the processor is not idle, if
there is a ready task).

= |fthe processor is not idle before t;, this is not possible as well. Due to EDF, the processor will always
work on the task with the closest deadline and therefore, once starting with a task with deadline after t,
all task with deadlines before t, are finished.

EDF Scheduling

= Within the interval tl,tz] the total computation time demanded by the periodic
tasks is bounded by

Co(t, 1) = Zn‘,rz —l C S_Zn:tz.ljtl Ci = (tz _tlp

number of complete periods
of task i in the interval

= Since the deadline at time t, is missed, we must have:

t,—t, <C,(t,t,)<{t, -t J = U >1<\\§

-72

Periodic Task Scheduling

Example: 2 tasks, deadlines = periods, utilization = 97%

RM

-73

Real-Time Scheduling of Mixed Task Sets

-74

Problem of Mixed Task Sets

In many applications, there are aperiodic as well as periodic tasks.

" Periodic tasks: time-driven, execute critical control activities with hard timing
constraints aimed at guaranteeing regular activation rates.

" Aperiodic tasks: event-driven, may have hard, soft, non-real-time requirements
depending on the specific application.

= Sporadic tasks: Offline guarantee of event-driven aperiodic tasks with critical
timing constraints can be done only by making proper assumptions on the

environment; that is by assuming a maximum arrival rate for each critical event.

Aperiodic tasks characterized by a minimum interarrival time are called
sporadic.

-75

Background Scheduling

Background scheduling is a simple solution for RM and EDF:

" Processing of aperiodic tasks in the background, i.e. execute if there are no
pending periodic requests.

= Periodic tasks are not affected.

= Response of aperiodic tasks may be prohibitively long and there is no possibility to
assign a higher priority to them.

= Example:
RM
—— Periodic Tasks ﬂ
High-Priority Queue @
FCFS

— Aperiodic Tasks

Low-Priority Queue

Background Scheduling

Example (rate monotonic periodic schedule):

T
12
aperiodic l A2
requests -
l | I I I] l T

Rate-Monotonic Polling Server

" Jdea: Introduce an artificial periodic task whose purpose is to service aperiodic
requests as soon as possible (therefore, “server”).

" Function of polling server (PS)

= Atregularintervals equal to Tg, a PS task is instantiated. When it has the highest
current priority, it serves any pending aperiodic requests within the limit of its
capacity C..

" |f no aperiodic requests are pending, PS suspends itself until the beginning of the

next period and the time originally allocated for aperiodic service is not preserved
for aperiodic execution.

" |ts priority (period!) can be chosen to match the response time requirement for
the aperiodic tasks.

= Disadvantage: If an aperiodic requests arrives just after the server has
suspended, it must wait until the beginning of the next polling period.

-78

Rate-Monotonic Polling Server

Example:

server has current
highest priority
and checks the
gueue of tasks

Ci| T,
T l 4
T2 2 6

Server
C,=2
T,=5

aperiodic 2 |
requests

12 14 16 IR 20 22 24

0 2 4

remaining budget is lost

12 14 16 18 20 22 24

-79

Rate-Monotonic Polling Server

Schedulability analysis of periodic tasks:

" The interference by a server task is the same as the one introduced by an
equivalent periodic task in rate-monotonic fixed-priority scheduling.

= A set of periodic tasks and a server task can be executed within their deadlines if

n C.
%—FZ& < (n+1)(21/(”+1)—1)

Ts =1 Ti

= Again, this test is sufficient but not necessary.

-80

Rate-Monotonic Polling Server

Guarantee the response time of aperiodic requests:

= Assumption: An aperiodic task is finished before a new aperiodic request
arrives.

= Computation time C,, deadline D,

= Sufficient schedulability test: ~

If the server task
has the highest

priority there is a

necessary test also.

)

The aperiodic task arrives
shortly after the activation
of the server task.

Maximal number of
necessary server periods.

-81

EDF — Total Bandwidth Server

Total Bandwidth Server:
= When the kth aperiodic request arrives at time t = r,, it receives a deadline

dk = maX(rk : dk—l) +8—k

S

where C, is the execution time of the request and U, is the server utilization
factor (that is, its bandwidth). By definition, d,=0.

" Once a deadline is assigned, the request is inserted into the ready queue of
the system as any other periodic instance.

-82

EDF — Total Bandwidth Server

Example:
U 0 =0.75, U,=0.25 U 0 +U, =1
R l ‘
0 6 ;2 ;8 24

aperiodic l

requests i -

0] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EDF

— Total Bandwidth Server

Schedulability test:

Given a set of n periodic tasks with processor utilization U, and a total bandwidth
server with utilization U, the whole set is schedulable by EDF if and only if

U,+Ug <1

Proof:

In each interval of time [t,,t,], if C . is the total execution time demanded by
aperiodic requests arrived at t; or later and served with deadlines less or equal to

t, then

Cape < (t2 _ti)Us

-85

EDF — Total Bandwidth Server

If this has been proven, the proof of the schedulability test follows closely that of the
periodic case.

Proof of lemma:

=U, ﬁ:(dk —max(r,,d,_,))

k:kl

<U, (dk2 — max(r, , dkl—l))
<U,(t, -t,)

-86

Embedded Systems

6a. Example Network Processor

Lothar Thiele

m Swiss Federal 6a- 1 Computer Engineering #
Institute of Technology a- and Networks Laboratory

Software-Based NP

Network Processor:
Programmable Processor Optimized to
Perform Packet Processing

» How to Schedule the CPU cycles meaningfully?
= Differentiating the level of service given to different flows
= Each flow being processed by a different processing function

m Swiss Federal 6a.- 2 Computer Engineering
Institute of Technology a- and Networks Laboratory

Our Model — Simple NP

Real-Time Flows (RT) <

Best Effort Flows (BE) < Processor

’\Z packet
/

» Real-time flows have deadlines which must be met

» Best effort flows may have several QoS classes and
should be served to achieve maximum throughput

m Swiss Federal 6a.- 3 Computer Engineering
Institute of Technology a- and Networks Laboratory

Task Model

» Packet processing
functions may be
represented by directed
acyclic graphs

» End-to-end deadlines for
RT packets

DD

security

voice processing

m Swiss Federal .
Institute of Technology a

Architecture

i

Real-time
Flows
 Packet Processing functions

~
H,,}L
[

|

AT

Output ports

I/

/

(=

N\
Packet
Scheduler

Input ports

2
T L
]
HJ
|

.

HJ

2\
|

ﬁBef;LSJL"”] {CPU Scheduler}

m Swiss Federal 6 Computer Engineering
Institute of Technology a->5 and Networks Laboratory

CPU Scheduling

» First Schedule RT, then BE (background scheduling)
= QOverly pessimistic

» Use EDF Total Bandwidth Server

= EDF for Real-Time tasks
» Use the remaining bandwidth to server Best Effort Traffic

= WFQ (weighted fair queuing) to determine which best effort
flow to serve; not discussed here ...

Computer Engineering

Swiss Federal
m Institute of Technology 6a-6 and Networks Laboratory

CPU Scheduling

Real-time
Flows

Packet Processing functions

F :/,4 . N
/Zip L 3
F S
R ©
- / - o— S LL
= Fs 0 B
‘")
g5 >—) § "o
° 2
F . Assign Deadline using
:!} remaining CPU bandwidth
’ /

Best effort
flows

One Packet out J

m Swiss Federal 62 7 Computer Engineering #Z&#g
Institute of Technology a- and Networks Laboratory

CPU Scheduling

» AsS discussed, the basis is the TBS:

computation demand of best effort packet

_ dp = max{rk,dk1}>ck/U§\
deadline of best effort packet \

utilization by real-time flows
arrival of best effort packet

» But: utilization depends on time (packet streams) !
= Just taking upper bound is too pessimistic

= Solution with time dependent utilization is (much) more
complex — BUT IT HELPS ...

m Swiss Federal 6a.- 8 Computer Engineering
Institute of Technology a- and Networks Laboratory

CPU Scheduling

» Before
-2
x10 | | : | | : :

20 . i

sk @) plain best effort + EDF scheme IR

Sl 1 I al | 1| ‘ JTJ.IL.”]

14

1.2[.

B | | end-to-end

e packet delay

08 1 | [sec]

06 .

oa b NRT fip flow =

x 10
02r RT video flow ' N ' ' ! ! ' . T f
ool 1, _
: : Lak plain best effort + EDF scheme i
1.0 NRT fip flow s
deadline 0.8 end-to-end
packet delay
RT flows 0.6 [sec]

0.4
0.2
0.0

m Swiss Federal 6a- Computer Engineering
Institute of Technology a- and Networks Laboratory

CPU Scheduling

» After

deadline
2.0 5 RT flows
1z ©) approximation with two segments -
I 1
1.6
1.4 <
1.2 T T I T I |1 I T T
1.0[]]]
oab approximation with two segments
0&[
04
0.2 }
0.0
1 | -
2 .0 05 1.0 . 1.5 . .2'0 y NAT fip flow |
simulation time [sec] \
]] 1 |] 1 II?T vjdelo ﬂGW I—--"-r 1] 1 H

Q.00 0.05 010 015 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
simulation time [sec]

m Swiss Federal 6a. - 10 Computer Engineering
Institute of Technology a- and Networks Laboratory

Embedded Systems

7. Shared Resources

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Where we are. ...

1. Introduction to Embedded Systems :

\

2. Software Development
" 3. Hardware-Software Interface L

Soft /" _.}--4. Programming Paradigms
ortwares.. | , » Hardware-
‘] 5. Embedded Operating Systems 5
s / Software

,\6 Real-time Scheduling ;
V>\‘7. Shared Resources /

.-8. Hardware Components ;
Hardware < | 9.Power and Energy '
|- 10. Architecture Synthesis

Ressource Sharing

Resource Sharing

» Examples of shared resources: data structures, variables, main memory area,
file, set of registers, I/O unit,
= Many shared resources do not allow simultaneous accesses but require mutual

exclusion. These resources are called exclusive resources. In this case, no two
threads are allowed to operate on the resource at the same time.

* There are several methods available to protect exclusive resources, for example

disabling interrupts and preemption or dispatching

using concepts like semaphores activation
and mutex that put threads into the
blocked state if necessary.

termination

preemption

signa blocked

Protecting Exclusive Resources using Semaphores

= Each exclusive resource R; ¥ J2
must be protected by a different — reSOUrCe —
semaphore S; . Each critical = —
section operating on a resource | waitSy) 1 7 1 wait(Sy)
must begin witha wait (S;) wse 1 N e
primitive and end with a | e R
signal (S;) primitive. ' galS) . anal(S,

B e o wm o wr o owm o omm T e wr wr o wm o wm

= All tasks blocked on the same resource are kept in a queue associated with the
semaphore. When a running task executes a wait on a locked semaphore, it
enters a blocked state, until another tasks executes a signal primitive that
unlocks the semaphore.

Example FreeRTOS (ES-Lab)

To ensure data consistency is maintained at all times access to a resource that is
shared between tasks, or between tasks and interrupts, must be managed using a
‘mutual exclusion’ technique.

One possibility is to disable all interrupts:

taskENTER CRITICAL() ;
. /* access to some exclusive resource */
taskEXIT CRITICAL() ;

This kind of critical sections must be kept very short, otherwise they will adversely
affect interrupt response times.

Example FreeRTOS (ES-Lab)

Another possibility is to use mutual exclusion: In FreeRTOS, a mutex is a special type of
semaphore that is used to control access to a resource that is shared between two or
more tasks. A semaphore that is used for mutual exclusion must always be returned:

= When used in a mutual exclusion scenario, the mutex can be thought of as a
token that is associated with the resource being shared.

" For a task to access the resource legitimately, it must first successfully ‘take’
the token (be the token holder). When the token holder has finished with the
resource, it must ‘give’ the token back.

= Only when the token has been returned can another task successfully take the
token, and then safely access the same shared resource.

Example FreeRTOS (ES-Lab)

The mutex used to
guard the resource

(@]

({askA
\.

(ﬂisk B

-

N AN

The resource being
guarded by the mutex

r-——/\——“.-‘
!

I‘-

\ Guarded [
/ resource

Two tasks each want to access the resource, but a task is not permitted to access the
resource unless it is the mutex (token) holder.

ask A
xSemaphoreGive() r___/___-;

\ /
\ Guarded {
/ resource

Task B opts to enter the Blocked state to wait for the mutex - allowing Task A to run again.
Task A finishes with the resource so ‘gives’ the mutex back.

I,

ask A
xSemaphoreTake()

N
J

ask B

N

J

/\ \—
\ Guarded f

< resource \

Task A attempts to take the mutex. Because the mutex is available Task A successfully
becomes the mutex holder so is permitted o access the resource.

(Task A A A
\l - ———.r
\ /) Guarded [
ﬁ \ Z resource >
ask B ~ -
xSemaphoiTake[) IL//\\ll
Task A giving the mutex back causes Task B to exit the Blocked state (the mutex is now
available). Task B can now successfully obtain the mutex, and having done so is permitted to
access the resource.

)
)

—

D\

(ﬁisk A
N

N
J

(ﬁisk B

xSemaphoreTake()

\

N\
Guarded
x / resource

Task B executes and attempts to take the same mutex. Task A still has the mutex so the
attempt fails and Task B is not permitted to access the guarded resource.

(ﬁiskA \
A\
\ Guarded /

@\Esw | < / oo S

xSemaphoreGive() |/\\|I
/

When Task B finishes accessing the resource it too gives the mutex back. The mutex is now
once again available to both tasks.

Example FreeRTOS (ES-Lab)

some defined constant for infinite timeout;
otherwise, the function would return if the

Example: create mutex semaphore mutex was not available for the specified time
/ /
SemaphoreHandle t xMutex; void vTaskl(void *pvParameters) ({
for(;;) {
int main(void) {
xMutex = xSemaphoreCreateMutex() ; xSemaphoreTake (xMutex,portMAX DELAY) ;
if(xMutex != NULL) { ... /* access to exclusive resource */
xTaskCreate (vTaskl, “Taskl",1000,NULL,1,NULL) ; xSemaphoreGive (xMutex) ;
xTaskCreate (vTask2,“Task2",1000,NULL,2,NULL) ; ...}
vTaskStartScheduler() ; }
}
for(;;:); void vTask2(void *pvParameters) ({
} for(;;) {
xSemaphoreTake (xMutex,portMAX DELAY) ;
/* access to exclusive resource */
xSemaphoreGive (xMutex) ;
}
}
7-9

Ressource Sharing
Priority Inversion

-10

Priority Inversion (1) = | _ =

L owait(Sy) 1 7 L wail(S,) |
I P A2 :
. . : use : : use :
Unavoidable blocking: | resource | | resource |
: Ry | . Ry
signal(Sg) ! signal(Sy) E

dispatching

B normal cxecution

activation termination

critical section

@u

]| blocked
e e

Priority Inversion (2)

Priority Inversion:

normal execution

critical section

J 1 blocked

[But97, 5.184]

-12

Solutions to Priority Inversion

Disallow preemption during the execution of all critical sections. Simple approach,
but it creates unnecessary blocking as unrelated tasks may be blocked.

EEEE normal execution

critical section

T J, blocked

L]
]
.
. []
" v]
" ' [
J i ' ¥
L] i 1 R R
2 i i i e
T T T
[i ' ' i
L] L] i [} a
[W i ' '
" ' 1 1 "
i . 1 1 M
i
J RPTEEE om-.-:-:’a-zﬁi%%ﬁm ﬁ““+¢m¢¢¢ﬁﬁ“;ggg%+++»hé i
3 A- A R B W-"Wf"ﬂﬁ“‘mﬂff gggp»»x«&-&w%f& %

Resource Access Protocols

Basic idea: Modify the priority of those tasks that cause blocking. When a task J,
blocks one or more higher priority tasks, it temporarily assumes a higher priority.

Specific Methods:

Priority Inheritance Protocol (PIP), for static priorities

Priority Ceiling Protocol (PCP), for static priorities

Stack Resource Policy (SRP),
for static and dynamic priorities

others ...

Priority Inheritance Protocol (PIP)

Assumptions:

n tasks which cooperate through m shared resources; fixed priorities, all
critical sections on a resource begin witha wait (S.) and end with a
signal (S,;) operation.

Basic idea:

When a task J; blocks one or more higher priority tasks, it temporarily assumes
(inherits) the highest priority of the blocked tasks.

Terms:

We distinguish a fixed nominal priority P; and an active priority p; larger or
equal to P.. Jobs J,, ...J, are ordered with respect to nominal priority where J,
has highest priority. Jobs do not suspend themselves.

-15

Priority Inheritance Protocol (PIP)

Algorithm:

Jobs are scheduled based on their active priorities. Jobs with the same priority are
executed in a FCFS discipline.

When a job J; tries to enter a critical section and the resource is blocked by a lower
priority job, the job J; is blocked. Otherwise it enters the critical section.

When a job J;is blocked, it transmits its active priority to the job J, that holds the
semaphore. J, resumes and executes the rest of its critical section with a priority
p,=p; (it inherits the priority of the highest priority of the jobs blocked by it).

When J, exits a critical section, it unlocks the semaphore and the highest priority
job blocked on that semaphore is awakened. If no other jobs are blocked by J,,
then p, is set to P,, otherwise it is set to the highest priority of the jobs blocked by
J,.

Priority inheritance is transitive, i.e. if 1 is blocked by 2 and 2 is blocked by 3, then
3 inherits the priority of 1 via 2.

-16

Priority Inheritance Protocol (PIP)

Example:

normal execution direct blocklng

itical ti
critical section / push-through blocking

Direct Blocking: higher-priority job tries to acquire a resource held by a lower-priority job

Push-through Blocking: medium-priority job is blocked by a lower-priority job that has
inherited a higher priority from a job it directly blocks

-17

Priority Inheritance Protocol (PIP)

Example with nested critical sections:

priority does not change

normal execution

critical section

[But97, S. 189]

-18

Priority Inheritance Protocol (PIP)

Example of transitive priority inheritance:

J1 blocked by J2, J2 blocked by J3.
J3 inherits priority from J1 via J2.

normal execution

critical section

ab | a

[But97, S. 190]

Priority Inheritance Protocol (PIP)

Still a Problem: Deadlock

.... but there are other protocols like the Priority Ceiling Protocol ...

J)
normal execution
critical section E E
blocked on S — —
/ blockedon S , , .
wait(S ,) wait(Sy)
I | [
J wait(S) wail(S ,)
J 5 b signal(Sp) signal(S,)
ty 4 ts signal(S ,) signal(Sp)

[But97, S. 200]

The MARS Pathfinder Problem (1)

“But a few days into the mission, not long after Pathfinder started gathering
meteorological data, the spacecraft began experiencing total system resets, each
resulting in losses of data.

-21

The MARS Pathfinder Problem (2)

“VxWorks provides preemptive priority scheduling of threads. Tasks on the
Pathfinder spacecraft were executed as threads with priorities that were assigned
in the usual manner reflecting the relative urgency of these tasks.”

“Pathfinder contained an "information bus", which you can think of as a shared

memory area used for passing information between different components of the
spacecraft.”

= A bus management task ran frequently with high priority to move certain kinds of

data in and out of the information bus. Access to the bus was synchronized with
mutual exclusion locks (mutexes).”

The MARS Pathfinder Problem (3)

= The meteorological data gathering task ran as an infrequent, low priority thread.
When publishing its data, it would acquire a mutex, do writes to the bus, and release
the mutex.

" The spacecraft also contained a communications task that ran with medium priority.

High priority: retrieval of data from shared memory
Medium priority: communications task
Low priority: thread collecting meteorological data

The MARS Pathfinder Problem (4)

“Most of the time this combination worked fine.

However, very infrequently it was possible for an interrupt to occur that caused the
(medium priority) communications task to be scheduled during the short interval
while the (high priority) information bus thread was blocked waiting for the (low
priority) meteorological data thread. In this case, the long-running communications
task, having higher priority than the meteorological task, would prevent it from
running, consequently preventing the blocked information bus task from running.

After some time had passed, a watchdog timer would go off, notice that the data
bus task had not been executed for some time, conclude that something had gone

drastically wrong, and initiate a total system reset. This scenario is a classic case of
priority inversion.”

-24

Priority Inversion on Mars

Priority inheritance also solved the Mars Pathfinder problem: the VxWorks
operating system used in the pathfinder implements a flag for the calls to mutex
primitives. This flag allows priority inheritance to be set to “on”. When the
software was shipped, it was set to “off”.

The problem on Mars was corrected
by using the debugging facilities of
VxWorks to change the flag to “on”,
while the Pathfinder was already on
the Mars [Jones, 1997].

Timing Anomalies

-26

Timing Anomaly

Suppose, a real-time system works correctly with a given processor architecture.
Now, you replace the processor with a faster one.

Are real-time constraints still satisfied?

Unfortunately, this is not true in general. Monotonicity does not hold in general,
i.e., making a part of the system operate faster does not lead to a faster system
execution. In other words, many software and systems architectures are fragile.

There are usually many timing anomalies in a system, starting from the

microarchitecture (caches, pipelines, speculation) via single processor scheduling
to multiprocessor scheduling.

-27

Single Processor with Critical Sections

Examp/e: Replacing the |:| normal execution
processor Wlth one |:| critical section

that IS tWICe as faSt ----- ----- l ----- ----- ----- ----- T A B ...
eadstoadeadine ol
miSS. ---------- : ' ' ' R -

Multiprocessor Example (Richard’s Anomalies)

Example: 9 tasks with precedence constraints and the shown execution times. Scheduling

is preemptive fixed priority, where lower numbered tasks have higher priority than higher
numbers. Assignment of tasks to processors is greedy.

P T T optimal

schedule on a
. P5) . Js J7
C,=3 C,=9 2| 2 ‘ 3-processor

J6 Jg architecture

o]

-29

Multiprocessor Example (Richard’s Anomalies)

Example: 9 tasks with precedence constraints and the shown execution times. Scheduling

is preemptive fixed priority, where lower numbered tasks have higher priority than higher
numbers. Assignment of tasks to processors is greedy.

P I To optimal

scheduleon a
C,=3 Cy=9 a b s 7 3-processor
Py | T3 Tg Tg architecture
C, = 2@ Cg =

P AN Jg
.2 —®) .-
P) Jo Js slower on a
9 Cs= 4-processor
P3 J3 Je .
architecture!
Py I, Jq
[I I I I I \ I I I I I I \ I I ¢
0 | 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Multiprocessor Example (Richard’s Anomalies)

Example: 9 tasks with precedence constraints and the shown execution times. Scheduling

is preemptive fixed priority, where lower numbered tasks have higher priority than higher
numbers. Assignment of tasks to processors is greedy.

optimal
schedule on a
3-processor
architecture

slower if all
computation
times are
reduced by 1!

-31

Multiprocessor Example (Richard’s Anomalies)

Example: 9 tasks with precedence constraints and the shown execution times. Scheduling

is preemptive fixed priority, where lower numbered tasks have higher priority than higher
numbers. Assignment of tasks to processors is greedy.

slower if
some
precedences
are removed!

I To optimal
schedule on a
]]]
2 : ! 3-processor
T3 Je Tg architecture
l I l l l l l l l l
1 3 5 6 7 10 2 13 14 15
T4 Jg
I, T4 Js
I3 I7
I I I I I I I I I
1 2 3 4 5 6 13 14 15 16 t

Communication and Synchronization

-33

Communication Between Tasks

Problem: the use of shared memory for implementing communication between
tasks may cause priority inversion and blocking.

Therefore, either the implementation of the shared medium is “thread safe” or
the data exchange must be protected by critical sections.

o
N

J

T

wait(s) shared

resource
critical wait(s)
section R

critical
section

signal(s)

signal(s)

111

Communication Mechanisms

Synchronous communication:

Whenever two tasks want to communicate they must be synchronized for a
message transfer to take place (rendez-vous).

They have to wait for each other, i.e. both must be at the same time ready to do
the data exchange.

Problem:

" |n case of dynamic real-time systems, estimating the maximum blocking time
for a process rendez-vous is difficult.

= Communication always needs synchronization. Therefore, the timing of the
communication partners is closely linked.

-35

Communication Mechanisms

Asynchronous communication:

Tasks do not necessarily have to wait for each other.

The sender just deposits its message into a channel and continues its execution;
similarly the receiver can directly access the message if at least a message has
been deposited into the channel.

More suited for real-time systems than synchronous communication.

Mailbox: Shared memory buffer, FIFO-queue, basic operations are send and
receive, usually has a fixed capacity.

Problem: Blocking behavior if the channel is full or empty; alternative approach is
provided by cyclical asynchronous buffers or double buffering.

sender < >——' —’< > receiver

mailbox

-36

Example: FreeRTOS (ES-Lab)

Task A

Queue

int x; L]

A queue is created to allow Task A and Task B to communicate. The queue can hold a maximum of 5
integers. When the queue is created it does not contain any values so is empty.

Task A Task B
Queue

int =x; | || || || || 10 | int v

x = 10; — Send T

Task A writes (sends) the value of a local variable to the back of the queue. As the queue was previously
empty the value written is now the only item in the queue, and is therefore both the value at the back of the

queue and the value at the front of the queue.
Task B
int v;
7

Task A changes the value of its local variable before writing it to the queue again. The queue now
contains copies of both values written to the queue. The first value written remains at the front of the

queue, the new value is inserted at the end of the queue. The queue has three empty spaces remaining.

N\

Task A

Queue

20

[0]

int x; L]

= 20; Send

x

Task A Task B
Queue
int x; | || || || 20 || 10 | int y;
l Receive A
= 20; \\i; y now equals 10

Task B reads (receives) from the queue into a different variable. The value received by Task B is the
value from the head of the queue, which is the first value Task A wrote to the queue (10 in this illustration),

Task A

Queue

int =; |

Task B has removed one item, leaving only the second value written by Task A remaining in the queue.
This is the value Task B would receive next if it read from the queue again. The queue now has four
empty spaces remaining.

Example: FreeRTOS (ES-Lab)

Creating a queue:

QueueHandle t xQueueCreate(UBaseType t uxQueuelength, UBaseType t uxItemSize)/

//// _——”—”———

returns handle to the maximum number of items that the queue
created queue being created can hold at any one time

Sending item to a queue:

BaseType t xQueueSend (QueueHandle t xQueue,

the size in bytes of
each data item

a pointer to the

returns pdPASS if
item was successfully
added to queue

const void * pvItemToQueue, —
TickTyPEii/ifiEBSTowait) ;

the maximum amount of time the task
should remain in the Blocked state to wait
for space to become available on the queue

—data to be copied
into the queue

-38

Example: FreeRTOS (ES-Lab)

Receiving item from a queue:

BaseType t xQueueReceive(QueueHandle t xQueue,

void * const pvBuffer, __ apo”“th)ﬂ“;_h
TickType t xTicksToWait) ; —memory into whic

, the received data
returns pdPASS if data : .
will be copied
was successfully read _ _
the maximum amount of time the task
from the queue

should remain in the Blocked state to wait
for data to become available on the queue

Example:

Two sending tasks with equal priority 1 and one receiving task with priority 2.

FreeRTOS schedules tasks with equal priority in a round-robin manner: A blocked
or preempted task is put to the end of the ready queue for its priority. The same
holds for the currently running task at the expiration of the time slice.

-39

Example: FreeRTOS (ES-Lab)

Example cont.:

1 - The Receiver task runs first because it has the ™ 3~ The Receiver ask fies 1N
highest priority. It attempts to read from the queue. The - 1he RECEVET task empties the queue

queue is empty so the Receiver enters the Blocked state | | €N enters the Blocked state again. This
o wait for data to become available. Sender 2 runs after E:TIEHSEE"UH 1 runs after the Receiver has

the Receiver has blocked.

."H.._
Y

Receiver |

Sender2§

Sender 1, / Yo,

"'\.I.

sender 1

sender 2

queue

o

t1/ Time

-
-
.,

"'\-\.\

2 - Sender 2 writes to the {iueue, causing the
Receiver to exit the Blocked state. The
Receiver has the highest priority so pre-empts

the Receiver to exit the Blocked state and

4 - Sender 1 writes to the queue, causing w
pre-empt Sender 1 -and so it goeson ...

Sender 2.

\

receiver

Communication Mechanisms

Cyclical Asynchronous Buffers (CAB):
= Non-blocking communication between tasks.

= Areader gets the most recent message put into the CAB. A message is not
consumed (that is, extracted) by a receiving process but is maintained until
overwritten by a new message.

= As a consequence, once the first message has been put in a CAB, a task can never
be blocked during a receive operation. Similarly, since a new message overwrites
the old one, a sender can never be blocked.

= Several readers can simultaneously read a single message from the CAB.

writing reading
buf_pointer = reserve(cab_id); mes_pointer = getmes(cab_id);
<copy message in *buf_pointer> <use message>

putmes (buf_pointer, cab_id); unget(mes _pointer, cab_id);

-41

Embedded Systems

8. Hardware Components

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Where we are. ...

1. Introduction to Embedded Systems :

\

2. Software Development
" 3. Hardware-Software Interface L

Soft é':,--——4. Programming Paradigms
ortwares.. | , » Hardware-
‘] 5. Embedded Operating Systems 5
. / Software

6. Real-time Scheduling ,

!
1
!

\ 7. Shared Resources '
>.-8. Hardware Components g
Hardware 9. Power and Energy '

|- 10. Architecture Synthesis

Do you Remember ?

ALALALtARARS (P

—

N H e

High-Level Physical View

SH S

ON power domain Power switched by nRF51 (VCC)
) :

e
Y

' ARY) =)

‘ 10DOF IMU
i e & W - 3-axis accelerometer
M el = > RE power - 3-axis gyro

: NS e : - 3-axis magnetomer
N b amplifier :
3 p : - Pressure sensor

12C

Pu PWM
but}cx EUQRT Motor driver
12C
: SPI/12C/GPIO/PWM
\ , WKup/OW/GPIO
+5V Power supplies : . EEPROM
and battery charger Charge/VBAT/VCC Expansion port
USB Data
}“USB port to STM32

Crazyflie 2.0 system architecture

High-Level Physical View

Always ON power domain

—_—

RF power

amplifier

Power switched by nRF51 (

10DOF IMU

- 3-axis accelerometer

- 3-axis gyro
- 3-axis magneto
- Pressure senso

and battery charger

Power supplies

{UART

12C

12C

/

Motgr driver

/

SPINI2C/GPIO/PWM

Wkup/OW/GPIO

Push
button
+5V
WHUSB port ——

USB Data
to STM32

Charge/WVBAT/VCC

Expansion port

/

! EEPROM

Crazyflie 2.0 system architecture

Implementation Alternatives

Performance
Energy Efficiency

General-purpose processors

Application-specific instruction set processors
(ASIPs)

e Microcontroller
e DSPs (digital signal processors)

Programmable hardware

* FPGA (field-programmable gate arrays)

Application-specific integrated circuits (ASICs)

Flexibility

Energy Efficiency

1000

100

10

GOP/J

0.1

0.01

© Hugo De Man, IMEC, 0.001
Philips, 2007

\C .
____P;‘.s-_-:;‘- _
R D
. e - ?‘,@P

1990

o
’__,"/": f ? :
e A AP’
- a .,
. SEApE N ?,. A]
- +A,',"‘ ”’d
1 %~
,.,‘/ A ‘\h‘i\é - O@//
- +0 w@’ - @CDQ
+0| + - 0
M o Ban] %o +RisC
C ’D’ .|.
o l-g”7 8 o+ 0
0 == [9)
- 4 | ASIC x cell
’ 9 FPGA 0 MPU
o] A DSP + RISC
0 o o)
o o
& R S

2010

Topics

= General Purpose Processors
= System Specialization

= Application Specific Instruction Sets
= Micro Controller
= Digital Signal Processors and VLIW
" Programmable Hardware

= ASICs
= System-on-Chip

General-Purpose Processors

» High performance
= Highly optimized circuits and technology
= Use of parallelism
= superscalar: dynamic scheduling of instructions
= super-pipelining: instruction pipelining, branch prediction, speculation
= complex memory hierarchy
" Not suited for real-time applications

= Execution times are highly unpredictable because of intensive resource sharing
and dynamic decisions

= Properties

= Good average performance for large application mix
" High power consumption

-10

General-Purpose Processors

" Multicore Processors

= Potential of providing higher execution performance by exploiting parallelism
= Especially useful in high-performance embedded systems, e.g. autonomous driving
= Disadvantages and problems for embedded systems:

®» |ncreased interference on shared resources such as buses and shared caches
" |ncreased timing uncertainty

-11

Multicore Examples

!ll m !l! v

e

¥ Core

E . i &

Multicore Examples

Intel Xeon Phi

(5 Billion transistors,

22nm technology,
350mm? area)

Oracle Sparc T5

Implementation Alternatives

Performance
Energy Efficiency

General-purpose processors

Application-specific instruction set processors
(ASIPs)

e Microcontroller
e DSPs (digital signal processors)

Programmable hardware

* FPGA (field-programmable gate arrays)

Application-specific integrated circuits (ASICs)

Flexibility

- 14

Topics

" General Purpose Processors
= System Specialization

= Application Specific Instruction Sets
= Micro Controller
= Digital Signal Processors and VLIW
" Programmable Hardware

= ASICs

"= Heterogeneous Architectures

-15

System Specialization

* The main difference between general purpose highest volume microprocessors
and embedded systems is specialization.

= Specialization should respect flexibility
= application domain specific systems shall cover a class of applications
= some flexibility is required to account for late changes, debugging

= System analysis required
= jdentification of application properties which can be used for specialization
= quantification of individual specialization effects

-16

Embedded Multicore Example

Recent development:

= Specialize multicore processors towards real-time processing and low power

consumption
. 00101 ~w,
= Target domains: = (@) 1010 VX A
IMAGE SIGNAL ~ DATA SCIENTIFIC ~CONTROL
& A { YCESSING SECURITY CONPUTING COMNAND
¢ $ $
| Fush [oon [meraren [pr | S005 | o
[oG miriace | SE
» W a-
= om L
16 Clusters of 16 Cores
) |8| interconnected by a NoC |
Core Generation Numberof 1 oo opsw | Gops/w hat . hagt
Processing Cores § n m ﬂ £ o
£ g8
Andey 256 25 75 -l B H ; £

Bostan (2014) 256 50 20 5 5
g = Quad SmpP
Coolidge (2015) | 64/256/1024 75 115 I subsystem ﬂwm

Copyrighe Kalrey SA

-17

Example: Code-size Efficiency

= RISC (Reduced Instruction Set Computers) machines designed for run-time-, not
for code-size-efficiency.

= Compression techniques: key idea

HP P

adar |] Addr |

((de)compressor

ROM
ROM

Example: Multimedia-Instructions

 Multimedia instructions exploit that many registers, adders etc. are
quite wide (32/64 bit), whereas most multimedia data types are
narrow (e.g. 8 bit per color, 16 bit per audio sample per channel).

* |dea: Several values can be stored per register and added in parallel.

64 bits 64 bits
word 3 word 2 word 1 word 0 word 3 word 2 word 1 word 0
+

/ 4 additions per instruction; carry

disabled at word boundaries.

64 bits

word 3 word 2 word 1 word 0

-19

Example: Heterogeneous Processor Registers

Example (ADSP 210x):

Address-
registers
AO, Al, A2 ..

e

Address v + -

generation A v
unit (AGU) —{ MR]

Different functionality of registers AR, AX, AY, AF,MX, MY, MF, MR

-20

Example: Multiple Memory Banks

«)r' A >
\ 4 Y Y Y
AX AY MX MY
Address- [AF]« [MF]
registers ! \
AO, Al, A2 ..
Address v + -
) AR -
generation ::l [)
unit (AGU) [vie_]

Enables parallel fetches for some operations

Example: Address Generation Units

e Data memory can only be fetched with
Example (ADSP 210x): address contained in register file A, but
its update can be done in parallel with
operation in main data path (takes
_ _ effectively O time).
instruction e Register file A contains several

_ ; precomputed addresses A[i].

e There is another register file M that

address modify contains modification values M[j].
register /T//__\ register
file A T file M e Possible updates:
/ /\ M[j] := ‘immediate’
o~ i Ali] := Ali] + MI]
memory @ A[!] -~ A[!] N 1 :
Ali] := A[i] £ ‘immediate’

Ali] := ‘immediate’

Topics

= System Specialization

= Application Specific Instruction Sets
= Micro Controller
= Digital Signal Processors and VLIW

" Programmable Hardware

= ASICs

" Heterogeneous Architectures

-23

Microcontroller

" Control-dominant applications

= supports process scheduling
and synchronization

= preemption (interrupt),
context switch

= short latency times

= [ow power consumption
» Peripheral units often integrated

= Suited for real-time applications

SIECO51 (Siemens)

8051 core

-24

Microcontroller as a System-on-Chip

e complete system

3 L]
: XIN + * XOuT : ° t|mers
' Port P1 H
: : P ACLK ADC :
' &gs‘ctfr'n"fk Flash RAM i — :
N I = SV . oes || 4 crammet | | interrupt ¢ e |2C-bus and par./ser.
’ ——— A = bili ’ H . .
5 T LK Tenoua | [putupidonn i interfaces for communi-
E ; N laa amaelel E Cation
’ 16MHz MAH :
3 CPU ; 1
b | inc.te : o A/D converter
s | Registers MDB :
3 b
’ 1
' + o watchdog (SW activity
G usi i timeout): safety
: Watchdog Tmer_ A2 :
N JTAG Brownout WDT+ Universal H
§ . R e | el | Boead § e on-chip memory (volatile/non-volatile)
' |spyiwre SRl :
" . .
‘ * e interrupt controller
%....................... ..J
RST/NMI

MSP 430 RISC Processor (Microchip)

Topics

= System Specialization

= Application Specific Instruction Sets
= Micro Controller

= Digital Signal Processors and VLIW
" Programmable Hardware

= ASICs

" Heterogeneous Architectures

-26

Data Dominated Systems

= Streaming oriented systems with mostly periodic behavior
» Underlying model of computation is often a signal flow graph or data flow graph:

~le)—e— == e s)=

B: buffer

= Typical application examples:
= signal processing
= multimedia processing
= automatic control

-27

Digital Signal Processor

" optimized for data-flow applications

= suited for simple control flow
» parallel hardware units (VLIW)
= specialized instruction set

" high data throughput

= zero-overhead loops

= specialized memory

" suited for real-time applications

Figure 2—1. TMS320C62x/C67x Block Diagram

EM

AL

Program RAM/cache
32-bit address

256-bit data
I 512K bits RAM

Data RAM
32-hit address
8-, 16-, 32-bit data
512K bits RAM

{

§:

Program/data buses

D

32\

'C6000 CPU core DMA
(four
Program fetch Co_ngrol lchannel)
Instruction dispatch registers or
Instruction decode Control EDMA
logic (16
Data path 1 Data path 2 channel)
| Aregister file ||| Bregisterfile | Test
1 R e y o Emulation @
L.L1].s1[M1][.D1] | [L2[.52[M2][.D2] | Interrupts EXB
or
Host
Power management port

JTAG test/
emulation
control

Multichannel

(T1/E1) buffered
serial port

Multichannel
(T1/E1) buffered
serial port
<Z:> Timer
<:::> Timer
<—'\ PLL clock
generator

-28

Very Long Instruction Word (VLIW)

Key idea: detection of possible parallelism to be done by compiler, not
by hardware at run-time (inefficient).

VLIW: parallel operations (instructions) encoded in one long word
(instruction packet), each instruction controlling one functional unit.

- instruction packet =
instruction 1 instruction 2 instruction 3 instruction 4
! V y !
floating point | | integer integer memory
unit unit unit unit

Explicit Parallelism Instruction Computers (EPIC)

The TMS320C62xx VLIW Processor as an example of EPIC:

31 0 31 O0 31 O 31 031 0231 031 0
0 1 1 0 1 1 0
Instr. A Instr. B Instr.C Instr.D Instr.E Instr.F Instr. G
Cycle Instruction
1 A
2 B C D
3 E F G

-30

Example Infineon

1000

100

10

GOP/J

0.1

0.01

0.001

1990

_ - + ® ASIC x cell
- o FPGA o MPU
o] A DSP + RISC
To) o Te]
)] Q o
2 & &

Processor core for car mirrors
Infineon

200MHz , 0.76 Watt
100Gops @ 8b
25Gops @ 32b

-31

GOP/J

Example NXP Trimedia VLIW

1000

100

10

0.1

0.01

0.001

P\e_’_\g_".'
_- + ® ASIC x cell
- 9 FPGA o MPU
o] A DSP + RISC
o Te) o Tp}
3 2 3 S
— — oV} (&)}

2010

NXP

60 coproc,
266MHz, 1.5 watt 100 Gops

TM3260

e - DRRREL A0 A0 D00 B 8000 40w 2905 2401 94001001 | 10, S0 200 1ui- sen Saw et 21 »
0 00 0 S 1 1 KA AN 50 M 888 A48 £ B | 4 s e s 44 Lk o et

Nexperia Digital Video Platform

8-32

Topics

System Specialization

Application Specific Instruction Sets
= Micro Controller

= Digital Signal Processors and VLIW
Programmable Hardware

ASICs
System-on-Chip

-33

FPGA — Basic Strucutre

= Logic Units
= |/O Units

Logic

/’ block

"= Connections 1/0 block —]

-34

!

Configurable Logic
Configurable Logic

!

Programmble |/Os

Floor-plan of VIRTEX Il FPGAs

Digital clock manager

I!O Blocks

=
S S S S
N =

Block RAM Multiplier

-35

Virtex Logic

Cell

y

SOPIN > I\| ORCY
0 | | Y . —» SOPOUT
dDual-Port Ij YBMUX
[Shift-Reg —=YB
MUXCY
G4 > Ad O |
e = n oL,
G2 — Py A2
o . a1 CIROM . W
WG4 > WG4 G GYMUX — Y
WG3 —> WG3 j >) |
WG2 —> wWG2 MCA5 <] DY
WG1 —> WG —l XORG COFF
™ ws_ DI CILATCH
ALTDIG —>] .
G DYMUX D Ql—r—q
T—L_JMULTB.ND PROD Y
G1 CE—CE
—|BY CYOG CLK—|CK
0 SR REV
BY [.—D [
b
SLICEWE[2:0] WSG SHIFTOUT SR
— WE[2:0] —=DIG
WE
[CLK MU}(GY
WSF |
|

CED—E

CLK D—ED

SRD—E

_/

Shared between
x & y Reqgisters

6

[© and source: Xilinx Inc.: Virtex-Il
Pro™ Platform FPGAs: Functional
Description, Sept. 2002,
//www.xilinx.com]

Example Virtex-6

= Combination of flexibility (CLB’s), Integration and performance (heterogeneity of
hard-IP Blocks)

clock distribution

N logic (CLB)

interfaces
(PCI, high speed)

Logic Cell
Device

QEonoooonosonaonoonel
000000000 nonnanaein
OhCoooooooGaonanoooEl
D00000000R000000 000

memory (RAM)

DSP slice /

fast communication

-37

XILINX Virtex UltraScale

Effective LEs (K)

Logic Cells (K)

UltraRAM (Mb)

Block RAM (Mb)

DSP Slices

/O Pins

Swiss Federal
Institute of Technology

3,435

2,863

432.0

94.5

11,904

832

Virtex-6 CLB Slice

iD* D EEE :'llj Reset Type
u] QF—
couT —CE o Im% O Sync/Async
0 = SlF' O FFILAT
1 ™~
e I N | - I DMUX
Diz —]
D1 Co—p— AB:AT) P
| Wa: W1 | b 0
oe | ™~ 0 FF/LAT
= , ShT a0
CK Dl
WEN MCz1|—— ‘ —«[}D oSRHI P ce BEAlG
SR ol % sp
e —|CE oinmo
—CK gp
i) | '
o= " | / Y T CMUX
DIz
CE:1 [o—— AB:A1 1
L waw 'J_—JD E/ S
o8 L1 ™ o FFILAT
CX o IMITH a—>co
CK D D oOlNITo
WEN MC31 |—— oSEHI F{CE B SRlo
o BR 7| T s
Cl m] 1
= EE oiNmo @
sln ~
L
EX [1 L > BMUX
DIz]
BE:1 [o—1— AB:A1 1),
L | wewi I T] g all B
06
0s l ™ o FF/LAT
BX olNIT1 o+—>EQ
D H D pinTo
cK | CE oSRHI
WEN MCa1 [~ Jp— | L | ox OSALD
Bl [8 ISNl?'IFG SR
o 1
CE ginmoe @
CK s
Fiist ——
= > AMUX
DIz
A —— AB:A1 _/
L we-w1 t =)
A
o8 : ™ o FFILAT
AX 5 alNITl gl a0
aINITa
ck Dn L | | cp OSAHI
WEN MC31 L > | | o 95RO
44' 9 SR
Al > o
SR [Il]
CE D
CLK > J} T
CK
'— WEN D
D Cl‘q U354 03 040200
Computer Engineering
7-38

and Networks Laboratory

Topics

System Specialization

Application Specific Instruction Sets
= Micro Controller
= Digital Signal Processors and VLIW
Programmable Hardware

ASICs

Heterogeneous Architectures

-39

Application Specific Circuits (ASICS)

Custom-designed circuits are necessary
" if ultimate speed or
= energy efficiency is the goal and

" [arge numbers can be sold.

Approach suffers from

" long design times,

= |ack of flexibility
(changing standards) and

" high costs
(e.g. Mill. S mask costs).

Topics

System Specialization

Application Specific Instruction Sets
= Micro Controller
= Digital Signal Processors and VLIW

Programmable Hardware

ASICs

Heterogeneous Architectures

-41

Example: Heterogeneous Architecture

Samsung Galaxy Note Il

Eynos 4412 System on a Chip (SoC)
ARM Cortex-A9 processing core

32 nanometer: transistor gate width
Four processing cores

JTAG

PLL/OSC

DMA

TIMER

PWM /ADC

m

LCD RGB

MIPI
DSI1/CSI

Exynos 4412 Application Processor

Cortex-A9 Cortex-A9
32KB I/D-Cache 32KB I/D-Cache
NEON NEON

Cortex-A9 Cortex-A9
32KB I/D-Cache 32KB I/D-Cache
NEON NEON

IMB L2-Cache + VFPv3

DMC + LPDDR2 RAM 8Gbit (PoP)

eMMC 4.4
8bit

SD Card
4bit

SDIO
4bit

SPI x3

Example: Heterogeneous Architecture

Snapdragon 835

Hexagon DSP
(Galaxy S8)

VLIW: Area & power efficient multi-issue

Varable sced
1.“.51'.‘ SLON packets
1 10 4 mstroctions

;‘.-:' Facksl)

« Dual 84-bat execution units

Instruction Unit

» Standard 8/18/32/84bit Sata
types

» SIMD vectorzed MPY fALU
/ SHIFT, Permute, BitOps

« Up to8 16b MAC/cycle

L . 2 SP FMA‘cycle

Register FileThread
Fer-Theead

Swmcorm Techvooper Inc Al Rgrts Saaseroec

Snapdragon
X16 LTE modem

AT e

Hexagon DSP

|IZat™ Location

Adreno 540

Graphics Processing
Unit (GPU)

Display Video g
Processing Unit Processing Unit .
(DPU) (VPU)

Qualcomm

g e Spectra 180
Memary =t X All-Wav- Camera
= Da
Doal 8400 uUmt Dm Umt Execution Execution Qualcomm®
e Unit Unat e tic Audio Kryo 280 CPU
units i Badt (B4it q
« Also 22-bit ALU) ALU) Mﬂ) Vector)
! > Qualcomm® Qualcomm
ALU — 5

Haven Security

Example: ARM big.LITTLE Architecture

Col IMXBQXP 2GB

Core Complex 1 Core Complex 2 Connectivity | S v10A
Cortex-M4F 1xFC o | . , 06316151
SN ueincg 16 KB Icache 1 x UART
512 KB L2 cache with ECC 258 KB SRAM 1 x TPM Timer 4xSPI é
O
Multimedia Memory 1 or 2 x 1 Gbit Ethemet AVB %
.................. GPU DDRA3L @ 933 MHz (ECC option »
: 1 x 4-Shader, OpenGL ES 3.0 or 3.1, 1 mel‘oizmunz(mm, :uwnooahunet: .) ' % S N
i A ; 33Vn.8Vero AR RRRRRRD O RRRODDDARRRRRREROOMCRRRRRCRAMDMARRRRRRODMRRARRRRRO0MMORRRRRRO DA RMRRRRON MMM
-- RAW NAND-BCHB&2
| Video: h.2685 dec 4K, h.264 enc/dec 1080p | =

PCle 3.0 with L1 Substate—1-lane

2 x Quad/1 x Octal SPI

- o . mussmoswewy 1 Toradex Colibri Compute-on-Module
Core urity
Tensilica® HiFi 4 KB 1 48KBD SITAG. T 1 or2 x USB2 OTG wPHY
512 KB SRAM (448 KB OCRAM, 84 KB of TCM) AES256, RSA4006, SHA-258 3 x CAN/CAN FD
3DES, ARC4, MD-5
= MOST 25/50
Pisy and C WO Flashiess SHE, ECC Low System Load High System Load
Display P wilh SafeA . Tamgper, Inline Enc Engine 4 x4 Keypad
= e System Control 4xPFWM big Cluster big Cluster
S kst aiock Dicgia B LITTLE Cluster LITTLE Cluster
1 x Parallel Display 1 x Parallel CSI ‘ ‘ m —— : 2 x ASRC, SPDIF cPUO || cPUL -' CPUO | CPUL
1 x MIPI CSI 4 x SAl, ESAI, MQS
Cache Coherent Interconnect (CCl) Cache Coherent Interconnect (CCl)

' Available on certain product families Note: Accessing muxable confroller's full capabilities is dependent upon board component choic

D Active processor

Inactive processor

Embedded Systems

9. Power and Energy

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Lecture Overview

Software <]

Hardware <
1 10.

w N

O 00 N O W

. Power and Energy <

. Introduction to Embedded Systems :
. Software Development |
. Hardware-Software Interface

. Programming Paradigms

. Embedded Operating Systems

. Real-time Scheduling

. Shared Resources

Hardware Components

1

\
\

9
h

\‘g Hardware-
/ Software

Architecture Synthesis

General Remarks

Power and Energy Consumption

= Statements that are true since a decade or longer:

,Power Is considered as the most important constraint in embedded
systems . [in: L. Eggermont (ed): Embedded Systems Roadmap 2002, STW]

“Power demands are increasing rapidly, yet battery capacity cannot
keep up 7’ [in Diztel et al.: Power-Aware Architecting for data-dominated applications, 2007, Springer]

A High temperature

= Main reasons are:

High temperature detected. Device
will be turned off for your safety If
the temperature rses higher
please use after a while

= power provisioning is expensive

= battery capacity is growing only slowly

UX

= devices may overheat

= energy harvesting (e.g. from solar cells) is limited due to the relatively low energy
available density

Some Trends

40 Years of Microprocessor Trend Data

7
10 ! ! ' ! Transistors
108 _ ____________________________ ________________________ :A:A‘:‘ ___________ | (thousands)
A _
10° TS SO VUSRS . f‘.,:gf'.‘.: S g | Single-Thread
b 20 Performance
4 :A“‘ 0edp e (SpecINT x 10°)
107 [agag gl e e .
e e t“ ’ S, Tl Frequency (MHz)
103 _AALA..G;#!II __________ e B i
Y Y L | Typical Power
102 o A e TR (Watts
A ..5= Vv v ve | e
' R . W Y T ysef® | Number of
10 L A = I | ¢ z‘t ¢ Logical Cores
of £ v vovy : snoee
10 _.;...’ ’; ’ﬁ*.”.mm’* E —
i i | i
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammaond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

Implementation Alternatives

Performance
Power Efficiency

General-purpose processors

Application-specific instruction set processors (ASIPs)

Microcontroller

DSPs (digital signal processors)

Programmable hardware

FPGA (field-programmable gate arrays)

Application-specific integrated circuits (ASICs)

Flexibility

Energy Efficiency

= |tis necessary to
optimize HW and SW.

= Use heterogeneous

architectures in order to
adapt to required performance
and to class of application.

= Apply specialization techniques.

GOP/J

1000

100

10

0.1

0.01

0.001

© Hugo De Man,

IMEC, Philips, 2007

X cell

o MPU
+ RISC

1990

1995

2000

2005

2010

Power and Energy

Power and Energy

t

In some cases, faster execution also means less energy, but
the opposite may be true if power has to be increased to allow
for a faster execution.

Power and Energy

t

In some cases, faster execution also means less energy, but
the opposite may be true if power has to be increased to allow
for a faster execution.

-10

Power and Energy

t

In some cases, faster execution also means less energy, but
the opposite may be true if power has to be increased to allow
for a faster execution.

-11

Power and Energy

E:/P@ﬁ
PN

E

t

In some cases, faster execution also means less energy, but
the opposite may be true if power has to be increased to allow
for a faster execution.

-12

Low Power vs. Low Energy

* Minimizing the power consumption (voltage * current) is important for
" the design of the power supply and voltage regulators
* the dimensioning of interconnect between power supply and components
= cooling (short term cooling)
= high cost
= |imited space
= Minimizing the energy consumption is important due to
» restricted availability of energy (mobile systems)
" |imited battery capacities (only slowly improving)
= very high costs of energy (energy harvesting, solar panels, maintenance/batteries)
" J|ong lifetimes, low temperatures

-13

Power Consumption of a CMOS Gate

VDD

subthreshold (I), junction (I,) and
gate-oxide (lzr) leakage

Zak

Source Crain

Y low
(Subthreshold) |

| |1

leax : 1€akage current ljeak

l..: short circuit current l

I, : switching current
Gnd

— Mg s

\ [unc
Cload P-weell

Power Consumption of a CMOS Processors

Main sources:

= Dynamic power consumption

charging and discharging capacitors

Short circuit power consumption:
short circuit path between supply rails

during switching

= |eakage and static power

gate-oxide/subthreshold/junction
leakage

becomes one of the major factors
due to shrinking feature sizes in

semiconductor technology

102 300
Sub-threshold+ -
= |\ junction leakage .
§_ 1| \ —"""\ Dynamic Power | 225
o - \\
o= N
h 2 \Z
=5 10 |- 4 — 150
u_ X Gate Oxide
©
@ 8 Leakage
N
T i
E 10% | T 175
2 A
Gate Length >
10 | ! ! 1 1 0
1990 1995 2000 2005 2010 2015 2020
Year

[J. Xue, T. Li, Y. Deng, Z. Yu, Full-chip leakage analysis for 65 nm CMOS
technology and beyond, Integration VLSI J. 43 (4) (2010) 353—-364]

Drawn gate length (in nm)

-15

Reducing Static Power - Power Supply Gating

Power gating is one of the most effective ways of minimizing static power consumption
(leakage)

= Cut-off power supply to inactive units/components

I — |::l :
HEADER - . LOGIC =
SWITCH T BLOGK -
0 ql - —©
O—]
VIRTUAL VIRTUAL
POWER GROUND
I:: e
O i I
R LOGIC £ | | FOOQTER
" BLOCK S | SWITCH
0 ' =

-16

Dynamic Voltage Scaling (DVS)

Average power consumption of CMOS
circuits (ignoring leakage):

P ~ OéCL Vdef

Via :supply voltage

xQ . switching activity
C'p : load capacity
f : clock frequency

Delay of CMOS circuits:

Vid
(Vga — Vr)?

TNCL

Viga :supply voltage
Vr : threshold voltage
Vir < Vg

Decreasing V,, reduces P quadratically (f constant).
The gate delay increases reciprocally with decreasing V., .

Maximal frequency f,., decreases linearly with decreasing V, .

-17

Dynamic Voltage Scaling (DVS)

P ~ OéCLVdef
E ~ OéCLdedft — CYCLVde (#CYCI@S)

Saving energy for a given task:
— reduce the supply voltage V4
— reduce switching activity a
—reduce the load capacitance C,
—reduce the number of cycles #cycles

-18

Techniques to Reduce Dynamic Power

-19

Parallelism

lmmmm

Vaa | B
f 1

max

-20

Pipelining
ittt

Erq

f

max

[

E ~ ded (#CYCleS)

Ep = %El

-21

VLIW (Very Long Instruction Word) Architectures

" Large degree of parallelism

many parallel computational units, (deeply) pipelined

= Simple hardware architecture

explicit parallelism (parallel instruction set)

parallelization is done offline (compiler)

instruction packet

all 4 instructions are
executed in parallel

e —

p—

instruction 1

instruction 2

instruction 3

instruction 4

\

¥

\

\

floating point
unit

integer
unit

integer
unit

memory
unit

/

Example: Qualcomm Hexagon

Hexagon DSP

VLIW: Area & power efficient multi-issue

« Dual 84-bat execution units

« Standard 8/18/3284bit Sata
types

» SIMD vectorzed MPY JALU
/ SHIFT, Permute, BitOps

« Up 108 16b MAC/cycie

« 2 SP FMA/cycle

Varable sced
NSrUCHON packets
{1 10 4 mstroctions

Instruction Unit |
1 —

, e 24 DataUnit DataUnit Execution Execution
load/stoce (Load (Load/ Unit Unit

s Store/ (B4dit (BBt

ALU) \Vector) Vestor)

nified 32x32bit
eneral Register
£t for

L

uf

¥
"

~ g

3
°

zZg 1

arate Address
cum Regs
Per-Theead

Q
“
~>
b

Register FileThread

Q

>
O

D

Swmcorm Tedwvooper Inc Al Rgrs Seaeroec

Snapdragon 835
(Galaxy S8)

Snapdragon
X16 LTE modem

Hexagon DSP

HVX All-Ways
Aware

Agstic Audio

Qualcomm®
|Zat™ Location

Adreno 540

Graphics Processing
Unit (GPU)

Display Video -
ing Unit Processing Unit .

(VPU)

Qualcomm

Spectra 180
Camera

Kryo 280 CPU

Qualcomm
Haven Security

Dynamic Voltage and Frequency Scaling -
Optimization

-24

Dynamic Voltage and Frequency Scaling (DVFS)

energy per cycle _
P~ aCfy Vdef gy percy reduce voltage -> reduce energy per task

A
E ~ OéCLVd2dft — OéCLVde (#CYCIGS) /

1

~ —~V
/ f T dd “——reduce voltage -> reduce clock frequency

maximum \ gate delay
frequency
of operation Saving energy for a given task:

—reduce the supply voltage V44
—reduce switching activity a

—reduce the load capacitance C;
—reduce the number of cycles #cycles

Example DVFS: Samsung Exynos (ARM processor)

ARM processor core A53 on the Samsung Exynos 7420 (used in
mobile phones, e.g. Galaxy S6)

Exynos 7420 - A53 Power Curves 100

=1 Core == Cores ==3 Cores =g=d4 COores

1026 [1000
900
800
700
600
500

/D‘415 451 L 400

- 300

Power Consumption (mW)

- 200

- 100
ANANDIECH |

400 500 &00 700 goao o0 1000 1104 1200 1295 1400 1500
Frequency (MHz)

Example: Dynamic Voltage and Frequency Scaling

1 507 50MHz= {50
& : Maximum Clock Frequency ‘E_
~ 401 40nJ »# 140 =
| E g
[| £
" 30; 130 3
=) "
g | 25MHz -
20r Energy Consumption 20 £
10nJ |

10} 110

25 30 35 40 45 50

[Courtesy, Yasuura, 2000] Vdd

Example: DVFS — Complete Task as Early as Possible

Via [V] 50 4.0 25
Energy per cycle [nJ] 40 25 10
fmax [MHZ] 50 40 25
cycle time [ns] 20 25 40

We suppose a task that needs 10° cycles to execute within 25 seconds.

a) [V j 109 cycles@50 MHz E.= 10° x 40 x 10°°
52 =40 [J]
42 deadline
252 I
| | | =

5 10 15 20 25 tls]

-28

Example: DVFS — Use Two Voltages

Via [V] 4.0 2.5
Energy per cycle [nJ] 25 10
fmax [MHZ] 40 25
cycle time [ns] 25 40

b) [V?] 4 750M cycles @ 50 MHz + 250M cycles @ 25 MHz

52
42 —

2.5% -

E,= 750 106 x 40 x 10
+250 109 x 10 x 10°

=325 [J]

S 10 15 20

—

t[s]

Example: DVFS — Use One Voltage

Vg V] 5.0 4.0 2.5
Energy per cycle [nJ] 40 25 10
fmax [MHZ] 50 40 25
cycle time [ns] 20 25 40
c) [V7] § 109 — 109 9
52 _ cycles@40 MHz E. =10°x25x 10
= 25 [J]
42
2.5%—
| | | | =

5 10 15 20 25 tl[s]

-30

DVFS: Optimal Strategy

t V., P(y)
y —
L — P (X)
X
T-a T :t

Execute task in fixed time T

with variable voltage V_(t):
1

gatedelay: 7~ —
Via

execution rate: f(t) ~ Vyq(t)

invariant: /Vdd(t)dt = const.

" case A: execute at voltage x for T - g time units and at
voltage y for (1-a) - T time units;
energy consumption: T-(P(x)-a + P(y) - (1-a))

-31

DVFS: Optimal Strategy

V4

X

t V., P(y)
y = P

v

T-a T t

voltage y for (1-a) - T time units;
energy consumption: T-(P(x)-a + P(y) - (1-a))

energy consumption: T - P(z)

Execute task in fixed time T

with variable voltage V_(t):
1

gatedelay: 7~ —
Via

execution rate: f(t) ~ Vyq(t)

invariant: /Vdd(t)dt = const.

case A: execute at voltage x for T - a time units and at

case B: execute at voltagez=a - x + (1-a) - y for T time units;

-32

DVFS: Optimal Strategy
y“ ‘o — Ii?z/j

z P(x)

X

v

T-a T t
Z-T=a-T-x+

z=a-x+(1-a)-y

voltage y for (1-a) - T time units;

Execute task in fixed time T

with variable voltage V_(t):
1

gatedelay: 7~ —
Via

execution rate: f(t) ~ Vyq(t)

invariant: /Vdd(t)dt = const.

case A: execute at voltage x for T - a time units and at

energy consumption: T-(P(x)-a + P(y) - (1-a))

energy consumption: T - P(z)

case B: execute at voltagez=a - x + (1-a) - y for T time units;

-33

DVFS: Optimal Strategy

Assumption: Dynamic power
is a convex function of V,

P(x) -a + P(y) - (1-a)

P(x) \

T~ P(z)

power consumption

average

a.m-—|— (1 — ey @'
Wdd

Dl:l

If possible, running at a constant frequency (voltage) minimizes the energy
consumption for dynamic voltage scaling:

case A is always worse if the power consumption is a convex function of the
supply voltage

DVFS: Real-Time Offline Scheduling on One Processor

" Let us model a set of independent tasks as follows:
= We suppose that a task v, e V
" requires ¢; computation time at normalized processor frequency 1
= arrives at time g,
* has (absolute) deadline constraint d.

= How do we schedule these tasks such that all these tasks can be finished no
later than their deadlines and the energy consumption is minimized?

= YDS Algorithm from “A Scheduling Model for Reduce CPU Energy”, Frances
Yao, Alan Demers, and Scott Shenker, FOCS 1995.”

If possible, running at a constant frequency (voltage) minimizes
the energy consumption for dynamic voltage scaling.

-35

1 5
4
L I L L L B B L L
0 4 8 12 16 time

= Define intensity G([z, z']) in some time interval [z, Z']:

= average accumulated execution time of all tasks that
have arrival and deadline in [z, Z‘] relative to the length
of the interval z'-z

V(2,2]) ={v; €V : 2<a; <d; <2}

G(z2D=) a/(@—2)

'U?ZEVI([Z&Z,])

YDS Optimal DVFS Algorithm for Offline Scheduling

0,8,2

6,14,6

10,14,6

12,17,2

-36

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 1: Execute jobs in the interval with the highest intensity by using the earliest-deadline first
schedule and running at the intensity as the frequency.

1 5 1365 |
2 6 263 |
4
(I)I I IL{III8IIII1I2III1I6I 'time 6,14,6
G([0,6]) = (5+3)/6=8/6, G([0,8]) = (5+3+2)/ (8-0) = 10/8, 10,14,6

G([0,14]) = (5+3+2+6+6)/14=11/7, G(]0,17]) = (5+3+2+6+6+2+2)/17=26/17

G([2, 6]) = (5+3)/(6-2)=2, G([2,14]) = (5+3+6+6) / (14-2) = 5/3,

G([2,17]) = (5+3+6+6+2+2)/15=24/15

G([3,6]) =5/3, G([3,14]) = (5+6+6)/(14-3) = 17/11, G([3,17])=(5+6+6+2+2)/14=21/14
G([6,14]) = 12/(14-6)=12/8, G([6,17]) = (6+6+2+2)/(17-6)=16/11

12,17,2

G([10,14]) = 6/4, G([10,17]) = 10/7, G([11,17]) = 4/6, G([12,17]) = 2/5

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 1: Execute jobs in the interval with the highest intensity by using the earliest-deadline first
schedule and running at the intensity as the frequency.

1 5 1365 |
2 6 263 |
4
(I)I ;IL{I:I8IIII1I2III1I6I 'time 6,14,6
G([0,6]) = (5+3)/6=8/6, G([0,8]) = (5+3+2)/ (8-0) = 10/8, 10,14,6

G([0,14]) = (5+3+2+6+6)/14=11/7, G([0,17]) = (5+3+2+6+6+2+2)/17=26/17

G([2, 6]) = (5+3)/(6-2)=2| G([2,14]) = (5+3+6+6) / (14-2) = 5/3,

G([2,17]) = (5+3+6+6+2+2)/15=24/15

G([3,6]) =5/3, G([3,14]) = (5+6+6)/(14-3) = 17/11, G([3,17])=(5+6+6+2+2)/14=21/14
G([6,14]) = 12/(14-6)=12/8, G([6,17]) = (6+6+2+2)/(17-6)=16/11

12,17,2

G([10,14]) = 6/4, G([10,17]) = 10/7, G([11,17]) = 4/6, G([12,17]) = 2/5

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 1: Execute jobs in the interval with the highest intensity by using the earliest-deadline first
schedule and running at the intensity as the frequency.

0,8,2

T T T T T T T T T T T 7171711 >
0 |4 8 12 16 time

!

RN
0 4 8 12 16

10,14,6

12,17,2

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 2: Adjust the arrival times and deadlines by excluding the possibility to execute at the previous

critical intervals.

1] 5
4
] T T T [T T T T T T T 1T T T tme
0 4 8 12 16

0,8,2

6,14,6

10,14,6

12,17,2

-40

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 2: Adjust the arrival times and deadlines by excluding the possibility to execute at the previous
critical intervals.

1] 5
2 5
6146 | 2106 |
[] [| (1 1 1T [17 17 11 tlr:ne
0 4 8 12 16 10,146 | =) [6,10,6
@ 11172 | 7132 |
5
5
@] a,d.c; |

llllllllllllllllll_:
0 4 8 12 16 time

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 3: Run the algorithm for the revised input again

5 0,4,2
s] SOE
4
6108
ettt >

G([0,4])=2/4, G([0,10]) = 14/10, G([0,13])=18/13 8,13,2

G([2,10])=12/8, G([2,13]) = 16/11, G([6,10])=6/4
G([6,13])=10/7, G([7,13])=4/6, G([8,13])=4/5

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 3: Run the algorithm for the revised input again

5 0,4,2
s] SOE
4
6108
ettt >

G([0,4])=2/4, G([0,10]) = 14/10, G([0,13])=18/13 8,13,2

| G([2,100)=12/8,|G([2,13]) = 16/11, G([6,10])=6/4
G([6,13])=10/7, G([7,13])=4/6, G([8,13])=4/5

Step 3: Run the algorithm for the revised input again
5

ettt

G([0,4])=2/4, G([0,10]) = 14/10, G([0,13])=18/13
| G([2,100)=12/8,1G([2,13]) = 16/11, G([6,10])=6/4
G([6,13])=10/7, G([7,13])=4/6, G([8,13])=4/5

YDS Optimal DVFS Algorithm for Offline Scheduling

0,4,2

2,10,6

6,10,6

8,13,2

- 44

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 3: Run the algorithm for the revised input again
Step 4: Put pieces together

frequency 0,4,2 2

0 4 8 12 16 8132 5

frequency

1
! Nﬂp
{ Il

0,2,2 0,2,2

frequency 2 2 1 1.5 1.5 4/3 4/3

-45

YDS Optimal DVFS Algorithm for Online Scheduling

frequency |
3 |
2 1
1 0,8,2
m L I I T > .
0 4 8 12 16 time

Continuously update to the best schedule for all arrived tasks:
Time O: task v is executed at 2/8

YDS Optimal DVFS Algorithm for Online Scheduling

frequency |
3 —
2 263 |
1 0,8,2

Wiiiiiiiii >
0 4 8 12 16 time

Continuously update to the best schedule for all arrived tasks:
Time O: task v is executed at 2/8

Time 2: task v, arrives
= G([2,6]) =%, G([2,8]) =4.5/6=3/4 =>execute vg, Vv, at %

YDS Optimal DVFS Algorithm for Online Scheduling

frequency

A

3 -

2_

1_.

o

Tt ..
0 4 8 12 16 time

Continuously update to the best schedule for all arrived tasks:
Time O: task v is executed at 2/8
Time 2: task v, arrives

G([2,6]) = %, G([2,8]) = 4.5/6=3/4 =>execute vg, v, at %

Time 3: task v, arrives

G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v, and v, at 29/12

0,8,2

-48

YDS Optimal DVFS Algorithm for Online Scheduling

A
frequency

3 —

2_

1_

0 4 8 12 16 time
Continuously update to the best schedule for all arrived tasks:
Time O: task v is executed at 2/8
Time 2: task v, arrives
= G([2,6]) =%, G([2,8]) =4.5/6=3/4 =>execute vg, Vv, at %
Time 3: task v, arrives
= G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v, and v, at 29/12
Time 6: task v, arrives
= G([6,8]) =1.5/2, G([6,14]) = 7.5/8 => execute v; and v, at 15/16

0,8,2

-49

YDS Optimal DVFS Algorithm for Online Scheduling

A
frequency

3 —

Continuously update to the best schedule for all arrived tasks:
Time O: task v is executed at 2/8
Time 2: task v, arrives
= G([2,6]) =%, G([2,8]) =4.5/6=3/4 =>execute vg, Vv, at %
Time 3: task v, arrives
= G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v, and v, at 29/12
Time 6: task v, arrives
= G([6,8]) =1.5/2, G([6,14]) = 7.5/8 => execute v; and v, at 15/16
Time 10: task v arrives
= G([10,14]) = 39/16 => execute v, and v at 39/16

0,8,2

10,14,6

-50

YDS Optimal DVFS Algorithm for Online Scheduling

A

frequency
3 —

0,8,2

8 time

10,14,6

Continuously update to the best schedule for all arrived tasks:
Time O: task v is executed at 2/8
Time 2: task v, arrives
= G([2,6]) =%, G([2,8]) =4.5/6=3/4 =>execute vg, Vv, at % 12,17,2
Time 3: task v, arrives
= G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v, and v, at 29/12
Time 6: task v, arrives
= G([6,8]) =1.5/2, G([6,14]) = 7.5/8 => execute v; and v, at 15/16
Time 10: task v arrives
= G([10,14]) = 39/16 => execute v, and v at 39/16
Time 11 and Time 12
" The arrival of vg and v, does not change the critical interval
Time 14:
= G([14,17]) = 4/3 => execute v, and v, at 4/3

Remarks on the YDS Algorithm

» Offline

" The algorithm guarantees the minimal energy consumption while satisfying the
timing constraints

= The time complexity is O(N3), where N is the number of tasks in V
= Finding the critical interval can be done in O(N?)
= The number of iterations is at most N

= Exercise:

= For periodic real-time tasks with deadline=period, running at constant speed with
100% utilization under EDF has minimum energy consumption while satisfying the
timing constraints.

= Online

= Compared to the optimal offline solution, the on-line schedule uses at most 27
times of the minimal energy consumption.

-52

Dynamic Power Management

-53

Dynamic Power Management (DPM)

 Dynamic power management tries to assign optimal
power saving states during program execution

* DPM requires hardware and software support

Example: StrongARM SA1100

400mW
RUN: operational 0 RUN }
LLS

IDLE: a SW routine may stop the A 160ms
CPU when not in use, while 90us 64m)

L 10us 36,
monitoring interrupts a H
SLEEP: Shutdown of on-chip (

50mW op 160pW

Dynamic Power Management (DPM)

application states

shut down wake up
busy waiting I busy
| |
| ,
run I T sleep Tou I run
_ ! !
power states
T.4: shutdown delay T,,,: Wakeup delay

T,: waiting time

Desired: Shutdown only during long waiting times. This

leads to a tradeoff between energy saving and overhead.

-55

Break-Even Time

Definition: The minimum waiting time required to compensate
the cost of entering an inactive (sleep) state.

" Enter an inactive state is beneficial only if the waiting time is longer than the
break-even time

= Assumptions for the calculation:

Workload
information

|
No performance penalty is tolerated. :
|
|

An ideal power manager that

has the full knowledge of the future
workload trace. On the previous slide,
we supposed that the power manager
has no knowledge about the future.

SYSTEM

-56

Break-Even Time

application states

> power states

T. P,
busy waiting busy ‘
, State transition
run sleep run
Tsd Twu
PSd -PS Pwu
Scenario 1 (no transition): FE; =1, - P,

Scenario 2 (state transition): Fo = Tsq - Psqa + Twu - Pwu + (T — Tsq — Tww) - Ps

Break-even time:

Break-even constraint:

Time constraint:

Limit for 7,, such that E < Ej

T

Vv

Tsd'(Psd_Ps)_l_Twu'(Pwu_

P;)

break-even
— time

Tw 2 Tsd + T'wu

— P,

-57

Break-Even Time

Tw Py
busy waiting busy ‘
/state transition | application states
run sleep run ‘
T., T >~ power states
Pgq P P,

remove, if power manager has

X . no knowledge about future
Scenario 1 (no transition): FE; =1, - P,

Scenario 2 (state transition): Fs = Tsq - Psq + Twu - Puwu + (1L Toww) - Ps
Break-even time: Limit for 7,, such that E,
break-even
«— time

Break-even constraint: Ty >

Time constraint: Ty 2 Tsa+ Ty

Power Modes in MSP432 (Lab)

LFEXIN, LFXOUT,

HFXIN HEXOUT PixtoP10x PJx
4 DCOR 4 4
v | 4 " tPvsspoman r ‘ The MSP432 has one
| | (éapamlt;lve '_rl_c:urz:r;h1 ||a;% 01‘ . . .
apaciiuve ouc
poM Pss ! Backen || F—— active mode in 6 different
cs | rre_c WDT_A Momoer |, _ _ _
/O Port /0 Port
coner Lo Clock : Real-Time | | Watchdog | | conrr || o o Conflguratlons which all
System Clock Timer P1to P10 PJ .
owA N | ||| rvos | | evos allow for execution of
8 Channels I |
AdresT— - e il el e il ol code.
Bus Data l - - - - - -
r-——-—- == l Control l
e | S T T T |
| L s | [o It has 5 major low power
| (includes . AES256
ARM Flash (Peripheral RSTCTL SYSCTL
' Cortex-M4F I i Driver ; mOdeS (LPO LP3 LP4
| r— 256KB Memory) Library) Reset System Eﬁfrcy;'t'itg’n CRC32 ! ! !
: | 128KB ggﬁg 1oKE Controller Controller Decryption LP3 . 5’ LP4. 5), Some Of
i .
M them can be in one of
| . .
i I
|| o sysmex | | several configurations.
| | | | |
| FPB, DWT [| B . o
| USCI_AO,
e 1 precson | | Comn 80, ||| e o || TTAY || | e | [eusorar ||| S5SGE0
: omp_| A ' USCI_A2, -0
' I . SUSCI A3 sUSCLB2, In tOtaI, the MSP432 can
[1TAG. SWD | 1 Msps, Analog RV?Itage Tl-rg;eé'_tA 2 x 32-bit - eUSCI_B3
1 elerence 1 - - -
| | SARAD. | | Comparster 5 CCR Tirmers Jungr | e, sey be in 18 different low
e ‘
| IS L

power configurations.

Copyright © 2017 Texas Instruments Incorporated

active mode (32MHz): 6 - 15 mW ; low power mode (LP4): 1.5 - 2.1 pyW 9-59

Power Modes in MSP432 (Lab)

"= Transition between modes can be handled using C-level interfaces to the power
control manger.

Hard Reset

= Examples of interface functions:
" uint8 t PCM_getPowerState (void)
" bool PCM_gotolLPMO (void)
" bool PCM_gotolLPM3 (void)
" bool PCM_gotolLPM4 (void)
" bool PCM_shutdownDevice (uint32_t shutdownMode)

LPM3.5 or 4.5
(stop or
shutdown)

Battery-Operated Systems and Energy Harvesting

-61

Embedded Systems In the Extreme - Permasense - =

\.‘ -
‘- v}
& he
Py |
Y -
\ '
n\.
{
:
-\-.
A '
Y

e P T FPT T TSN

Reasons for Battery-Operated Devices and Harvesting

= Battery operation:
" no continuous power source available
= mobility

" Energy harvesting:
= prolong lifetime of battery-operated devices
= infinite lifetime using rechargeable batteries
= autonomous operation

NIRRT A S
— 7 —— > = V
5 — I LOAD o
H —
zZ Energy K

- Inetic

Antenna Matching Rectifier/Filter ~ Pwr Mgmt Module Low Power Load
Battery/Capacitor o \

radio frequency (RF) harvesting

Typical Power Circuitry — Power Point Tracking

Energy Generated [} Power
Energy Dissipated || Management
Controls
Thermoelectric]\
Photovoltaic 0 —’ _’ __’J% Eq \
" " &
Piezoelectric < "‘Q
Conversion Energy Voltage Electronic
Harv r S0 o
e Circuit(s) Storage Stabilization Load

power point tracking / impedance
matching; conversion to voltage
of energy storage

rechargeable battery
or supercapacitor

- 66

Solar Panel Characteristics

25°C .
18 = Variable output power
AM-1.5, 100mW/cm?

= |[luminance level
vV = Electrical operation point
[= (Temperature, age, ...)

—
(o)}

—i
NN

—
(A

= |-\V-Characteristics
= Non-linear
= Dependent on ambient

Current [mA/cm?] |
o

o N~ OO @

= Maximum Power Point Tracking

0 02 04 06 08 10 = Dynamic algorithm to find P*
Voltage [V/cell] |/

Diagram: Amorton Amorphous Silicon Solar Cells Datasheet, © Panasonic

Typical Power Circuitry — Maximum Power Point Tracking

U/I curves of a typical solar cell:

[, P

red: current for different light intensities

blue: power for different light intensities

grey: maximal power

tracking: determine optimal impedance
seen by the solar panel

simple tracking algorithm (assume constant illumination) :

start new iteration k: = k+1

)
sense V(k), I(k)
P(k) = V(k) * I(k)

set V(k+1) = V(k) + A

set V(k+1) =V(k) - A

end iteration k |«

\ 4

Maximal Power Point Tracking

start new iteration k := k+1

Y/

sense VK], I[K]

set £1] = VIK] + A set VIk+1] = VIK] - A

|
Y

t!nd iteration k

Maximal Power Point Tracking

/

start new iter.ation k: = k+1

set V(k+1) = V(k) + A

set V(k+1) =/V(}l/A

end iteration(:/

-70

Maximal Power Point Tracking

/

start new iteiation k: = k+1

sense k), (k)

set V(k+1) = V(k) + A

sey V(k+1) = V(k) - A

end iteration k |e

-71

Maximal Power Point Tracking

start new iterlation k: = k+1

sense V[k), I(k)
P(k) = V[k) * I(k)

yes P(k) > P ? no

yes no yes
V(k) > V(k-1) ? >V(k-1) ?

setV(kil) = V(y{A/

\ set V(k+1) = V(k) - A
> end iterationk |«

-72

Maximal Power Point Tracking

start new iter“ation k: = k+1

sense V(k), I(k)
P(k) = V(k) * I(k)

s‘«;t V(kk\)QA
set V(k+1) = V(k) - A

end iteration k |e

-73

Typical Challenge in (Solar) Harvesting Systems

Challenges:

Example of a solar energy trace:

solar radiation (MJ m?)

What is the optimal maximum capacity of the battery?

What is the optimal area of the solar cell?

How can we control the application such that a continuous system operation is
possible, even under a varying input energy (summer, winter, clouds)?

w
o

hD
o

daily energy (MJ m™?)

-—
o

1 I
0 BD 12[] 180 240 300 360 o

day of the year

351
30 1
25 1
20 1
19 1
10 1

|
‘ll l ‘ I W ‘ | 5 -

| M

2000 2001 2002 2003

-74

Example: Application Control

Scenario: i

energy flow
energy source [energy storage
iInformation
| flow
energy estimator > controller > consumer

= The controller can adapt the service of the consumer device, for example the
sampling rate for its sensors or the transmission rate of information. As a result,
the power consumption changes proportionally.

=" Precondition for correctness of application control: Never run out of energy.

= Example for optimality criterion: Maximize the lowest service of (or
equivalently, the lowest energy flow to) the consumer.

-75

Application Control

energy capacity B
e‘\-\a‘Qea

Formal Model: - -
p(t) u(t) discrete time t

Q
energy source [energy storage

b(t)
p(T)) u(t)

energy estimator p—— > controller > consumer

" harvested and used energy in [t, t+1): p(t), u(t)

= battery model: b(t + 1) = min{b(t) + p(t) — u(t), B}

= failure state: b(t) + p(t) —u(t) <0

= utility: 1 is a strictly concave function;

Ul(ty,t2) Z (u higher used energy gives a reduced

reward for the overall utility.
bisT<ts 9-76

Application Control

= What do we want? We would like to determine an optimal control u*(t) for
time interval [t, t+1) for all tin [0, T) with the following properties:
= VO<t<T : b (t)+p(t)—u"(t) >0
"= There is no feasible use function u(t) with a larger minimal energy:
Yu : ' t)} < mi *(t
w s min fu(t)} < min {u”(t)}
* The use function maximizes the utility U(O, T).

" We suppose that the battery has the same or better state at the end than at the
start of the time interval, i.e., b*(T) > b*(0).

= We would like to answer two questions:
= Can we say something about the characteristics of u*(t) ?
* How does an algorithm look like that efficiently computes u*(t) ?

-78

Application Control

Theorem: Given a use function u*(t), t € [0,7) such that the system never enters a
failure state. If u*(t) is optimal with respect to maximizing the minimal used energy
among all use functions and maximizes the utility U(t, T), then the following
relations hold for all 7 € (0,7):

empty battery
W (r—1) < u* (1) = b*(r) = 0~

full batter
u*(T—1)>u*(T):>b*(T):B/ Y

Sketch of a proof: First, let us show that a consequence of the above theorem is
true (just reverting the relations):

Vre (s,t] : 0<b* (1)< B = Vre|st] : u'(r)=u"(t)

In other words, as long as the battery is neither full nor empty, the optimal use
function does not change.

-79

Application Control

= Proof sketch cont.: ' ——
= 60~ f\ —plt)
: pl— A
oy L/ =
S a0l i
E
|
==
ﬁ 2{]_ . —
2 \/
]]]]
930 240 250 260 270 280 290 300 310 320 33
100
— b (1)
£ 80
&
3 60 .
<
5 40 .
L
7 20 /
] L o™
930 240 250 zeu 2?0 280 zga 3:::0 sm 120 33
Time [weeks]

(top) Example of an optimal use function u*(t) for a given harvest function p(t)
and (bottom) the corresponding stored energy b*(t).

Application Control

= Proof sketch cont.:

suppose we change
the use function

—u*(t)
—pit)

h
=]

kly Energy Wh]
o
=]

B NVAUAM\;\
I Y,
r\MﬁL\Q\/ v,

locally from being —
constant such that
the overall battery

ESD 240 250 260 270 280 290 300 310 320 33
state does not change o

4

then the utility is worse
due to the concave
function (: diminishing
reward for higher

use function values; and
the minimal use function
IS potentially smaller

4

State—of-Charge [%8]

AW

| |
BSD 240 250 260 2?0 280 290 BCICI 310 320 33
Time [weeks]

(top) Example of an optimal use function u*(t) for a given harvest function p(t)
and (bottom) the corresponding stored energy b*(t).

Application Control

= Proof sketch cont.: Now we show that for all 7 € (¢,7T)

u (r—1)<u"(r) = b"(1) =0
or equivalently

b*(1) >0 = u"(r—1) > u™(7)
We already have shown this for 0 < b*(7) < B. Therefore, we only need to
show that|b*(7) = B = u" (7 — 1) > ™ (7) |. Suppose now that we have
u* (T — 1) < u*(7) if the battery is full at 7. Then we can increase the use at
time 7 — 1 and decrease it at time 7 by the same amount without changing the
battery level at time 7 + 1 . This again would increase the overall utility and
potentially increase the minimal use function.

—

7 % <> ®v(r+1) initial, not optimal
o ue oS __ choice of the use
®u function
T—1 T T+ 1 -

Application Control

= Proof sketch cont.: Now we show that for all 7 € (¢,7T)

u (r—1)<u"(r) = b"(1) =0
or equivalently

b*(1) >0 = u"(r—1) > u™(7)
We already have shown this for 0 < b*(7) < B. Therefore, we only need to
show that|b*(7) = B = u" (7 — 1) > ™ (7) |. Suppose now that we have
u* (T — 1) < u*(7) if the battery is full at 7. Then we can increase the use at
time 7 — 1 and decrease it at time 7 by the same amount without changing the
battery level at time 7 + 1 . This again would increase the overall utility and
potentially increase the minimal use function.

b* (T
(1) < B ® b (r+1) feasible, but

* e L Dbetter choice of
use function with

u (r—1) > u* (1)

T—1 T T+ 1 —

-83

Application Control

—u'(t)

[\ —plt)

h
[

(=]
=]

Weekly Energy [Wh]
I
[}

330 240 250 260 270 280 290 300 310 320 33
100
£ 80]
ik]
[]
g 60 —
9
S 40 —
:
& 20 /
| | | I | | | | [

SBD 240 250 260 270 280 2890 300 310 320 33
Time [weeks]

(top) Example of an optimal use function u*(f) for a given harvest function p(f)
and (bottom) the corresponding stored energy b*(t).

Application Control

= How can we efficiently compute an optimal use function?

" There are several options available as we just need to solve a convex optimization
problem.

= Asimple but inefficient possibility is to convert the problem into a linear program.
At first suppose that the utility is simply

U@O,7)= Y u(r)

This is not shown here.]

0<7<T
Then the linear program has the form: maximize Z u(T)
0<r<T
[Concave functions [t could be vr €0,T) : b(T +1) =b(r) — u(r) + p(7)
piecewise linearly approximated. Vrelo,T) : 0<b(r+1)<B
0,T)

p(t) 1

u(t)
b(t)

-86

u(t) , U@

p(t) 1 1) P T b(1)
4 4
3 O 3
2 ® ® 2
1 O T 1
¥ | i . ¢

Application Control

= But what happens if the estimation of the future incoming energy is not correct?

If it would be correct, then we would just compute the whole future application
control now and would not change anything anymore.

This will not work as errors will accumulate and we will end up with many
infeasible situations, i.e., the battery is completely empty and we are forced to
stop the application.

Possibility: Finite horizon control

= At time t, we compute the optimal control (see previous slides) using the currently
available battery state b(t) with predictions ﬁ(’r) forall t<7<t+71 and
b(t+T)=0b(t).

= From the computed optimal use function u(7) forallt <7 <t + T we just take the
first use value u(t) in order to control the application.

= At the next time step, we take as initial battery state the actual state; therefore, we
take mispredictions into account. For the estimated future energy, we also take the
new estimations.

- 88

Application Control

= Finite horizon control:

—
t t+1

compute the optimal use function in [t, t+T)
using the actual battery state at time t

apply this use function in the interval [t, t+1).

compute the optimal use function in [t+1, t+T+1)
using the actual batter state at time t+1

-89

Application Control using Finite Horizon

State-of-Charge [%)]

- | e 111
= 60 ~ ’
= s 1) _ _
3 0 ——il~——, €Stimated Iinput
& energy
$ 20 |
= AV
0 | | | \ :
230 240 250 260 270 280 290 300 310 @ \L» still energy
breakdown
100 ~ v i due to misprediction
80 /_
60 —
40| .
20 |
930 240 250 260 270 260 290 300 310 320 33

Time [weeks]

Application Control using Finite Horizon

— “{t]

-—--ilt) ~J—_, MNOre pessimistic

[*2]
[==]

5 . P
> P prediction
5 40 w117 () _ -
> = simplified
-
8 201 ‘ -~ optimization
- ' using a look-
| l l | l | l l l
930 240 250 260 270 280 290 300 310 320 33 Up-table

[not covered]

<
|

(o]
[
|

@
(=]
|

I
o
|

State-of-Charge [%]

n
o
|

| | | | | | | | |

0

230 240 250 260 270 280 290 300 310 320 33
Time [weeks]

Remember: What you got some time ago ...

10-

What we told you: Be careful and please do not ...

10-

Return the boards at the
embedded systems exam!

Embedded Systems
10. Architecture Synthesis

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Lecture Overview

1. Introduction to Embedded Systems :

2. Software Development ‘
" 3. Hardware-Software Interface Nk

,_{,,--——4. Programming Paradigms N
Software S ~yHardware-

/ Softwar
. Real-time Scheduling J Software

. Embedded Operating Systems

5

6

7. Shared Resources /
8. Hardware Components ;
9

Hardware < . Power and Energy '
|- 10. Architecture Synthesis <
I

Implementation Alternatives

Performance
Power Efficiency

General-purpose processors

Application-specific instruction set processors (ASIPs)

Microcontroller

DSPs (digital signal processors)

Programmable hardware

FPGA (field-programmable gate arrays)

Application-specific integrated circuits (ASICs)

Flexibility

10-

Architecture Synthesis

Determine a hardware architecture that efficiently executes a given algorithm.

" Major tasks of architecture synthesis:
" qgllocation (determine the necessary hardware resources)
" scheduling (determine the timing of individual operations)

" binding (determine relation between individual operations of the algorithm and
hardware resources)

» (Classification of synthesis algorithms:
" heuristics or exact methods

= Synthesis methods can often be applied independently of granularity of
algorithms, e.g. whether operation is a whole complex task or a single
operation.

10-

10-8

Specification Models

10-

Specification

» Formal specification of the desired functionality and the structure (architecture)
of an embedded systems is a necessary step for using computer aided design
methods.

» There exist many different formalisms and models of computation, see also the
models used for real-time software and general specification models for the
whole system.

= Now, we will introduce some relevant models for architecture level (hardware)
synthesis.

10-10

Task Graph or Dependence Graph (DG)

Sequence
constraint ... @\ Nodes are assumed to be a
W ,program® described in

@ some programming

@ @ language, e.g. C or Java; or

just a single operation.

A dependence graph is a directed graph G=(V,E) in whichEcC V x V
is a partial order.

If (v1, v2) € E, then v1 is called an immediate predecessor of v2 and
v2 is called an immediate successor of v1.

Suppose E* is the transitive closure of E. If (v1, v2) € E*, then vl is
called a predecessor of v2 and v2 is called a successor of v1.

10-11

Dependence Graph

A dependence graph describes order relations for the execution of single
operations or tasks. Nodes correspond to tasks or operations, edges correspond
to relations (,,executed after”).

Usually, a dependence graph describes a partial order between operations and
therefore, leaves freedom for scheduling (parallel or sequential). It represents
parallelism in a program but no branches in control flow.

A dependence graph is acyclic.
Often, there are additional quantities associated to edges or nodes such as

= execution times, deadlines, arrival times
= communication demand

10-12

Dependence Graph and Single Assignment Form

given basic block: dependence graph
X=a+b;
y=c-d;
z=x%*y;
y=b+d;

single assighment
form:

XxX=a+b;

y=c-d;

z=x*y;
vi=b+d;

10-13

Example of a Dependence Graph

10-14

Marked Graph (MG)

= A marked graph G =(V, A,del) consists of
= nodes (actors) veV

" edges a=(vj,vj)e A, AcVxV
= number of initial tokens (or marking) on edges del : A — Z=°

d€l1
* The marking is often represented in form of a vector: del = | del;

d€l|A|

o0
e e ﬁ

10-15

10-16

Marked Graph

* The token on the edges correspond to data that are stored in FIFO queues.

" A node (actor) is called activated if on every input edge there is at least one
token.

= A node (actor) can fire if it is activated.

= The firing of a node v, (actor operates on the first tokens in the input queues)
removes from each input edge a token and adds a token to each output edge.
The output token correspond to the processed data.

= Marked graphs are mainly used for modeling regular computations, for example
signal flow graphs.

10-17

Marked Graph

Example (model of a digital filter with infinite impulse response IIR)

= Filter equation:

y(l) = q-u(|)+bl- y(l-1)+c-y(l-2)+d-y(I-3)

= Possible model as a marked graph: .-
// ’,:h/’/’/”’r
Ty nodes 3-5:

w

Y

XtWey

node 2: x=0

10-18

Implementation of Marked Graphs

* There are different possibilities to implement marked graphs in hardware or
software directly. Only the most simple possibilities are shown here.

" Hardware implementation as a synchronous digital circuit:

= Actors are implemented as combinatorial circuits.

" Edges correspond to synchronously clocked shift registers (FIFOs).

—] >

A

A

clock

10-19

Implementation of Marked Graphs

= Hardware implementation as a self-timed asynchronous circuit:

Actors and FIFO registers are implemented as independent units.

The coordination and synchronization of firings is implemented using a handshake
protocol.

Delay insensitive direct implementation of the semantics of marked graphs.

ack - ack
rdy g rdy
actor Y
FIFO actor
rdy - rdy A FIFO

C =

ack ack

Y

10-20

Implementation of Marked Graphs

= Software implementation with static scheduling:

At first, a feasible sequence of actor firings is determined which ends in the

starting state (initial distribution of tokens).
This sequence is implemented directly in software.

Example digital filter:
feasible sequence:

tl

t2

t9
t4
t8

(9«8 £5
input u T fork t6

a d C b B
———6E—6—T o
@

(11 21 3) 9) 4; 8) 5) 6) 7)
program: while (true)

{
read (u) ;
a*tl;
t24+d*t9;

= t8;
= t3+c*t9;
= t£06;

td+b*t8;
th;

write(y, t6);}

10-21

Implementation of Marked Graphs

= Software implementation with dynamic scheduling:

= Scheduling is done using a (real-time) operating system.
= Actors correspond to threads (or tasks).

= After firing (finishing the execution of the corresponding thread) the thread
is removed from the set of ready threads and put into wait state.

" |tis putinto the ready state if all necessary input data are present.

= This mode of execution directly corresponds to the semantics of marked
graphs. It can be compared with the self-timed hardware implementation.

10-22

Models for Architecture Synthesis

A sequence graph Gg = (Vg, Eg) is a dependence graph with a single start node
(no incoming edges) and a single end node (no outgoing edges).
V; denotes the operations of the algorithm and E; denotes the dependence relations.

A resource graph Gr = (Vg, ER), Vg = Vg U Vp models resources and bindings.
V- denote the resource types of the architecture and G, is a bipartite graph. An edge
(vs,vt) € Ep represents the availability of a resource type v, for an operation v..

Cost function ¢ . Vip — Z.

Execution times w : Ep — ZZ=9 are assigned to each edge (vs, v¢) € Ep
and denote the execution time of operation vg € Vg on resource type v; € Vi .

10-23

Models for Architecture Synthesis - Example

Example sequence graph:
= Algorithm (differential equation):

int diffeq(int x, int y, int u, int dx, int a) {
int x1, ul, yl;
while (x < a) {

x1l = x + dx;

ul = u - (3 * x * u * dx) - (3 * y * dx);
vl =y + u * dx;

x = x1;

u = ul;

y = yl;

}

return y;

}

10-24

Models for Architecture Synthesis - Example

= Corresponding sequence graph:

int diffeq(int x, int y, int u, int dx, int a) {
int x1, ul, y1;
while (x < a) {
x1l = x + dx;
ul = u - (3 * x * u * dx) - (3 * y * dx);
vyl =y + u * dx;

x = x1;
u = ul;
y = yl;
}
return y;

}

Gg = (Vg, Eg)

10-25

Models for Architecture Synthesis - Example

= Corresponding resource graph
with one instance of a

multiplier (cost 8) and one 30
X

instance of an ALU (cost 3):

multiplier
o (r1)=1

c(ry) =8

10-26

Allocation and Binding

An allocation is a function « : Vi — Z29 that
assigns to each resource type v+ € Vo the num-
ber a(vy) of available instances.

A binding is defined by functions g : Vg — Vg
and v : Vg — Z>0. Here, 8(vs) = vy and v(vs) =
r denote that operation vs € Vg Is implemented
on the rth instance of resource type vy € V.

10 - 27

Models for Architecture Synthesis - Example

= Corresponding resource graph
with 4 instances of a

multiplier (cost 8) and two 30
X

instance of an ALU (cost 3):

multiplier

0{(1‘1)—\}\/4

10-28

Models for Architecture Synthesis - Example

R N
_NOPL0
- A r; L

= Example binding (o(r,) = 4, a(r,) = 2):

B(v1) =r1,v(v1) = 1,
B(v2) = r1,v(v2) = 2,
B(v3) = r1,v(v3) = 2,
B(va) = 12,7v(vg) = 1,
B(vs) = r2,v(vs) = 1,
B(vg) = r1,v(ve) = 3,
B(vz) = r1,v(vy) = 3,
B(vg) = r1,v(vg) = 4,
B(vg) = r2,7v(vg) = 1,
B(v10) = 7r2,7(v10) = 2,
B(v11) = r2,v(v11) = 2

10-29

Scheduling

A schedule is a function r : Vg — Z>9 that
determines the starting times of operations. A
schedule is feasible if the conditions

T(v;) — 7(v;) > w(v;) V(v;,v5) € Eg

are satisfied. w(v;) = w(v;, B(v;)) denotes the
execution time of operation v;,.

The latency L of a schedule is the time differ-
ence between start node vg and end node wvy:

L =71(vn) — 7(vg) .

10-30

10-31

Nop; 0
> on ,..}-,

Models for Architecture Synthesis - Example

—
[}
—

Example: L=1(vy,)-tlvy) =7

T(vy) =1

-
N

b ’r

~ ’

T(Vy) = T(vy) = 1

N\

T(V,) = t(vyy) =2

T(v3) =3

\

T(Vg) = T(vy) = 4

|

-——r-——-——-—-——---——-—-——t - -k - - ==
;. U I R R ———
Fd Y
\\
Eh Y
‘\.‘“ \.&
b bl
[s%a] -1 [e [SS] -
-
CU 4 R4 I R A
."-__./ -~
~ b
@ |
.
hn

T(V5) =5

|

T(Vg) = T(Vs) =6 —

o

T(Vg) =7

T(Vy,) = 8 'f“":’*%‘ n

10-32

Multiobjective Optimization

10-33

Multiobjective Optimization

= Architecture Synthesis is an optimization problem with more than one objective:
= Latency of the algorithm that is implemented
= Hardware cost (memory, communication, computing units, control)
= Power and energy consumption

= Optimization problems with several objectives are called “multiobjective
optimization problems”.

= Synthesis or design problems are typically multiobjective.

10-34

Multiobjective Optimization

= Let us suppose, we would like to select a typewriting device. Criteria are

= mobility (related to weight)

= comfort (related to keyboard size and performance)

. . comfort

lcon Device weight (kg) rating
E= PC of 2020 20.00 10
E PCof1984 7.50 7
= Laptop 3.00 9
B Typewriter 9.00 5
& Touchscreen Smartphone 0.09 3
& PDA with large keyboard 0.11 2

10-35

comfort

lcon Device weight (kg) rating
1 1 1 1 1 1 =l PCof 2020 20.00 10
Multiobjective Optimization = oo o0 e
= Laptop 2.00 9
B3 Typewriter 9.00 5
0 Touchscreen Smartphone 0.09: 3
PDA with large keyboard 0.11 2

writing comfort

10

Touchscreen

better

@ Pareto-optimal
O dominated

1
1
1
1
Smartphone i ter
! i
1
1
L : - (@) —
I]
- | _— i
! Laptop _PC of 2009
- G o e e e e e 1
- S
1 y/4 1 1 1 1 1 1 1 1 | .
I /4 | | | 1 1 1 1 1 1 »
| 0.1 4 10 20 weight

10-36

Pareto-Dominance

Definition : A solution a € X weakly Pareto-dominates a
solution b € X, denoted as a < b, if it is as least as good in
all objectives, i.e., fila) < f;(b) for all 1 < i < n. Solution
a is better then b, denoted as a < b, iff (a < b) A (b A a).

Decision space Objective space

10 - 37

Pareto-optimal Set

= Asolution is named Pareto-optimal, if it is not Pareto-dominated by any other

solution in X.

* The set of all Pareto-optimal solutions is denoted as the Pareto-optimal set and
its image in objective space as the Pareto-optimal front.

f2 4

objective space Z:

Pareto optimal = not dommated

£,

10-38

Architecture Synthesis without Resource Constraints

10-39

Synthesis Algorithms

Classification
» ynlimited resources:
® no constraints in terms of the available resources are defined.

" [imited resources:

= constrains are given in terms of the number and type of available resources.

Classes of synthesis algorithms
= jterative algorithms:
= an initial solution to the architecture synthesis is improved step by step.
= constructive algorithms:
= the synthesis problem is solved in one step.

" transformative algorithms:
= the initial problem formulation is converted into a (classical) optimization problem.

10-40

Synthesis/Scheduling Without Resource Constraints

The corresponding scheduling method can be used
" as a preparatory step for the general synthesis problem
" to determine bounds on feasible schedules in the general case
» if thereis a dedicated resource for each operation.

Given is a sequence graph Gg(Vs, Fg) and a resource graph Gr(Vg, ER).
Then the latency minimization without resource constraints
with a(v;) — oo for all v; € Vi is defined as

L = min{7(v,) — 7(vo) : 7(v;) — 7(v;) > w(v;, B(v;)) V(vs,v;) € Eg}

10-41

ASAP Algorithm

ASAP = As Soon As Possible

ASAP(Gg(Vg, Eg),w) {
T(vg) = 1
REPEAT {

7(v;) = max{7(v;)

RETURN (7);

Determine v; whose predec. are planed,

w(v;) V(vj,v;) € Eg}

} UNTIL (v is planned);

10-42

The ASAP Algorithm - Example

Example:)

"f’ \-.

N(’)P‘L 0
\
- ’

w(v,) =1 .

& @ © @8 @
S W

10-43

ALAP Algorithm

ALAP = As Late As Possible

AI—AP(GS(VSaES)awaLmaaD) {
’T(’Un) = Lmaz + 1,
REPEAT {
Determine v; whose succ. are planed,;
7(v;) = min{7(v;) V(v;,v;) € Eg} — w(v;)
} UNTIL (vg is planned);
RETURN (7);

10-44

ALAP Algorithm - Example

Example:

10-45

Scheduling with Timing Constraints

There are different classes of timing constraints:

= deadline (latest finishing times of operations), for example

T(v2) + w(vz) <5
= release times (earliest starting times of operations), for example
T(v3) > 4

= relative constraints (differences between starting times of a pair of operations), for
example

T(ve) —7(v7) > 4
T(vg) —7(v1) < 2

10-46

10 - 47

Scheduling with Timing Constraints

We will model all timing constraints using relative constraints. Deadlines and
release times are defined relative to the start node v,

Minimum, maximum and equality constraints can be converted into each other:

= Minimum constraint:
T(vj) = 7(v;) + Ui — 7(v;) — 7(v;) > I
= Maximum constraint:
T(vy) < 7(v;) + i — 7(v) — 7(vy) = =5
= Equality constraint:
T(vj) = 7(v;) + i — 7(vy) — 7(v;) <l A
T(v;) — 7(v;) 2 U5

10-48

Weighted Constraint Graph

Timing constraints can be represented in form of a weighted constraint graph:

A weighted constraint graph Go = (Veo, Eq, d)
related to a sequence graph Gg = (Vg, Eg)
contains nodes Vo = Vg and a weighted edge
for each timing constraint. An edge (v;,v;) €
Lo with weight d(v;, v;) denotes the constraint

7(v5) — 7(v;) = d(v;, v5).

10-49

Weighted Constraint Graph

" |n order to represent a feasible schedule, we have one edge corresponding to
each precedence constraint with

d(v;,vj) = w(v;)
where w(v,) denotes the execution time of v..

= A consistent assighment of starting times t(v,) to all operations can be done by
solving a single source longest path problem.

= A possible algorithm (Bellman-Ford) has complexity O(|V.| |E.|) (“iterative
ASAP”):

Iteratively set 7(v;) := max{7(v;), 7(v;)+d(v;,v;) :
(vi,vj) € Eg} for all v; € Vi starting from
7(v;) = —oo for v; € Vo\{vg} and 7(vg) = 1.

10-50

Weighted Constraint Graph - Example

Example: w(v,) = w(v,) =2 w(v,) = w(v,) =1

T(vg) = 7(v1) = 7(v3) =1, 7(v2) =3,
(vg) =5, 7(vp) =6, L =1(vp) —7(vg) =5

10-51

Architecture Synthesis with Resource Constraints

10-52

Scheduling With Resource Constraints

Given is a sequence graph Gg = (Vg, Eg), a re-
source graph G = (Vg, Eg) and an associated

allocation a and binding (.
dependencies are respected

Then the minimal latency is defined as there are not more than the available
resources in use at any moment in

time and for any resource type
L = min{r(vy) :
(7(vy) — 7(v;) > w(vi, B(vy)) V(vi,v5) € Es) A
(Hvs 1 B(vs) = vt A 7(vs) <t < 7(vs) +w(vs,ve) H < aor)
Y € VT,V]. <t < Lmaa:)}

where Lmnmar denotes an upper bound on the
latency.

10-53

List Scheduling

List scheduling is one of the most widely used algorithms for scheduling under
resource constraints.

Principles:

= To each operation there is a priority assigned which denotes the urgency of being
scheduled. This priority is static, i.e. determined before the List Scheduling.

= The algorithm schedules one time step after the other.

= U, denotes the set of operations that (a) are mapped onto resource v, and (b)
whose predecessors finished.

= T, denotes the currently running operations mapped to resource v, .

10-54

List Scheduling

LIST(Gs(Vg, Eg),Gr(Vg, Er),a,B,priorities){

=4 resource types
REPEAT {
FORALL vfe Vi { v € Vs with 5(v) = v

determine candidates to be scheduled Uy;
determine running operations T7y;
choose S, C U with maximal priority
and |S,| + [Tk < a(v);
T(v;)) =t Yv; € Sg; }
t=t+ 1;
} UNTIL (v, planned)
RETURN (7); }

10-55

List Scheduling - Example

Example: G Kop 0 0 G

LIST(Gs(Vy, Eg),Gr(Vg, ER),a,B,priorities){ e
t=1;
REPEAT {

FORALL VL © Vr { 8
determine candidates to be scheduled Uy; ol
determine running operations T},
choose S C U, with maximal priority 4

and |Sg| + |Tk| < a(vg); e
T(v;)) =t Yv; € S}
t=1t+ 1;
} UNTIL (v, planned)
RETURN (7); } e

o (rz):l

10-56

List Scheduling - Example

Solution via list scheduling:

" |nthe example, the solution is
independent of the chosen priority
function.

*= Because of the greedy selection principle,
all resource are occupied in the first
time step.

= List scheduling is a heuristic algorithm:
In this example, it does not yield the minimal
latency!

KOP) 0
4"

’ -

10-57

List Scheduling Sl

Solution via an optimal method:

" Latency is smaller than with
list scheduling.

algorithm is the transformation
into an integer linear program as
described next.

"= An example of an optimal \)7

10-58

Integer Linear Programming

Principle:

Synthesis Problem

l transformation into ILP

Integer Linear Program (ILP)

l optimization of ILP

Solution of ILP

l back interpretation

Solution of Synthesis Problem

10-59

Integer Linear Program

Yields optimal solution to synthesis problems as it is based on an exact
mathematical description of the problem.

Solves scheduling, binding and allocation simultaneously.

Standard optimization approaches (and software) are available to solve integer
linear programs:

= in addition to linear programs (linear constraints, linear objective function) some
variables are forced to be integers.

= much higher computational complexity than solving linear program

= efficient methods are based on (a) branch and bound methods and (b)
determining additional hyperplanes (cuts).

10-60

10-61

Integer Linear Program

Many variants exist, depending on available information, constraints and
objectives, e.g. minimize latency, minimize resources, minimize memory. Just an

example is given here!!

For the following example, we use the assumptions:

* The binding is determined already, i.e. every operation v; has a unique execution
time w(v,).

* We have determined the earliest and latest starting times of operations v; as |, and
h, respectively. To this end, we can use the ASAP and ALAP algorithms that have
been introduced earlier. The maximal latency L, is chosen such that a feasible
solution to the problem exists.

10-62

Integer Linear Program

minimize:
subject to

7(vn) — 7(vo)
Tt € {0,1} Vv, €Vg Vt:1[; <t<h; (1)
hi
Z r,t =1 Vv € Vg (2)
t=l;
hi
D texiy=r71(v;) Yu; € Vg (3)

t=lI;

T(v;) — 7(v) > w(v;) V(vi,v;) € Eg (4)

min{w(v;)—1,t—1;}

2.

Vi:(v;,vp)EER

Z ',L.i’t—p’ S a(vk)

p'=max{0,t—h;}

Vo € Vip Vit 1 1 <t <max{h;:v; € Vg} (5)

10-63

10-64

10 - 65

Integer Linear Program

Explanations:

(1) declares variables x to be binary .

(2) makes sure that exactly one variable x;, for all t has the value 1, all others are 0.

(3) determines the relation between variables x and starting times of operations .

In particular, if x;, = 1 then the operation v; starts at time t, i.e. T(v;) = t.

(4) guarantees, that all precedence constraints are satisfied.

(5) makes sure, that the resource constraints are not violated. For all resource
types v, € V;and for all time instances t it is guaranteed that the number of active
operations does not increase the number of available resource instances.

10 - 66

Integer Linear Program

Explanations:

= (5) The first sum selects all operations that are mapped onto resource type v,. The
second sum considers all time instances where operation v; is occupying resource

type v, :

w(f‘i):—lx B { 1 Vtir(v) <t < 7(v;) +wlv) —1
LW—p —

‘ O : sonst
p'=0
X1,t-p’ 2 X2.t-p’ Z z Xi,t-p”
pZ L NG 2 MG @)
24 2+ 2 e
|1 eeee 1T oo 1T @@ ®
° ” 000> — 000 —'+—+000— ® >-o-0—
1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 t

10-67

Architecture Synthesis for Iterative Algorithms and
Marked Graphs

10-68

Remember ... : Marked Graph

Example (model of a digital filter with infinite impulse response IIR)

= Filter equation:

y(l) = q-u(|)+bl- y(l-1)+c-y(l-2)+d-y(I-3)

= Possible model as a marked graph: .-
// ’,:h/’/’/”’r
Ty nodes 3-5:

w

Y

Xt+tWey

node 2: x=0

10-69

Iterative Algorithms

" [terative algorithms consist of a set of indexed equations that are evaluated for
all values of an index variable [

Here, x;denote a set of indexed variables, F; denote arbitrary functions and d;,
are constant index displacements.

= Examples of well known representations are signal flow graphs (as used in signal
and image processing and automatic control), marked graphs and special forms
of loops.

10-70

Iterative Algorithms

Several representations of the same iterative algorithm:
" One indexed equation with constant index dependencies:

yll] = aull] + byl — 1] 4+ cy[l — 2] 4 dy[l — 3]

" Equivalent set of indexed equations:

ro|l] =z
r3|!]
y[!]

::CQ

:513‘3

v1[1) = aull
1) + dyll - 3
1]+ cyll - 2
1)+ byll — 1.

Vi
Vi
Vi
Vi

Vi

10-71

Iterative Algorithms

Extended sequence graph G = (V,, Eg, d): To each edge (v, v,) € Eg there is associated
the index displacement d;. An edge (v, v,) € E5 denotes that the variable
corresponding to v; depends on variable corresponding to v; with displacement d.

u X
0 A 0
O——0O

Equivalent marked graph:

10-72

Iterative Algorithms

» Fquivalent signal flow graph:

O—| a

u

" Fquivalent loop program:

a*tl + d*t2 + c*t3 + b*t4;

* d C
z1 z1
while (true) {
tl = read(u) ;
ts =
t2 = t3;
t3 = t4;
t4d = t5;

write(y,

t5);}

10-73

Iterative Algorithms

An iteration is the set of all operations necessary to compute all variables x;[/]
for a fixed index /.

The iteration interval P is the time distance between two successive iterations of
an iterative algorithm. 1/P denotes the throughput of the implementation.

The latency L is the maximal time distance between the starting and the
finishing times of operations belonging to one iteration.

In a pipelined implementation (functional pipelining), there exist time instances
where the operations of different iterations / are executed simultaneously.

10-74

Iterative Algorithms

" mplementation principles

" Asimple possibility, the edges with d;; > 0 are removed from the extended

sequence graph. The resulting simple sequence graph is implemented using
standard methods.

Example with unlimited resources:

O—O—@—@ czz\ |
execution

times w(v;)

one iteration L=7
one physical iteration P=7
no pipelining

10-75

Iterative Algorithms

Implementation principles

Using functional pipelining: Successive iterations overlap and a higher throughput
(1/P) is obtained.

Example with unlimited resources (note data dependencies across iterations!)

u

X1 Xo 0 X3 1

one physical iteration one iteration

p=2

t
L=7

0 0
-O——@

e 4 resources
e functional pipelining

10-76

Iterative Algorithms

Solving the synthesis problem using integer linear programming:.

Starting point is the ILP formulation given for simple sequence graphs.
" Now, we use the extended sequence graph (including displacements d;).

= ASAP and ALAP scheduling for upper and lower bounds h; and /; use only edges
with d;; = 0 (remove dependencies across iterations).

= We suppose, that a suitable iteration interval P is chosen beforehand. If it is too
small, no feasible solution to the ILP exists and P needs to be increased.

10-77

Integer Linear Program

minimize:
subject to

7(vn) — 7(vo)
Tt € {0,1} Vv, €Vg Vt:1[; <t<h; (1)

hj
Z r,t =1 Vv € Vg (2)
t=l;
hi
Z t-x;y = 7(v;) Vv € Vg (3)

t=lI;
T(v;) — 7(v;) > w(v;) V(v v;5) € Eg

min{w(v;)—1,t—1;}

> > Ti gy < a(vg)

Vi:(v;,vp)EER p'=max{0,t—h;}
Vo € Vip Vit 1 1 <t <max{h;:v; € Vg} (5)

10-78

Iterative Algorithms

Eqn.(4) is replaced by:

r(07) = () = w(op|— dij - P| Y(vs,v5) € g

>

Proof of correctness:
T(’Uz')\‘ / /
o4 @ ltmlld }.
| j :. : l : . ,
’T(Uj)/ ?
) d P

10-79

Iterative Algorithms

Eqn. (5)isreplacedby SRR
w(v;)—1

> > > fL’z',t—p a(vy)

Vii(vj,vp)eEER p'=0 | Vp:l;<i—p'+p P<h;
V1 <t< P, Vv, € Vp

Sketch of Proof: An operation v;starting at t(v;) uses the corresponding resource at

time steps t with ,
t=r7(v;)+p —p-P

Vp',p:0<p <w(v) Al <t—p +p-P<h

w(v;)—1

Z Z Li t—p/+p-P

p'=0 Vpi;<t—p'4p P<h;

Therefore, we obtain

10-80

Dynamic Voltage Scaling

If we transform the DVS problem into an integer linear program optimization: we
can optimize the energy in case of dynamic voltage scaling.

Shows how one can consider binding in an ILP.

As an example, let us model a set of tasks with dependency constraints.

= We suppose that a task v, € V. can use one of the execution times w,(v;) V k € K and
corresponding energy e,(v;). There are |K| different voltage levels.

= We suppose that there are deadlines d(v,) for each operation v..

= We suppose that there are no resource constraints, i.e. all tasks can be executed in
parallel.

10-81

Dynamic Voltage Scaling

minimize: Yrck eV Yik - ek (Vi)
subject to: vir €{0,1} Yv; € Vg, ke K

Z Yl = 1 Vu; € VS
keK

ke K

ke K

(1)
(2)

T(v;) —7(v;) > D i - wi(v;) V(v;,v5) € Eg

(3)

T(v) + Y yip - wip(v;) < d(v;) Vo € Vg (4)

10-82

Dynamic Voltage Scaling

minimize: ZkEK Z’U%'EVS Yik * ek(vi)

subject to: yir €{0,1} Vv, € Vg, ke K (1)
Y oyik=1 Yy €Vg (2)
keK

T(v;) — 7(v) 2 D yir - wi(v) V(v;,v5) € Eg
keK
(3)
(i) + D ik - wi(v) <d(v;)) Yo, € Vg (4)
keK

10-83

Dynamic Voltage Scaling

Explanations:
" The objective functions just sums up all individual energies of operations.
= Eqgn. (1) makes decision variables y, binary.

= Egn. (2) guarantees that exactly one implementation (voltage) k € K is
chosen for each operation v; .

= Egn. (3) implements the precedence constraints, where the actual
execution time is selected from the set of all available ones.

= Egn. (4) guarantees deadlines.

10- 84

Chapter 8

= Not covered this semester.
= Not covered in exam.

= |f interested: Read

© 2018

Embedded System Design

Peter Marweds

E’;‘S?gegded System Embedded Systems Foundations of Cyber-Physical

iy Funtoons Systems, and the Internet of Things

Autoren: Marwedel, Peter

» Zeige nachste Auflage

7 Vorschau » |

10-85

Remember: What you got some time ago ...

10 - 86

What we told you: Be careful and please do not ...

10 - 87

Return the boards at the
embedded systems exam!

