Embedded Systems

1 - Introduction

© Lothar Thiele

Computer Engineering and Networks Laboratory

Hochschule Zrich
e of Technology Zurich

Herbstsemester 2021
227-0124-00L Embedded Systems

Daten der Belegungseinschrankung

Lecture Organization e ..,B,.,,,m,
200 q::’

Anzahl Studierende in der Warteliste zum Zeitpunkt 14.09.2021 13:23

Organization
WWW: https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html
Lecture: Lothar Thiele, thiele@ethz.ch; Michele Magno <michele.magno@pbl.ee.ethz.ch>

Coordination: Seonyeong Heo (ETZ D97.7) <seoheo@ethz.ch>
References:
= P, Marwedel: Embedded System Design, Springer, ISBN 978-3-319-85812-8/978-3-030-
60909-2, 2018/2021.
= G.C. Buttazzo: Hard Real-Time Computing Systems. Springer Verlag, ISBN 978-1-4614-
0676-1, 2011.
® Fdward A. Lee and Sanjit A. Seshia: Introduction to Embedded Systems, A Cyber-
Physical Systems Approach, Second Edition, MIT Press, ISBN 978-0-262-53381-2, 2017.

Sources: The slides contain ideas and material of J. Rabaey, K. Keuzer, M. Wolf, P.
Marwedel, P. Koopman, E. Lee, P. Dutta, S. Seshia, and from the above cited books.

Organization Summary

= Lectures are held on Mondays from 14:15 to 16:00 in ETF C1 until further notice.
Life streaming and slides are available via the web page of the lecture. In
addition, you find audio and video recordings of most of the slides as well as
recordings of this years and last years life streams on the web page of the
lecture.

= Exercises take place on Wednesdays and Fridays from 16:15 to 17:00 via Zoom.
On Wednesdays the lecture material is summarized, hints on how to approach
the solution are given and a sample question is solved. On Fridays, the correct
solutions are discussed.

= Laboratories take place on Wednesdays and Fridays from 16:15 to 18:00 (the
latest). On Wednesdays the session starts with a short introduction via Zoom
and then questions can be asked via Zoom. Fridays are reserved for questions
via Zoom.

Further Material via the Web Page

Lecture Slides Exercises and Laboratory

All lecture stides are available for download as a bundle:
Generic Documents

- Embedded Systems lacture stides [single page farmat] & Embeddad System Go Supplementary Material

~ Embedded Systems lecture shides [4on1 page format] & Remote Instatiation Instructions

Lecture Recordings Documents for Lab 0
Handout Source fcode)
Life Recordings Autumn 2021 Stides and videos Solution (code and handout)

Dacuments fer Lab 1
The life recordings of the lectures in Autumn Semester are available at the following link

Embedded Systems Life Recordings AS 2021 Handout Source icode)
/ Siides and vidoos. Solution (coda and handout)
Life Recordings Autumn 2020 Dacuments for Lab 2
Handout Source lcade]
The life recordings of last years lecture are avaitable at the following links
Slides and videos Solution (zade and handout)

1. Lecture 1: Chapters 1. Introduction and 2. Software Development N iimante far 1 2 1

2. Lecture 2: Chaplers 2. Saftware Development and 3. Hardware-Sottware Interface

Seme of the chaplers are documented via carefully recoreded wideos. They contain some
af the slides as well as audio explanations,

Audio and Videos of Selected Chapters

- 1. Introduction
- 2. Software Development

3. Hardwara Software Inferface

When and where?

Schedule
When Where
Lectures Monday 14:15 - 16:00 ETFCI
Exercises Wednesday 16:15 - 17:00 Zoom
Friday 16:15-17:00 Zoom
Labs Wednesday 16:15 - 18:00 Zoom
Friday 16:15 - 18:00 Zaom
Timetable
Date Lecture Exercice Lab
27.09.2021 1. Introduction
7 Software Development
29.09./01.10.2021 0. Prelab [MM]
04.10.2021 3. Hardware-Software In-
terface
N4 08 10 7091 1 Biare Mt Brnaram-

What will you learn?

= Theoretical foundations and principles of the analysis and design of embedded
systems.

= Practical aspects of embedded system design, mainly software design.

The course has three components:
= [ecture: Communicate principles and practical aspects of embedded systems.
= Exercise: Use paper and pencil to deepen your understanding of analysis and
design principles .
= Laboratory (ES-Lab): Introduction into practical aspects of embedded systems
design. Use of state-of-the-art hardware and design tools.

Please read carfully!!

= https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html

Exercises and Lahoratory

We urgently ask all students to do the laboratory on their own hardware. For this, we
provide you with a virtual machine that has all the necessary software already pre-
installed. You can find the installation instructions on GitLab. We have tested this setup on
PCs and Laptops with an USB port that run Windows 10, macQS Catalina, as well as Linux
Mint and Linux Ubuntu 18.04 and 20.04; in general, all platforms which can run VirtualBox
should work. In exceptional circumstances where this is not possible, students are allowed
to use the computers in ETZ D61.1 or ETZ D96.1 during the regular laboratory hours (Wed-
nesday or Friday 16.15 - 18.00). In such a case, please send an email with your name and
Legi number to the lecture coordinator. You will receive a time slot and room allocation
that guarantees thai the maximum occupation of the computer rooms is respected. You
are not allowed to enter ETZ D61.1 or ETZ D96.1 during the laboratory hours if you do not
have an allocated slot.

What you got already...

Be careful and please do not ...

-10

You have to return the board at the end!

. PAYBXCK TIME

-11

Embedded Systems - Impact

-12

Embedded Systems

Embedded systems (ES) = information processing systems
embedded into a larger product

Examples: o QK & T e

ﬁ E m’Q Mg
LR -

=1l : NAls N
= G A - R e © ¢

'.}-.{..
B

.j#

Often, the main reason for buying is not information processing

© www.braingrid.org
© www.openpr.com

1-14

Many Names - Similar Meanings

A

- =
| Smarter W \
Internet of \'\ Planet m” i to /‘
Everything f (M2M) [
e

Internet of i
Things The Fog
(teT) r,,_-’ TSensors
Industry 4.0] Trillion
v ‘/ The Industrial éensurs)
Internet

Cyber-Physical Systems

© Edward Lee

1-15

Embedded System

CYBER
WORLD

Embedded System

@

Computation \
(reasoning |
deciding

. big data

R

Communication

PHYSICAL
WORLD

observing

— influencing ﬁ—

physical/biological/social
processes

Use feedback to influence the dynamics of the physical
world by taking smart decisions in the cyber world

|

-19

Reactivity & Timing

Embedded systems are often reactive:

Reactive systems must react to stimuli from the system environment :

A reactive system is one which is in continual interaction with is environment and
executes at a pace determined by that environment” [Bergé, 1995]

Embedded systems often must meet real-time constraints:

For hard real-time systems, right answers arriving too late are wrong. All other
time-constraints are called soft. A guaranteed system response has to be explained
without statistical arguments.

A real-time constraint is called hard, if not meeting that constraint could
result in a catastrophe” [Kopetz, 1997].

System

Predictability & Dependability

e Controlier | e
| I—

Uil |

CPS = cyber-physical system

N\

“It is essential to predict how a CPS is going to behave under any
circumstances [...] before it is deployed.”Mai14

“CPS must operate dependably, safely, securely, efficiently and in
real-time.”Rai10

Majl4 R Majumdar & B. Brandenburg (2014). Foundations of Cyber-Physical Systems.
Rail0 B Rajkumar et al. (2010). Cyber-Physical Systemns: The Next Computing Revolution.

Efficiency & Specialization

= Embedded systems must be efficient:

Energy efficient
Code-size and data memory efficient

Run-time efficient
Weight efficient
Cost efficient

-

Embedded Systems are often specialized towards a certain

application or application domain:

= Knowledge about the expected behavior and the system environment at design
time is exploited to minimize resource usage and to maximize predictability and
reliability.

Comparison
Embedded Systems: General Purpose Computing
* Few applications that are known at = Broad class of applications.
design-time.
= Not programmable by end user. = Programmable by end user.
® Fixed run-time requirements (additional = Faster is better.

computing power often not useful).

= Typical criteria: = Typical criteria:
= cost = cost
= power consumption = power consumption
= size and weight = average speed

= dependability
= worst-case speed

Lecture Overview

N

(o8]

Hardware <

@b

. Introduction to Embedded Systems .
. Software Development '
. Hardware-Software Interface

. Programming Paradigms

Embedded Operating Systems

. Real-time Scheduling

Shared Resources

. Hardware Components

. Power and Energy
-10.

Architecture Synthesis

\

N I

\

‘\";' Hardware-

/ Software

-24

Components and Requirements by Example

Components and Requirements by Example
- Hardware System Architecture -

1-29
EEPROM:
] L - H H L H H » electrically erasable programmable
High-Level Block Diagram View High-Level Block Diagram View il
low power CPU higher performance CPU Acronyms: sensor board . "'S?td for fingnfare (i?aft of:iata and
* enabling power to the rest of the system * sensor reading and motor control * Whkup: Wakeup signal B zﬁar\:‘;r; co?]fil-lgzuritivolrf Se?ta)
* battery charging and voltage » flight control * GPIO: General-purpose input/output 10DOF IMU | EAnHAE t;e easily overwritten in
m.easureme.nt + telemetry (including the battery voltage) signal e comparison to Flash
» wireless radio (boot and operate) + additional user development * SPI: Serial Peripheral Interface Bus i Erlid
* detect and check expansion boards « USB connection * 12C: Inter-Integrated Circuit (Bus) o
— o n:\sslw:z sfus'rzsm - 7 * PWM: Pulse-width modulated Signal T)
U - " - a 2 p W
:mﬁ‘“ UY :mmum L Motor driver VCC: power Supply i :m% |- Motor driver
I '—\ [12C 12C

UART: P
M PII2CIGPIO/PWM

* communication protocol (Universal S = : WKup/OW/GPIO EEFROM’ =
5 3 & +5 'ower supplies
e Asynchronous Receiver/Transmitter) [¥ and battery charger | chargervBaTACC Exphnsion port [

* exchange of data packets to and from

interfaces (wireless, USB) 58 Data Flash memory:
MUSB port . MUSB port ST "
J * non-volatile random-access memory

- .0 system architecture for program and data m architecture

High-Level Physical View

ON power domain Power switched by nRF51 (VCC)

10DOF IMU

3-axis accelerometer
- 3-axis gyro
. 3-axis magnetomer
- Pressure sensor

RF power
amplifier

Motor driver

12C

¥ SPI/I2C/IGPIO/PWM
N a WKup/OW/GPIO
45y Power supp . EEPROM
and battery charger Expansion port

Charge/VBAT/VCC

USB Data
to STM32

Crazyflie 2.0 system architecture

| 61 £ CS3
62 MOTOR4

ew PB10 23

Low-Level Schematic Diagram V i

High-Level Physical View

= = = T P - : : : = y bh1s |34 NRF_SWCLK
ath |35
(g] e e [36 " NRF_swi0

Always ON power domain Power switched by nRFS1 (PB1S

PCO/ADC12_IN1D |—&
PC1/AD JIN11

A N1z 10 LED_GREEN ¥
3/ADC12_IN13 |11 LED_RED

LED_RED
GR

10DOF IMU

- 3-axis accelerometer

H - 3-axis gyro P T 1)
RF power i - 3-axis miqn!lu}u/ p & 5 -8°E% 5% o3 H =
amplifier H - Pressure senso . o B

Lo H

ISP 2C/GPIO/PWM

& WkuétOWlGP\O ’
45V Power supp . EEPROM
and battery charger Charge/VBAT/VCC Expansion port
USB Data
HUSE port to STM32

Crazyflie 2.0 system architecture

Low-Level Schematic Diagram View iz

P88
PBY

PB12

e ML TR
-k
mome by o in oo AREE
iy -
e
e

PB13
PB4
PB15

PCO/ADC12_IN10O

| 61 ECS3
62 MOTO!

30 MOTOR2
34 NRF_SWCLK
35 4

36 NRF_SWIO

B LED_RED_L
GREEN

[LED GREEN L
220 LED GREEN R/

High-Level Software View

11 LED_R,

—

[=

B
L
vy

-+ |Motors

-36

= The software is built on top of a real-time operating system “FreeRTOS".

= We will use the same operating system in the ES-Lab

Crazyflie Software

FreeRTOS

Tasks

Queues

FreeRTOS Hardware-Interface Code

High-Level Software View

The software architecture supports

real-time tasks for motor control (gathering sensor values and pilot commands,

sensor fusion, automatic control, driving motors using PWM (pulse width

modulation, ...) but also

non-real-time tasks (maintenance and test, handling external events, pilot

commands, ...).

1-37
High-Level Software View
Block diagram of the stabilization system:
Variance
caloualtion
P anct ogic m
take bias
MPUBOSO Gyro
Set to:
I12C read Sampled value
ssperam sz [[17] stz [Axis mappng [~y ‘”’z;‘f“ﬂ l l
Iovipass filter: 256 Hz
Sersar fusion filter H—tP Stabilization —an A:j‘;ﬁ’ M Motors
MPUEOSO Accel
Set fo: T T
| 1] 12Cread | | First order Sampled value
pccsamplerate tkHz [[["] SooHz lowpass @50 Hz [P converted 15 G
Lowpass filtered 260 Hz
Commandsr
(pilot contraly
sensor reading & transfer to cleaning and information
analog-digital ~ processor preprocessing extraction from automatic control actuation
conversion sensors
on sensor
component 1-40

Components and Requirements by Example
- Processing Elements -

What can you do to increase performance?

From Computer Engineering

50.000,000,000

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000

Transistor count

1,000,000
500,000

100,000
50,000

10,000 s
5000 s

1,000
S A1 Ak 0 4B D o & H B u $ 0 O W b e
RACALIC SC G CC A

‘ore visualizations and research on this topi Licansed Linder CC-BY-SA by the author Max Aoy

From Computer Engineering

iPhone Prozessor A12

= 2 processor cores *
- high performance

* 4 processor cores - less
performant

* Acceleration for
Neural Networks

* Graphics processor-
* Caches

I _ DOR Loglc '!

el T

What can you do to decrease power consumption?

Embedded Multicore Example

Trends:

= Specialize multicore processors towards real-time processing and low power
consumption (parallelism can decrease energy consumption)

(o) W VX b1
SCIENTIFIC CONTROL

= Target domains: K=
“imace - SioNAL DATA

Number of
ore Generation | bl

Andey 256 i5 75
Bostan 2014} 256 50 30
Coolidge (2015) | &4/256/1024 75 15

Why does higher parallelism help in reducing power?

1-48
System-on-Chip
Samsung Galaxy S6
— Exynos 7420 System on a Chip (SoC) ‘
— 8 ARM Cortex processing cores Exynos 5422
(4 x A57, 4 x A53) Dispiay / Camera Momory 1/
— 30 nanometer: transistor gate width S v
(s | mwmus
W
e sasmaia
TS
High speed | / F
EEETTES
T
1-50

How to manage extreme workload variability?

-51

System-on-Chip

Samsung Galaxy S6

— Exynos 7420 System on a Chip (SoC) = A
— 8 ARM Cortex processing cores Exynos 5422

(4 x A57, 4 x A53)
— 30 nanometer: transistor gate width

ke

LI Cacme

=1 1 ==

Law Power Multi-layer AXI / AHE Bus.

e
Ergre

Extermal Priphoral I

SVIREL2Cacne

Momory 1/ F

10805 130fpa Coder

r MHHE

JPEG HW cadec

z
b

h spued

LS80

Modem |/ F

i
o I

52

From Computer Engineering

iPhone Prozessor A12

* 2 processor cores
- high performance

* 4 processor cores - less
performant

« Acceleration for
Neural Networks

* Graphics processor —
* Caches

Components and Requirements by Example
- Systems -

Zero Power Systems and Sensors

Mainframe

=

Workstation

Zero Power Systems and Sensors

Wirebonding

Power-On fleset [POR)
Solar | Sieep
Cell | Cul | mager Curl == Imager

/ Layer 1
i - rmp- Timer 1(130nm)

Layer2

ol o=l Power-On Reset (POR) | siesprn | o
= e y
i e e DSPCore | NasaAM | (BSnm)
| il = (Cortoni0) | (16k8)
Power-On Resat (POR)

\, Brown-Out Detector (BOD)
GOC Frontend Locations Power Management Unit

[Layer 4
210 pm 1 i (180nm)
40 5m 140 wm 240 pum 190 e W e Sep Cur
ot val CTRLCore | RSRAM
5 (Cartex-MO] | (3K8)
Gloal Optical Commurication (GOC)
Y

A DECAP LAYER Layer s

att

IEEE Journal of Solid-State Circuits,
Jan 2013, 229-243.

... SHLAACEL

|IEEE Journal of Solid-State

Circuits, April 2017, 961-971.

1=57

; l Streaming information to

) « .
& N i and from the physical world:
10° "\ Laptop

- e J * mm-scale ” y

£ 10° M= * sensors * “Smart Dust

S— 5

g (& -* » Sensor Networks

2 10° Mini- H \ .

S Computer - i, v *, * Cyber-Physical Systems
10° oo % * Internet-of-Things (loT)
10° . . - : S‘marl F’hone =

1960 1970 1980 1990 2000 2010 2020
Year
1-56
Trends ...

= Embedded systems are communicating with each other, with servers or with the cloud.
Communication is increasingly wireless.

= Higher degree of integration on a single chip or integrated components:
= Memory + processor + |/O-units + (wireless) communication.
= Use of networks-on-chip for communication between units.
= Use of homogeneous or heterogeneous multiprocessor systems on a chip (MPSoC).

= Use of integrated microsystems that contain energy harvesting, energy storage, sensing,
processing and communication (“zero power systems”).

= The complexity and amount of software is increasing.

= low power and energy constraints (portable or unattended devices) are increasingly important,
as well as temperature constraints (overheating).

= There is increasing interest in energy harvesting to achieve long term autonomous operation.

Embedded Systems

2. Software Development

© Lothar Thiele

Computer Engineering and Networks Laboratory

Where we are ...

. Software Development
. Hardware-Software Interface

Software . Programming Paradigms

. Embedded Operating Systems
. Real-time Scheduling

Shared Resources

. Hardware Components

. Power and Energy

O RN AW N e

Hardware <

-
o

. Architecture Synthesis

. Introduction to Embedded Systems .

“;Hardware-
/ Software

!

Remember: Computer Engineering |

Compilation of a C program to machine language program:

Emmmmme textual representation
w of instructions

[Object Machine language modue | [Object: Library routine (machine language) |

~,
heS

~, . .
~binary representation
Executable: Machine language program ‘ [- Uf instructions and data

Embedded Software Development

[Software Developer]
previous
slide Software :
Source Code l Simulator

Compiler

Binary | | operating
Code system

Debugger

: : Sensors
actuators

HOST

EMBEDDED SYSTEM

Software Development with MSP432 (ES-Lab)

2-4

icrol LED
UsE Red, Green

r \
EnergyTrace+ | .

ESD

Protection w Current = bug
1 ‘ h 4
LDO L Power
5V, 33V Switch —
........................ toTarget | __. i
[host PC
| Crystal 1 Target Device 40-pin LaunchPad

48 MHz ‘7 MSPA32P401R

standard headers

!

User Interface
Buttons and LEDs

Software Development (ES-Lab)

Software development is nowadays usually done with the support of an IDE
(Integrated Debugger and Editor / Integrated Development Environment)
= edit and build the code
= debug and validate

Compiler

Standard
Runtime
Libraries

RTOS
Libraries

lib

Software Development (ES-Lab)

assembly
code

source code

filein C

relocatable
object file

object libraries
that are referenced
in the code

el

object libraries that
contain the operating
system (if any)

Standard RTOS
Compiler Runtime g
aom
lib

target configuration file
specifies the connection to the
target (e.g. USB) and the target device

the executable output file

that is loaded into flash
/memory on the processor

Linker command file that tells the linker
how to allocate memory and to stitch
the object files and libraries together.

report created by the linker describing
where the program and data sections
are located in memory.

Software Development (ES-Lab)

object librarie e
assembly that are referd’”
code in the code */

int
source code
filein C

relocatable _—"]

object file

Linker command file tha
how to allocate memor
the object files and libra]. ..

* Main function

main(void)

/* Halting WDT and disabling master interrupts */
MAP_WDT_A_holdTimer();
MAP_Interrupt_disableMaster();

/* Seed the pseudo random num generator */
srand(TLV->RANDOM_NUM_1) ;

/* Set the core voltage level to VCORE1 */
MAP_P(M_setCoreVoltagelevel (PCM_VCORE1);

/* Set 2 flash wait states for Flash bank @ and 1%/
MAP_FlashCtl_setWaitState(FLASH_BANK@, 2);
MAP_FlashCtl_setWaitState(FLASH_BANK1, 2);

/* Default SysTick period for all 4 color states = ©0.5s */
periods[@] = 1500000;
periods[1] = 1500000;
periods[2] = 1500000;
periods[3] = 1500000;

to the
target device

output file
into flash
e processor

| &

Software Development

SRR R R AR R RN R R R R R AR R AR R R AR R R AR NN

object libraries

as.;embly that are referenced
code in the code

source code

filein C

relocatable _—"]

object file

Linker command file that tells}

how to allocate memory and
the object files and libraries t

;* FUNCTION NAME: SysTick Handler
i

Regs Modified : A1,A2,A3,A4,V9,5P,LR,SR,D0,08_hi,D1,D1_hi,D2,D2_hi,
D3,D3_hi,D4,04_hi,D5,D5_hi,D6,06_hi,07,07_hi,
FPEXC, FPSCR

.
© A1,A2,A3,A4,V9,5P, LR, 5R,00,00_hi,D1,D1_hi,D2,02_hi, * JICE
.

H

i

i

o

H

;* Regs Used

* D3,D3_hi,D4,D4_hi,D5,D5_hi,D6,D6_hi,D7,D7_hi,

i FPEXC, FPSCR

;* Llocal Frame Size : @ Args + @ Auto + 4 Save = 4 byte
T T T T

.ducfi cfa_offset, @

PUSH {A4, LR}

.dwcfi cfa_offset, 8

.dwcfi save_reg_to_mem, 14, -4
.ducfi save_reg_to_mem, 3, -8
.dwpsn file “../main.c"”,line 374,column 5,is_stmt,isa 1

; [DPU_3_PIPE]

LDR A1, $CHCONGA ; [DPU_3_PIPE] |374|
LDR A1, [A1, #0] ; [DPU_3_PIPE] |374]|
P A1, #1 ; [DPU_3_PIPE] |374|
BNE | IscsL2e] | 3 [DPU_3_PIPE] |374]

; BRANCHCC OCCURS {||$csLze] |}

5 11 1374

.dupsn file "../main.c”,line 375,column 9,is_stmt,isa 1

LDR A2, $CHCONBS ; [DPU_3_PIPE] |375]|
LDR A1, [A2, #0] ; [DPU_3_PIPE] |375]
ADDS A1, A1, #1 ; [DPu_3_pIPe] |375]
STR a1, [A2, #0] ; [DPU_3_PIPE] |375]

(1=

MEMORY

{
MAIN (RX) : origin = , length =

m INFO (RX) : origin = @x@0200008, length = Bx00004000

w#ifdef _ TI_COMPILER_VERSION__ i i

#if __TI_COMPILER_VERSION__ >= 15009000 arget configuration file
ALTAS pecifies the connection to the
SRAM_CODE (RWX): origin = 8x81000000 arget (e.g. USB) and the target device
SRAM_DATA (RW) : origin = @x20@00000
} length = @xoeeleoee

#else
/* Hint: If the user wants to use ram functions, please observe that SRAM_CODE * the executable output file
/* and SRAM_DATA memory areas are overlapping. You need to take measures to separate Wi

/* data from code in RAM. This is

SRAM_DATA (RW) : origin
#endif
#endif

}

relocatable _—"]

object file

SRAM_CODE (RWX): origin = 8x01000800, length = 0x08018080
= Bx20000008, length = 0x9E019080

only valid for Compiler version earlier than 15.89.8.STS.%/ that is loaded into flash
/memory on the processor

Linker command file that tells the linker
how to allocate memory and to stitch
the object files and libraries together.

report created by the linker describing
where the program and data sections
are located in memory.

MEMORY CONFIGURATION |La b)

name origin length used unused attr fill

a o target configuration file
;‘:ég £0000000 0004GOPA 0EEBRFAs BOA3IFAFG : : ct libraries that B L g :
SRAM_CODE 01000000 00010000 0OOGD26E ORRFAIE AW X SpECIerS the connection to the
SRAM_DATA 20000000 00010000 DOOBO2GE DBOGTAIE AW

ain the operating

SEGMENT ALLOCATION MAP

run origin load origin lemgth init length attrs members
600000BO 000B0EAR BAOBAT1E @0REOFle r-x
r-- .intvecs
00000Ged 00PAGPe 0OOORdBa AEEGOdBa r-x .text
02000270 20080e70 2000005 02000@5c r
de r

20000000 28000000 D0000BEE PODBRBRE rw-
20000000 20000000 0000OSO 0000EARD rw- .data
20000050 20000050 0000G018 POQPEED ru- .bss

2000000 2000fe00 80800200 00000000 -
2008fe08 20p@fedd 0000200 PESEEBED

relocatable
object file

e
Linker command file that tells the linker
how to allocate memory and to stitch
the object files and libraries together.

report created by the linker describing
where the program and data sections
are located in memory.

target (e.g. USB) and the target device

the executable output file
that is loaded into flash
memory on the processor

-11

Software Development (ES-Lab)

object libraries

that are referenced contain the operating
in the code

assembly
code

target configuration file
specifies the connection to the
target (e.g. USB) and the target device

object libraries that

system (if any)

source code
file in C
—
<?xml version="1.8" encodin,

<configurations XML_version
<configuration XML_versioi

TF

<instance XML_version

<choice Name="SWD
</property>

</platform>
</connection>
</configuration>
</configurations>

" jd="configurations_8">

.2" id="configuration @">

2" desc="Texas Instruments XDS11@ USB Debug Probe" href="connections/ ...
1.2" id="Texas Instruments XDS11@ USB Debug Probe">

<instance XML_version="1.2"

<property Type="choicelist"

<platform XML_version="1.2" id="platform_8">
<instance XML_version="1.2" desc="MSP432P401R" href="devices/msp432pd@lr.xml"” id= ...

the executable output file
that is loaded into flash
memory on the processor

d Standard | ‘
Runtime .RTQS
1 Libraries B Libraries

dib

8" standalone="no"?>

1.2" href="drivers/tixds510cs_dap.xml" id="drivers" xml= ...
rivers/tixds510cortexM.xml" id="drivers" xml= ...
"2" id="SWD Mode Settings">

Mode - Aux COM port is target TDO pin” value="nothing”/>

describing
Ia sections

Much more in the ES-PrelLab ...

= The Pre-lab is intended for students with missing background in software
development in C and working with an integrated development environment.

Timetable
Date Lecture Exercice Lab
27.09.2021 1. Introduction

Z Software Development

29.09./01.10.2021 0. Prelab [MM]

04,10.2021 3. Hardware-Software In- \
terface

-13

Much more in the ES-PrelLab ...

= The Pre-lab is intended for students with missing background in software

development in C and working with an integrated development environment.

Embedded Systems 1.0.1 — Filling the gaps

Goals of this Lab

The goal of this lab session is to give a quick crash-course on all necessary background for the following
labs. You are expected to have some basic knowledge about programming, but programming an embedded
systems is slightly different than Python, Java, or Matlab.

Here are the main topics the pre-lab covers:

o Definitions and keywords — Know what you are talk about
o C programming — Review of the fundamentals
e Embedded systems programming — Specific types and basic operations

e Schematics — Find your way around a processor schematics

e Demo application — If you can make it, you're good to go!

Embedded Systems

3. Hardware Software Interface

© Lothar Thiele

Computer Engineering and Networks Laboratory

Do you Remember ?

Where we are ...

. Introduction to Embedded Systems
. Software Development ;

1
2
3
4. Programming Paradigms
[*-5. Embedded Operating Systems

6

7

8

9

Software '-’:

6. Real-time Scheduling
“7. Shared Resources
-8. Hardware Components
. Power and Energy
*10. Architecture Synthesis

Hardware <

. Hardware-Software Interface ¢

'y Hardware-
/ Software

J

High-Level Physical View

Always ON power domain

Power switched by nRF51 (

RF power
amplifier

= Wkup/OW/GPIO
+5V Power supplies

and battery charger

Charge/VBAT/VCC

10DOF IMU

- 3-axis accelerometer
axis gyro

- 3-axis magne!

- Pressure sensol

ISP 2C/GPIO/PWM

USB Data
HUSB port to STM32

’EEPROM

Expansion port

Crazyflie 2.0 system architecture

High-Level Physical View

ON power domain

RF power
amplifier

Wkup/OW/GPIO

Power switched by nRF51 (VCC)

:

10DOF IMU

- 3-axis accelerometer
- 3-axis gyro

- 3-axis magnetomer
- Pressure sensor

Motor driver

12C

SPI/IZCIGPIO/PWM

+5V N Power suppli
and battery charger

Charge/VBAT/VCC

USB Data
to STM32

EEPROM

Expansion port

Crazyflie 2.0 system architecture

What you will learn ...

SRAM / DRAM / Flash
Memory Map

= [Input and Output

UART Protocol
Memory Mapped Device Access
SPI Pratocol

= Interrupts
= Clocks and Timers

Clocks
Watchdog Timer
System Tick
Timer and PWM

Hardware-Software Interfaces in Embedded Systems
= Storage

Storage

Remember... ?

Always ON power domain Power switched by nRF51 (

10DOF IMU

- 3-axis accelerometer

H - 3-axis gyro
RF power i - 3-axis migneln}p/
amplifier H - Pressure sensos

SPI/IZCIGPIO/PWM
T

= WHUB/OWIGPIO 7 i
45y Power supp . EEPROM
and battery charger Charge/VBAT/VCC Expansion port

USB Data
HUSB port to STM32

Crazyflie 2.0 system architecture

MSP432P401R (ES-Lab)

LEXIN, LFXOUT,

HFXIN HFXOUT PlxtoPt0x Pix
| & ,DCOR +
l ‘ L I~ 77 7 iemascoman | J' x
I Capacitive Touch WO 0,
\ : Capacitive Touch 10 1
PSS
ol cs | rree WOT_A ::";:f' .
Power Pawer I 4 VO Parts 110 Ports
Control Supply Ciock \ Real-Tima Watchdog sica |!
System Clock Timer P10PI0 Py
| M 5 |
=i e e [o8 ||| muos 8Os
L1 MRS Fa— \ .
Address e - — - —-—-F - ll
Bus s 1
fmmm——— coun —
| cru \ Logic
i |
: ARM Flash msten || svsen SEEny
Cortex-MaF |
1 * p=h| 256KB Resat System Ef;::gﬂ CRC32
Il | 128K8 Conitroller Contraller Decryption
| I
1 MPU |
! I I 1
1| wvic.spTer | 1 i i i i
‘ ! | A N N 6 N D e B
! FPB.OWT |
i I TAD, TA1 eusCL A, &USCI_BD,
Pracision Comp_EO, 3 Timer32 eUSCI_A1 8o,
: ™, TRIU | ADC Comp E1 REF_A, TAZ,TA3 pps i :3%’3"
' smc.swo : 1 Maps, Analog P ind b 2x 326 useLas sUsCT 83
N SAR AD ference
' | S i |||, || e
e)

Copyright © 2017 Taxas nstruments incorporated

Storage
SRAM / DRAM / Flash

Static Random Access Memory (SRAM)

= Single bit is stored in a bi-stable circuit
= Static Random Access Memory is used for

= caches
= register file within the processor core

= small but fast memories

® Read:
1. Pre-charge all bit-lines to average voltage
2. decode address (n+m bits) bit-cell array
3. select row of cells using n single-bit word lines (WL) il 2 o row x 2™-col
4, selected bit-cells drive all bit-lines BL (2™ pairs) Fsm A mihnize
5. sense difference between bit-line pairs and read out overall latency)

= Write: m 2m diff pairs
= select row and overwrite bit-lines using strong signals 1

3-12

row enable

Dynamic Random Access (DRAM)
Single bit is stored as a charge in a capacitor 2 —]_‘—_LI / capacitor

= Bit cell loses charge when read, bit cell drains

over time
= Slower access than with SRAM due to small
storage capacity in comparison to capacity of RAS ‘
bit-line. J. bit-cell array
» Higher density than SRAM (1 vs. 6 transistors n 2" 20 row x 2m-col
rerbit) L (n=m to minmize
overall latency)
DRAMs require periodic refresh of charge M m T
* Performed by the memory controller —/wiw‘/
= Refresh interval is tens of ms T L
. . : A DRAM die comprises
* DRAM is unavailable during refresh CAS of multiple such arrays
(RAS/CAS = row/column address select) _

DRAM - Typical Access Process

1. Bus Transmission 2. Precharge and Row Access

DRAM

DRAM Column Decoder
Column Decoder .
Data In/Qut Sense Amps]
Buffers e[|
-

Data In/Out Sense Amps | I
Bhttecs MEMORY g T
... Bit Lines... cPU BUS | CONTROLLER (11 (T
| CONTROLLER -——
! =

2 |

cPU
Memory

Array

Memory
Array

Row Decoder
. | Word Lines

DRAM - Typical Access Process

3. Column Access 4. Data Transfer and Bus Transmission

DRAM DRAM
Column Decoder
I T

Sense Amps I

Data In/Out Sense Amps l
[== —
Buffers Sl — [T Bit Lines...
: |—— - - Bit Lines...
cPU 8Us | contRoLLER || = 2 H
— ; HEHE
= Memory s e =
ol g Array
2| 2
2 =

Row Decoder
L

Array

Row Decoder

Flash Memory

Electrically modifiable, non-volatile storage
Principle of operation:
= Transistor with a second “floating” gate
= Floating gate can trap electrons

= This results in a detectable change in
threshold voltage

Erasing Programming (=writing) Reading
to logical “1” to logical “0”

+5V
OV I +12v I
e —

“Quantum tunneling” “Hot-electron injection”

Drains charge from FG traps charge in FG Detect |, toread O or 1

Turn on low Vt or High Vt?

Programming via hot electron injection
12v

ov

[

SOURCE

NAND and NOR Flash Memory

drain-source resistance

\
N wes | 1 _‘__ _gate
Vin Vin voltage
erased Vread programmed
3-16

NAND NOR
Bit line
— Word line Contact
Word line "
Cell | =
Array T |
& Unit Cell 11 Jﬂ‘_.
Size B Unit Cell
Source line 5 Seueh hnﬁ
Cross- Bl L]
section S
-
Small Cell Size, High Density Fast random access
Features Low Power
= Mass Storage = Code Storage

-17

Example: Reading out NAND Flash

Selected word-line (WL) :
Unselected word-lines :

Target voltage (Viarget)

V'ead is high enough to have a low resistance in all

v transistors in this row
SSL ‘.,.I- :'J- :'J- Vread
bl e
Unselected WLs ::"] :::] :::] '.“"": drain-source resistance
"h Ilh "h vreada —_
Selected WL HEHHEHET Vtarget
] e e i E
] b \
e H H \
b X :l.g {:g =:g Vread . L. |
::: ‘.::] ”:'.l Vread Vi | Vin Vieod voltage
:i:g ::a ;:g ::f erased Viarget programmed
GSL #..I hl ="| Vread
=ov

Storage
Memory Map

-19

Example: Memory Map in MSP432 (ES-Lab)

Available memory:

= The processor used in the lab (MSP432P401R) has built in 256kB flash memory,

64kB SRAM and 32kB ROM (Read Only Memory).

Address space:

= The processor uses 32 hit addresses. Therefore, the addressable memory space is

4 GByte (= 232 Byte) as each memory location corresponds to 1 Byte.
= The address space is used to address the memories (reading and writing), to

address the peripheral units, and to have access to debug and trace information
(memory mapped microarchitecture).

= The address space is partitioned into zones, each one with a dedicated use. The

following is a simplified description to introduce the basic concepts.

Example: Memory Map in MSP432 (ES-Lab)

OxFFFF_FFFF

Memory map:
0xE000_0000
OxDFFF_FFFF
hexadecimal OxCO00_ 0000
representation OxBFFF_FFFF
of a 32 bit

each digit
corresponds
to 4 bit

00111111...1111
0010 0000 0000

0xAD00_0000

binary number; | OXOFFF_FFFF

0x8000_0000
OXTFFF_FFFF

0x6000_0000
Ox5FFF_FFFF

\ 0x4000_0000
\ Ox3FFF_FFFF

diff. = 0001 1111 ... 1111 — \

229 different addresses
capacity = 22° Byte =
512 MByte

0x2000_0000
'Dz‘IFFF_FFFF

0x0000_0000

Debug/Trace
Peripherals

Unused

Unused

Unused

Unused

Peripherals

SRAM

Code

-21

3-20
.
.
Example: Memory Map in MSP432 (ES-Lab)
OKFFFF_FFFF et ADDRESS RANGE PERIPHERAL
. ebug/Trace
Memory map: Peripherals 0x4000_0000 to (x4000_03FF Timer_AD
OxEQ00_0000 0x4000_0400 to 0x4000_07FF Timer_A1
OXDFFF_FFFF 0x4000_0BOD to 0x4000_0BFF Timer_A2
- Unused 0x4000_0C00 to 0x4000_OFFF Timer_A3
hexadecimal 0xC000_0000 0x4000_1000 to 0x4000_13FF eUSCI_AD
representation OxBFFF_FFFF 0x4000_1400 to 0x4000_17FF eUSCI_A1
of a 32 bit Unused 0x4000_1800 fo 0x4000_1BFF 6USCI_AZ
N 0x4000_1C00 to 0x4000_1FFF eUSCI_A3
binary number; il L ! !
V. : T OXSFFF_FFFF
each digit e
wes
corresponds 0x8000_0000 = =
to4 b|t OXTFFF_FFFF 0x4000_4400 to 0x4000_47FF RTC_C
Unused 0x4000_4800 to Ox4000_4BFF WDT_A
0x6000_0000 0x4000_4C00 to 0x4000_4FFF Port Module
OxSFFF_FFFF [TT]
Peripherals
00111111 1111\ *
0x4000_0000
0010 0000 0000 N oo Frre Table 6-21. Port Registers (Base Address: 0x4000_4C00)
N SRAM REGISTER NAME | ACRONYM [OFFSET from base add
diff. = 0001 1111 ... 1111 —» | N R
0x2000_0000 Port 1 Input P1IN 000h
229 different addresses Ox1FFF_FFFF Port 2 Input N 001h
capacity = 22 Byte = Coda Port 1 Output P1OUT 002h
512 MByte 0x0000_0000 Port 2 Output P20UT 003h 3.:

Example: Memory Map in MSP432 (ES-Lab)

OxFFFF_FFFF

Memory map:
0XE000_0000
OxDFFF_FFFF
hexadecimal OxCO00_ 0000
representation OxBFFF_FFFF
of a 32 bit

each digit
corresponds
to 4 bit

0xAD00_0000

binary number; | OXOFFF_FFFF

0x8000_0000
OXTFFF_FFFF

0x6000_0000
Ox5FFF_FFFF

Debug/Trace
Peripherals

Unused

Unused

Table 6-21. Port Registers (Base Address: 0x4000_4C00)

REGISTER NAME | ACRONYM | OFFSET
Port 1 Input P1IN 000h
Port 2 Input P2IN a01h

f Port 1 Output P1OUT 002h
Port 2 Output P20UT 003h

Unused

Unused

00111111 ...
0010 0000.....

1111
0x4000_0000
0000\\0‘3“;_“#

diff. = 0001 1111

1115 | N\

0x2000_0000

Peripherals

Schematic of LaunchPad as used in the Lab:

229 different addresses

capacity = 2% Byte =
512 MByte

OX1FFF_FFFF
l 0x0000_0000

Code

How do we toggle LED1 in a C program?

-23

Example: Memory Map in MSP432 (ES-Lab)

OxFFFF_FFFF

Memory map:
0xE000_0000
OXDFFF_FFFF
hexadecimal 0xC000_0000
representation OxBFFF_FFFF
of a 32 bit

0xAD00_0000

binary .m';mber: [0orFF FFFF
each digit

corresponds 0xB000_0000
to 4 bit Ox7TFFF_FFFF
0x6000_0000

Ox5FFF_FFFF

00111111 ... 1111
0x4000_0000
0010 0000 0000 \\ R

\

diff. = 0001 1111 ... 1111 —» \
0x2000_0000

229 different addresses Ox1FFF_FFFF

capacity = 22° Byte =

512 MByte 0x0000_0000

Debug/Trace
Peripherals

Unused

Unused

Many necessary elements are missing in the
sketch below, in particular the configuration of
the port (input or output, pull up or pull down
resistors for input, drive strength for output).
See lab session.

Example: Memory Map in MSP432 (ES-Lab)

Unused

Unused

Peripherals

Code

//declare plout as a pointer to an 8Bit integer
volatile uint8_t* plout;

//P1OUT should point to Port 1 where LEDl is connected
plout = (uint8_t*) 0x40004C02;

//Toggle Bit D (Signal tc which LED1 is connected)
*plout = *plout ~ 0x01;

OxFFFF_FFFF

Memory map:
0XE000_0000
OxDFFF_FFFF
hexadecimal 0xC000_0000
representation OxBFFF_FFFF
of a 32 bit

0xAD00_0000

binary .nt_imber; [xoFFF_FFFF
each digit

corresponds 0xB000_0000
to 4 bit Ox7FFF_FFFF
0x6000_0000

Ox5FFF_FFFF

00111111 ... 1111
0x4000_0000
0010 0000 0000 \\ S e

diff. = 0001 1111 1111 — \
0x2000_0000

229 different addresses Ox1FFF_FFFF

capacity = 22° Byte =

512 MByte 0x0000_0000

Debug/Trace
Peripherals

Unused

Unused

Unused

Unused

Peripherals

Code

0x1FFF_FFFF 0x003F_FFFF
Reserved
0x0210_0000
_ Reserved
ROM Regian
0x0200_0000
Reserved
0x0110_0000 0x0020_4000
Information Memory
SRAM Region 0x0020_0000
0x0100_0000
Reserved
Reserved 0x0004_0000
Main Memaory
0x0040_0000 0x0000_0000
Flash Memory
Reglon
0x0000_0000

Ox3FFFF address difference = 4 * 216 different addresses —
256 kByte maximal data capacity for Flash Main Memory

Used for program, data and non-volatile configuration.
3-25

Example: Memory Map in MSP432 (ES-Lab)

OxFFFF_FFFF

Memory map:
0xE000_0000
OxDFFF_FFFF
hexadecimal 0xC000_0000
representation OxBFFF_FFFF
of a 32 bit

0xAD00_0000

binary .m';mber: [0orFF FFFF
each digit

corresponds 0xB000_0000
to 4 bit Ox7TFFF_FFFF
0x6000_0000

Ox5FFF_FFFF

00111111 ... 1111
0x4000_0000
0010 0000 0000 \\ R

\

diff. = 0001 1111 ... 1111 —» \
0x2000_0000

229 different addresses Ox1FFF_FFFF

capacity = 22 Byte =

512 MByte 0x0000_0000

Debug/Trace
Peripherals

Unused

Unused

Unused

Unused

Peripherals

Code

Ox1FFF_FFFF Ox010F_FFFF
Reserved
00210_0000
ROM Region
0x0200_0000
Reserved Resarved
x0110_0000
SRAM Region
0x0100_0000
N 0x0101_0000
0x0040_0000
Flash Memory SRAM Region
Region
0x0000_0000
0x0100_0000

* Ox FFFF address difference = 26 different addresses —
64 kByte maximal data capacity for SRAM Region

* Used for program and data.

Input and Output

Device Communication

Very often, a processor needs to exchange information with other processors or
devices. To satisfy various needs, there exists many different communication
protocols, such as

= UART (Universal Asynchronous Receiver-Transmitter)

= SPI (Serial Peripheral Interface Bus)

= [2C (Inter-Integrated Circuit)

= USB (Universal Serial Bus)

= Asthe principles are similar, we will just explain a representative of an
asynchronous protocol (UART, no shared clock signal between sender and
receiver) and one of a synchronous protocol (SP/, shared clock signal).

Remember?

low power CPU | higher performance CPU
* enabling power to the rest of the system * sensor reading and motor control
* battery charging and voltage i + flight control
measurement ; + telemetry (including the battery voltage)
+ wireless radio (boot and operate) 5 « additional user development
* detect and check expansion boards i « USB connection

Motor driver
- 12c
;

— .0 system architecture

UART:

~ * communication protocol (Universal
Asynchronous Receiver/Transmitter)

= exchange of data packets to and from

interfaces (wireless, USB)

-29

Input and Output
UART Protocol

UART

= Serial communication of bits via a single signal, i.e. UART provides parallel-to-
serial and serial-to-parallel conversion.

= Sender and receiver need to agree on the transmission rate.
= Transmission of a serial packet starts with a start bit, followed by data bits and

finalized using a stop bit: -
Its

v .

Extra ‘parity’ Earliest possible
Encionistion bit could be new Start bit
inserted here v\

for detecting single bit errors

= There exist many variations of this simple scheme.

-31

UART UART with MSP432 (ES-Lab)

= The receiver runs an internal clock whose frequency is an exact multiple of the @
expected bit rate.

2 Tous.
INSTRUMENTS.

= When a Start bit is detected, a counter begins to count clock cycles e.g. 8 cycles

A N

until the midpoint of the anticipated Start bit is reached. pmf:f’ﬂ EnerTacas [Sl

. e J,v‘ TRy [—
= The clock counter counts a :] !
Midpoint of first Data bit /=
further 16 cycles, to the - g Lt ol e |
. 3 i irst V.33V wil B
middle of the first Data bit,

[i | |

and so on until the Stop bit. 1 : :

STy i i
| == { —

host PC

Target Device 40-pin LaunchPad
MSP432P401R standard headers

!

Receiver Clock, User Interface
running at multiple of Buttons and LEDs
expected bit rate 1 1 1

UART with MSP432 (Lab)
LFXIN, LFXOUT.
HEXIN HFXOUT PixtoPiox Pix
R Y L 1 !
l | l T T T T IPMaspoman l l
I || Capacive Toucn o 0,
| Capaciive Touch 11O 1
U
o s s || "ce wora || fackue |
Power . VO Pons 110 Pons
A TR I e o e el nput and Outpu
13 S) m o
OMA [Manage Syston " BKB || Teice i
ooy N ‘ x M M d Device A
sans T N emory Mapped Device Access
Bus Data] |
R] comrat [T
| oo | Logic
! | SRAM
ROM s
: ARM Flash (nioes | | Periprera | | RsTEML || svscm s
Cortex | - Orivar - -
1| conmcur . Memary) - diou il - Security cce
. 128K8 sua Controler || Controrier | | Snenvpton:
| - 3B i
\ i 2KB
! MPU |
1 1
1| wvic, stk |) 1 | 5]
: ! | 11 11 11
Il ree.owr |
! | USCI_BO,
Precision Comp_ED. Timeri2 U
om0 ADC Comp €1 ||| REF.A e susci a1
I
I 1 Msps. Ansiog Voitage: 2 32-60 2USCI_B3
g swo | | Reforence
" ' SARAD | | comparator Timers i
S
Copyright © 2017 Texss Inatrsmants Ircarpomted 3.34 3

Memory-Mapped Device Access

eUSCI_AD Registers (Base Address: 0x4000_1000)

REGISTER NAME OFFSET
eUSCI_AD Control Word 0 00h
eUSCI_AD Control Word 1 02h
eUSCI_AD Baud Rate Control 06h
eUSCI_AD0 Modulation Control 08h
eUSCI_AO Status 0Ah
eUSCI_AOD Receive Buffer 0Ch
eUSCI_AD Transmit Buffer OEh
elUSCI_A0 Auto Baud Rate Control 10h
eUSCI_AD IrDA Control 12h
eUSCI_AD Interrupt Enable 1Ah
eUSCI_AO Interrupt Flag 1Ch
eUSCI_AOD Interrupt Vector 1Eh

* Configuration of Transmitter and Receiver must
match; otherwise, they can not communicate.

* Examples of configuration parameters:
* transmission rate (baud rate, i.e., symbols/s)
* LSB or MSB first
- * number of bits per packet
* parity bit

in our case: bit/s

* number of stop bits
* interrupt-based communication
* clock source

buffer for received bits and bits that should be transmitted

Transmission Rate

UGABEN clock subsampling
JCSSELx
Receive Baud-Rate Generator
UCOBRx
UCLK 1 00 ¥|s
ACLK - o1
2 Receaive Clock
SMCLK - 10 | BRCLH -~ e
SMCLK 4 11 Modulator Transmit Clock
4 (]
UCBRFx UCBRSx UCOS16
clock
UCIREN
UCPEN UCPAR UCMSB UC7BIT "
source parallel-to-serial
n— Transmit Shift Register
dara 0% | [emasvornen]]
transmitted
UCIRTXPLx output
Transmit State Machine | o, o CTXIFG
|—aUCTXBRK
—= —mUCTXADDR

W2
UCMODEx UCSPB

Clock subsampling:
* The clock subsampling block
is complex, as one tries to
match a large set of transmission
rates with a fixed input frequency.
Clock Source:
* SMCLK in the lab setup = 3MHz
* Quartz frequency = 48 MHz, is
divided by 16 before connected to

SMCLK
Example:

serial . Transmission rate 4800 bit/s

16 clock periods per bit (see 3-26)

= Subsampling factor =
3*1076 / (4.8%1073 * 16) = 39.0625

Software Interface

Part of C program that prints a character to a UART terminal on the host PC:

static const eUSCI_UART Config uartConfig =
{

EUSCI_A_UART_CLOCKSOURCE_SMCLK,

39,

L,

0,

EUSCI_A_UART_NO_PARITY,

E _A_UART_LSB_FIRST,

EUSCI_A UART_ONE_STOP_BIT,

EUSCI_A UART_MODE,

EUSCI_A UART OVERSAMPLING BAUDRATE GENERATION}; //
) PORT_P1,
GPIO_PINZ | GPIC_PIN3, GPIO PRIMARY MODULE

GPIC setAsPeripheralModuleFunctionInputPin(GEI

UARRT initModule (EUSCI_AD_BASE, suartconfig):
UART_enableModule (EUSCT_AU_BASE);

UART_transmitData (EUSCI_AQ_BASE,'a'}; I

N\

// one stop bit

CLK Clock Source

/ BRDIV = 39 , integral part
/{ UCXBRF = 1 , fractional part * 16 data structure uartConﬁg
/ UCKBRS = 0

L contains the configuration
of the UART

UART mode
oversampling Mode

FUNCTION) //configure CPU signals
// configuring UART Module AD
// Enable UART module AD

use uartConfig to write to
—— eUSCI_AO configuration
registers

// Write character ‘a' to UART ¥

[start UART

\base address of AO (0x40001000), where AQ is the instance of the UART peripheral

Software Interface

Replacing UART_transmitData(EUSCI_AQ_BASE,'a') by a direct access to registers:

volatile uintl6é_t* wucalifg = (uintlé_t*) 0x4000101C;
volatile uintl6é_t* wucaOtxbuf = (uintlé t*) 0x4000100E;

// Initialization of UART as before

while (! (({*ucaOifg >> 1) & 0x0001));
*ucaltxbuf = (char) 'g'; // Write to transmit buffer

Table 22-18. UCAXIFG Register Description

declare pointers to UART
configuration registers

+— wait until transmit buffer is empty

write character ‘g’ to the
transmit buffer

shift 1 bit to the right

Bit [Fiela [Type [Resst [Description | %
154 | Reserved R oh Reserved |! ({*ucalifg >> 1) & 0x0001))
1 UCTXIFG RW h Transmit intermupt flag. UCTXIFG Is set when UCAXTXBUF empty y i ,' T

0 = No infemupt pending expression is ‘1’ if bit

1b = Inteupt pending

UCTXIFG = 0 (buffer not empty). ,

Input and Output
SPI Protocol

SPI (Serial Peripheral Interface Bus)

= Typically communicate across short distances

= Characteristics:
= 4-wire synchronized (clocked) communications bus
* supports single master and multiple slaves
= always full-duplex: Communicates in both directions simultaneously
* multiple Mbps transmission speeds can be achieved

SCLK SCLK
= transfer datain 4 to 16 bit serial packets MSPtI ::Jssg > :,‘;ﬂ sfPl
aster < ave
= Bus wiring: 55 » 55

= MOSI (Master Out Slave In) — carries data out of master to slave

= MISO (Master In Slave Out) — carries data out of slave to master
= Both MOSI and MISO are active during every transmission

» S5 (or CS) —signal to select each slave chip

= System clock SCLK — produced by master to synchronize transfers

SPI (Serial Peripheral Interface Bus)

More detailed circuit diagram:

MOSI MOsI shift register
. (SDO, SO) (SDL,SI)| latch msb Isb
= details vary between - o ol7
MISO MISO

different vendors and
implementations

(SDL, S1) (SDO,SO

SCLK
(5CK)
SR —— SPI shave
sS (Cs)
Timing diagram:
system clock SCLK | i
writing data output: ﬁ
N\ 7
MOSI or MISO (! 1
reading data input RDSL RDH

AAN

. x s VAAAAT AAAAA AA A \y\l’\‘. A A\
in the middle of bit:)\/(jv):}(‘_x fl\:(\)&,({lh&;. JO{} .\{C(‘,I\r‘j?).}fv,:&).’_d}\ e

SPI (Serial Peripheral Interface Bus)

Two examples of bus configurations:

SCLK + SCLK
MOS| + MOS| SPI
SPI MISO MISO Slave MICROCONTROLLER
Master 551 5% e
= B> :
M9 ?"cOL;l SP| SLAVET SLAVEZ TSLAVER
MISO Slave Lis U= b
i SCLK SCLK SCLK
MosI DIN DOUT DIN DOUT DIN DOUT
L»f scik
L MOSI SPI
Miso Slave
55

Master and multiple independent Master and multiple daisy-chained

slaves slaves
1_three_skaves. hitp: ffwew. maxim-ic, comy/appnotes. cfm/an_pk/3947

imiodi
S/ 350p%-SP1_threa_slaves.svg 5ng

Interrupts

Interrupts

A hardware interrupt is an electronic alerting signal sent to the CPU from another
component, either from an internal peripheral or from an external device.

LFXIN, LFXOUT,
HEXIN HFXOUT PlxwPl0x Pls
Y .

Interrupts

main() {
//Init

initClocks();

while (1) {
background
or LPMx

}

ISR1
get data
process

ISR2
set a flag

System Initialization

The beginning part of main() is usually dedicated
to setting up your system

Background

Most systems have an endless loop that runs
‘forever’ in the background

In this case, ‘Background’ implies that it runsat a
lower priority than ‘Foreground’

¢ In MSP432 systems, the background loop often
contains a Low Power Mode (LPMx) command —
this sleeps the CPU/System until an interrupt
event wakes it up

Foreground

Interrupt Service Routine (ISR) runs in response
to enabled hardware interrupt

These events may change modes in Background —
such as waking the CPU out of low-power mode

ISR's, by default, are not interruptible

Some processing may be done in ISR, but it’s
usually best to keep them short

i] (i R = T . :
MSP 432 [ES-Lab] L ! LI T
PCM PSS) U cimciniaraiuid
& |if mes ,
|| B || e | e Mo | | e
T psiress TJi- = I :

The Nested Vector o |
Interrupt Controller ; . M v | | o | [o o | avsen | | escee
(NVIC) handles the Rl ssag || 0 |G || e || o || gl || e
processing of \\L =11 e || e s
interrupts ey f T 1

==t L 1111

i ! Frecner bl I ETXT

 [vawe |1 e o | e

Copyngid © 2017 Tanas |reruments ncoporaed 3-45
Processing of an Interrupt (MSP432 ES-Lab)
1/0 Port P1 Nested Vector
Interrupt Controller @ CPU
(NVIC)
eUSCI_AD
peripheral unit interrupt handling
The vector interrupt controller (NVIC) Interrupt priorities are relevant if
= enables and disables interrupts = several interrupts happen at the same time
= allows to individually and globally = the programmer does not mask interrupts

mask interrupts (disable reaction to
interrupt), and

= registers interrupt service routines ISR may happen (interrupt nesting).

(ISR), sets the priority of interrupts.

in an interrupt service routine (ISR) and
therefore, preemption of an ISR by another

Processing of an Interrupt

1. Aninterrupt occurs

§ .currently executing code

------ > Interrupt occurs

next_line_of_code

* UART
* GPIO
* Timers
* ADC

* Most peripherals can generate
interrupts to provide status and
information.

* Interrupts can also be generated from
GPIO pins.

2. It sets a flag bit
in a register

[LIIT --- TATT] IFG register

When an interrupt signal is received, a
corresponding bit is set in an IFG register.
There is an such an IFG register for each
interrupt source.

As some interrupt sources are only on for a
short duration, the CPU registers the interrupt
signal internally.

Processing of an Interrupt

1. Aninterrupt occurs

§ .currently executing code

------ > Interrupt occurs

next_line_of _code

* UART
* GPIO
¢ Timers
*« ADC

* Etc.

3. CPU/NVIC acknowledges interrupt by:
= current instruction completes
* saves return-to location on stack
* mask interrupts globally
» determines source of interrupt
+ calls interrupt service routine (ISR)

2. It sets a flag bit _
in a register

LLITT -« TTTT] IFG register

-49

Processing of an Interrupt

1. Aninterrupt occurs

§ .currently executing code

------ > Interrupt occurs

next_line_of_code

* UART
* GPIO
* Timers
* ADC

* Etc.

3. CPU/NVIC acknowledges interrupt by:
= current instruction completes
* saves return-to location on stack
* mask interrupts globally

* determines source of interrupt
« calls interrupt service routine (ISR)

2. It sets a flag bit
in a register

[[IIT --- TATT] IFG register

Processing of an Interrupt

interrupt
vector
table

~ pointer to ISR

1/0 Port P1 Nested Vector

Interrupt Controller c:b CPU

(NVIC)
eUSCI_A0
peripheral unit interrupt handling

1. Aninterrupt occurs

§ .currently executing code

------ > Interrupt occurs

next_line_of _code

* UART
* GPIO
¢ Timers
*« ADC

* Etc.

3. CPU/NVIC acknowledges interrupt by:
= current instruction completes
* saves return-to location on stack
* mask interrupts globally |:>

» determines source of interrupt
+ calls interrupt service routine (ISR)

2. It sets a flag bit _
in a register

LLITT -« TTTT] IFG register

4. Interrupt Service Routine (ISR):
= save context of system
* runyour interrupt’s code
* restore context of system
* (automatically) un-mask interrupts and
* continue where it left off

-51

Processing of an Interrupt

Detailed interrupt processing flow:

IFG bit IE bit
Interrupt | Interrupt “Individual” “Global”
Source ‘Flag’ Int Enable Int Enable
GPIO {1
TIMER_A +—_| — CPU

= .

{1 1 .
get the interrupt status — globally allow / dis-
of the selected pin 7 = 3 allow the processor

i to react to interrupts
Interrupt Flag Reg (IFG) i
bit set when int occurs; e.g. § Global Interrupt Enable

clears the interrupt status\. GPIO_getinterruptStatus(); Enables ALL maskable interrupts

on the selected pin GPIO_clearinterruptFlagy); Interrupt_enableMaster();

enable interrupt Interrupt Enable (IE); e.g. Interrupt_disableMaster();

. . . GPIO_enablelnterrupt();
in the peripheral unit GPIO_disablelnterrupt()

enable interrupt in the interrupt controller = Interrupt_enablelnterrupt();

Example: Interrupt Processing

= Port 1, pin 1 (which has a switch connected to it) is configured as an input with interrupts enabled
and port 1, pin 0 (which has an LED connected) is configured as an output.

= When the switch is pressed, the LED output is toggled.

int main (void)
clear interrupt i
flag and enable o ‘
interrupt in GPIO_setAsOutputPin (GPIO_PORT_Pl, GPIO PINO);
I
i ’ GPIO setAsInputPinWithPullUpResistor (GPIO PORT P1, GPIO PIN1);
periphery - - - -
GPIO_clearInterruptFlag(GPIO_PORT_Pl, GPIO_PINL);
enable interrupts GPIO enableInterrupt (GEIO PORT P1, GPIO PINI);
in the controller \
(NV|C) N Interrupt enablelnterrupt (INT PORT1);
Interrupt enableMaster();
enter low power
mode LPM3 TT—T— while (1) PCM gotoLBEM3();
}

Example: Interrupt Processing

= Port 1, pin 1 (which has a switch connected to it) is configured as an input with interrupts enabled
and port 1, pin 0 (which has an LED connected) is configured as an output.

= When the switch is pressed, the LED output is toggled.

predefined name of ISR
attached to Port 1

void PORT1_IRQHandler (void)

{
uint32 t status;

. (flags) of =+ stat y GPIO tEnabledInt tStatus (GPIO_PORT_P1)

N status = getEnabledInterrup atus ;

interrupt-enabled =~ — | ~ - =

. GPIO clearInterruptFlag (GPIO PORT Pl, status);
pins of port 1 Pl - - -

clear all current flags // if(status & GPIO_PINI}
from all interrupt- {

enabled pins of port 1 GPIO_toggleQutputOnPin (GPIC_PORT_P1l, GPIC_PINO);

check, whether pin 1 }
was flagged

Polling vs. Interrupt

Similar int main(void)
fUnCt!Onahty { uint8 t new, old;
with polling: o
GPIC_setAsOutputPin (GPIO_PORT Pl, GPIC_PINOQ);
GPIC setAsInputPinWithPullUpResistor (GPIO PORT P1l, GPIO PIN1);
old = GPIO_getInputPinvalue (GPIO_PORT P1, GPIO_PINI);
— while (1)
{
new = GPIO getInputPinvValue (GPIO PORT_Pl, GPIO PINL);
continuously get the if (!new & old)
signal at pinl and — {
detect falling edge GPIC_toggleQutputOnPin (GPIO PORT P1, GPIO PINO);
}
old = new;
L }
}

Polling vs. Interrupt

What are advantages and disadvantages?

= We compare polling and interrupt based on the utilization of the CPU by using a
simplified timing model.
= Definitions:
= ytilization u: average percentage, the processor is busy
= computation c: processing time of handling the event
= overhead h: time overhead for handling the interrupt
= period P: polling period
= interarrival time T: minimal time between two events
= deadline D: maximal time between event arrival and finishing event processing with D < T.
polling interrupt events

Pe—

|_| |_| I_I_I_I l II l

———— —
Ce— ¢ h; ¢ h, h=h+h, <D <D

Polling vs. Interrupts

For the following considerations, we suppose that the interarrival time between
events is T. This makes the results a bit easier to understand.

Some relations for interrupt-based event processing :
* The average utilizationisu,=(h+c)/T.

= As we need at least h+c time to finish the processing of an event, we find the
following constraint: h+c <D <T.

Some relations for polling-based event processing:
* The average utilizationisu,=c/P.

* We need at least time P+c to process an event that arrives shortly after a polling
took place. The polling period P should be larger than c. Therefore, we find the
following constraints: 2c<c+P<D<T

Polling vs. Interrupts

Design problem: D and T are given by application requirements. h and c are given by
the implementation. When to use interrupt and when polling when considering the
resulting system utilization? What is the best value for the polling period P?

Case 1: If D < ¢ + min(c, h) then event processing is not possible.

Case 2: If 2c < D < h+c then only polling is possible. The maximal period P = D-c leads
to the optimal utilization u, = ¢/ (D-c) .

Case 3: If h+c < D < 2¢ then only interrupt is possible with utilization u;=(h+¢c) /T.
Case 4: If ¢ + max(c, h) < D then both are possible with u, =c/(D-c)oru;=(h+c¢)/T.

Interrupt gets better in comparison to polling, if the deadline D for processing
interrupts gets smaller in comparison to the interarrival time T, if the overhead h gets
smaller in comparison to the computation time c, or if the interarrival time of events
is only lower bounded by T (as in this case polling executes unnecessarily).

Clocks and Timers

Clocks and Timers
Clocks

- 60

Clocks

Microcontrollers usually have many different clock sources that have different
= frequency (relates to precision)
= energy consumption
= stability, e.g., crystal-controlled clock vs. digitally controlled oszillator

As an example, the MSP432 (ES-Lab) has the following clock sources:

LFXTCLK 32 kHz 0.0001% / °C 150 nA external crystal
...0.005% / °C

HFXTCLK 48 MHz 0.0001% / °C 550 pA external crystal
...0.005% / °C

DCOCLK 3 MHz 0.025% / °C N/A internal

VLOCLK 9.4 kHz 0.1% /°C 50 nA internal

REFOCLK 32 kHz 0.012% / °C 0.6 pA internal

MODCLK 25 MHz 0.02%/°C 50 pA internal

SYSOSC 5 MHz 0.03% / °C 30 pA internal

-61

Clocks and Timers MSP432 (ES-Lab)

L, LexouT
HFXIN HFXOUT
| 4 (ocoR

PlxioP10x Pdx

s

—
Capacitve Touch 10 0
| : Capacitive Touch U0 1
FOM Pss o Backup
ol e S| oo (1] 1 pons 10 Ports
Power Power [|
Control Suply Pl B Rl | et | IETR P110 P10 By
DMA oty Manager System i BKB : 78108 5108
dChannels | gemmp) i
Address o & s = i1
Bus L0 |
(A =k Confrol
i PL ' Logic
! | SRAM
ROM
: ARM Flash ‘E;“:\;’ {Peripheral rsTCTL || swsom ARS2%
MAF | Drwver
g o 25648 oot Uibrary) Reset Sysiom | | Securty CRO!
i !] s Corurter || Comvoter | | Epcon
| i 3268 348
| MPU i
! I
1| nvic)sysmiek | | X i 1 X
' ! || 11 11 11 11
I FPB, DWT 1
1 USCI_AD,
| | Precision Comp_ED, Timerdz ©USCI A1
1™, TP I ADG Comp_E1 USCI_AZ
! I - o SUSCI_AT
| s, g 2x 320t
JTAG, SWD ! SARAD Comparator Tiras I
I | DA, 8P (FC. 5P
(Exmm—

Canynght © 2017 Tanas Instruments Incorporated

-62

Clocks and Timers MSP432_(ES-Lab)

S

' Capacitee Towcn 10 0
| ; Capacitve Touch 1O 1
M o cs | rce WOT_A Lxdp
Pover Power | o “ /0 Ports 10 Ports
\Sortrl Sty s b | i SRAM || p1opio Py
S - ystem 5
DA mw// o | o | 7sos 6108
BChannels |]]
Address it o sy i =
Bus - -
= T Conrol e =
| i | Loge | |1een| |180n) 280, LF
1 —— — 3 BND
| - ol T
| + | [e
| ARM e . . - .
V| conmmar L — — —
! |
! l
1 MPU |
! 1
1] wvicsysmiok | |
| |
il ssar |a : 2 T ™
1 1
Precision Comp_ED. Timer2
: ™, TPIU | ADC Comp_E1 REF_A,
1
i 1 Msps, Analog Voltage 2% Rbit
H JTAG, SWD | SARAD Comparator Reference Timem
1 ('c.sPl)
[—

Copynght © 2017 Tenas | struments Incorporated

-63

Clocks

From these basic clocks, several internally available clock signals are derived.
They can be used for clocking peripheral units, the CPU, memory, and the various

timers.

Example MSP432 (ES-Lab):

= only some of the
clock generators are
shown (LFXT, HFXT,

DCO)

= dividers and clock
sources for the
internally available

clock signals can be
set by software

Clocks and Timers
Watchdog Timer

-65

Watchdog Timer

Watchdog Timers provide system fail-safety:

= |f their counter ever rolls over (back to zero), they reset the processor. The goal
here is to prevent your system from being inactive (deadlock) due to some

unexpected fault.

= To prevent your system from continuously resetting itself, the counter should be

reset at appropriate intervals.
CPU

Watchdog Timer (WDT_A)

WDT_A_holdTimer();

reset counter to 0
e gy

WDT_A_clearTimer();

reset

overflow

I
up 4 counter

[(TTTTTTT}—

|
I
|
|

If the count completes without a restart,
the CPU is reset.

clockinput, e.g.,
SMCLK, ACLK

Clocks and Timers
System Tick

-67

SysTick MSP432 (ES-Lab)

= SysTick is a simple decrementing 24 bit counter that is part of the NVIC
controller (Nested Vector Interrupt Controller). Its clock source is MCLK and it
reloads to period-1 after reaching 0.

= |t's a very simple timer, mainly used for periodic interrupts or measuring time.

int main(void) {

GPIC_setAsOutputPin (GPIO_PORT_P1, GPIO_PIND);

SysTick_enableModule () ;
SysTick setPeriod(1500000); if MCLK has a frequency of 3 MHz,
SysTick enableInterrupt(); an interrupt is generated every 0.5 s.

Interrupt_enableMaster();

SysTick MSP432 (ES-Lab)

Example for measuring the execution time of some parts of a program:

int32_t

start =

duration

SysTick_
SysTick
SysTick_

int main(veid) {

start, end, duration;

enableModule () ;
setPeriod (0x01000000);
disablelInterrupt();

if MCLK has frequency of 3 MHz,
the counter rolls over every ~5.6 seconds
as (224 /(3 10%) = 5.59

SysTick getValue();

. // part of the program whose duration is measured

= ((start - end) longer than ~6 seconds; note the use of
madular arithmetic if end > start;
overhead for calling SysTick_getValue()

is not accounted for;

the resolution of the duration is one
end = SysTick getValue(); microsecond; the duration must not be
& OxQOFFEFFE) / 3;

while (1) PCM_gotoLBEMO(); <—— gO tolow power mode LPO after executing the ISR
}
void SysTick_Handler (void) {
MAP_GPID_toqgleOutputOnPin(GPIO_PORT_PI, GPIO_PINO]; =]
3-70

Clocks and Timers

Timer and PWM

Timer

Usually, embedded microprocessors have several elaborate timers that allow to
= capture the current time or time differences, triggered by hardware or software

events,

= generate interrupts when a certain time is reached (stop watch, timeout),

= generate interrupts when counters overflow,
= generate periodic interrupts, for example in order to periodically execute tasks,
= generate specific output signals, for example PWM (pulse width modulation).

clock input counter interrupt on
_ 2 _—
register overflow /

roll-over
each pulse of the
clock increments the
counter register

OxEFFE
OXFFFE|

OxFFFD
0x0002
0x0001
0x0000 /

example 16 bit /
counter register

interrupt on roll over

Timer

Typically, the mentioned functions are realized via capture and compare registers:

capture
clock input counter interrupt on
— 5 ————
register roll-over
capture capture cagture
event register actions

* the value of counter register is stored in
capture register at the time of the capture
event (input signals, software)

+ the value can be read by software

+ at the time of the capture, further actions
can be triggered (interrupt, signal)

compare
clock input counter interrupt on
— i —
register roll-over
compare compare
register actions

the value of the compare register can be
set by software

as soon as the values of the counter and
compare register are equal, compare
actions can be taken such as interrupt,
signaling peripherals, changing pin values,
resetting the counter register

-73

Timer

= Pulse Width Modulation (PWM) can be used to change the average power of a

signal.

= The use case could be to change the speed of a motor or to modulate the light

intensity of an LED.

OXFFFF counter

0x0000

one compare register

register is used to define the
/ / < period
another compare register
I is used to change the
duty cycle of the signal
output signal il 1 Ll 1

Timer Example MSP432 (ES-Lab)

Example: Configure Timer in “continuous mode”. Goal: generate periodic interrupts.

TXCLK (external)

inverted TXCLK

ACLK Divide 16-bit Counter !nrorrum
SMCLK —— i

CCRO

/

CCR1

clock sources

.
CCR2

7 configurable

I
CCR3

compare or

capture

s
CCR4

registers

!
CCR5

I A A S

CCR6

TTTITTTT

W

-75

Timer Example MSP432 (ES-Lab)

Example: Configure Timer in “continuous mode”. Goal: generate periodic interrupts.

OXFFFF

0x0000

Timer Clock

Timer x FFFE X FFFF IX 0o X 1 Xj X FFFE X FFFF * 0
I b
T T

Interrupt

Timer Example MSP432 (ES-Lab)

Example: Configure Timer in “continuous mode”. Goal: generate periodic interrupts,
but with configurable periods.

int main(void) |

const Timer A ContinuousModeConfig continucusMcdeConfig = {
TIMER A CLOCKSOURCE_ACLK,

TIMER_A_CLOCKSOURCE DIVIDER 1, clock source is ACLK (32.768 kHz); so far
TIMER A TAIE INTERRUET DISABLE, divider is 1 (count frequency 32.768 kHz); o
TIMER A DO CLEAR): no interrupt on roll-over; nothing
- T happens
configure continuous mode
/ of timer instance AO only the
counter is

Timer_ A configureContinucusMode (TIMER_AO_BASE, &continuousMedeConfig);)
Timer A_startCounter (TTMER A0 _BASE, TIMER A CONTINUOUS_MODE) ; running

\ start counter AO in

while (1) PCM_gotoLPMO(); } B
continuous mode

Timer Example MSP432 (ES-Lab)

Example:

= For a periodic interrupt, we need to add a compare register and an ISR.
= The following code should be added as a definition:

Timer Example MSP432 (ES-Lab)

|#define PERIOD 32768

= The following code should be added to main():

const Timer A CompareModeConfig compareModeConfig = |
TIMER A CAPTURECOMPARE REGISTER 1,
TIMER A CAPTURECOMPARE, TNTERRUPT. ENAELE, a first interrupt is generated after about one

0, second as the counter frequency is 32.768 kHz
PERIOD};

Timer A initCompare (TIMER A0 BASE, &compareModeConfig);

Timer_ A_enableCaptureComparelnterrupt (TIMER_AO_BASE, TIMER_A CAPTURECOMPARE_REGISTER_1);
Interrupt_enableInterrupt (INT_TAD_N) 7

Interrupt_enableMaster ()y:

Example:

= For a periodic interrupt, we need to add a compare register and an ISR.

= The following Interrupt Service Routine (ISR) should be added. It is called if one of
the capture/compare registers CCR1 ... CCR6 raises an interrupt

void TAQ_N_IRQHandler (void) the register TAOIV contains the interrupt flags for

the registers; after being read, the highest priority

switch (TROIV) | " interrupt (smallest register number) is cleared
case 0x0002: //flag for register CCR1 automatically

TAOCCR1 = TAOCCR1 + PERIOD;
// do something every P::m
default: break; the register TAOCCR1 contains the compare
value of compare register 1.

other cases in the switch statement may be used
to handle other capture and compare registers

Timer Example MSP432 (ES-Lab)

Example: This principle can be used to generate several periodic interrupts with

one timer.
TAOCCR2 TAOCCR2
| \ TAOCCR1
TAOCCR1 | TAOCCR1 |
OxFFFF————————.—l————T‘— e e
|
TAOCCR2 1! TAOCCR2
I il)
TAOCCR1 N | | ¢
; | 1N /| I
) Fe H H
- | \ I
| || L |
] Pl |l t, 1
b | \ |
-
| |

Embedded Systems

4. Programming Paradigms

© Lothar Thiele

Computer Engineering and Networks Laboratory

Where we are ..

W RN O N AW N e

Hardware <

-
o

. Programming Paradigms

. Introduction to Embedded Systems .
. Software Development :
. Hardware-Software Interface sl
. Embedded Operating Systems %Irdware—
. Real-time Scheduling

Shared Resources

. Hardware Components
. Power and Energy /
. Architecture Synthesis

\

/ Software

Reactive Systems and Timing

Timing Guarantees

= Hard real-time systems can be often found in safety-critical applications. They
need to provide the result of a computation within a fixed time bound.

= Typical application domains:

= avionics, automotive, train systems, automatic control including robotics,
manufacturing, media content production

wing vibration of airplane,
sensing every 5 ms

sideairbag in car,
reaction after event in <10 mSec

4 —
L g = € -

Simple Real-Time Control System

o a0 B}
w Computation E

Real-Time Systems

In many cyber-physical systems (CPSs), correct timing is a matter of correctness, not
performance: an answer arriving too late is consider to be an error.

’—v Controller —1

Sensors Actuators

Physical process

Real-Time Systems

Controller —l

Physical process

Real-Time Systems

Controller

Sensors Actuators

Physical process

Communication

Real-Time Systems

Controller

Sensors Actuators

Physical process

Communication ‘:‘

Real-Time Systems

Controller

Sensors Actuators

Physical process

Communication Communication

Real-Time Systems

Controller

Physical process

start time deadline

Communication | Communication

-11

Real-Time Systems

= Embedded controllers are often expected to finish the processing of data and
events reliably within defined time bounds. Such a processing may involve
sequences of computations and communications.

= Essential for the analysis and design of a real-time system: Upper bounds on the
execution times of all tasks are statically known. This also includes the
communication of information via a wired or wireless connection.

= This value is commonly called the Worst-Case Execution Time (WCET).

= Analogously, one can define the lower bound on the execution time, the Best-Case
Execution Time (BCET).

Distribution of Execution Times

Unsafe:
Best Case Execution Time
xecution Time Measurement Upper bound

Worst Case
Execution Time

Distribution of execution times

Execution Time

-13

Modern Hardware Features

= Modern processors increase the average performance (execution of tasks) by
using caches, pipelines, branch prediction, and speculation techniques, for
example.
= These features make the computation of the WCET very difficult: The
execution times of single instructions vary widely.
= The microarchitecture has a large time-varying internal state that is changed by
the execution of instructions and that influences the execution times of
instructions.
= Best case - everything goes smoothely: no cache miss, operands ready, needed
resources free, branch correctly predicted.
= Worst case - everything goes wrong: all loads miss the cache, resources needed
are occupied, operands are not ready.
= The span between the best case and worst case may be several hundred cycles.

Methods to Determine the Execution Time of a Task

execution time

Worst-Case

Best-Case

Real System Measurement Simulation Worst-Case
(correct model) Analysis

-15

(Most of) Industry’s Best Practice

= Measurements: determine execution times directly by observing the execution
or a simulation on a set of inputs.

= Does not guarantee an upper bound to all executions unless the reaction to all
initial system states and all possible inputs is measured.

= FExhaustive execution in general not possible: Too large space of (input domain) x
(set of initial execution states).

= Simulation suffers from the same restrictions.

= Compute upper bounds along the structure of the program:

= Programs are hierarchically structured: Instructions are “nested” inside
statements.

= Therefore, one may compute the upper execution time bound for a statement
from the upper bounds of its constituents, for example of single instructions.

= But: The execution times of individual instructions varies largely!

Determine the WCET

Complexity of determining the WCET of tasks:
= |n the general case, it is even undecidable whether a finite bound exists.
= For restricted classes of programs it is possible, in principle. Computing accurate
bounds is simple for ,,old” architectures, but very complex for new architectures with
pipelines, caches, interrupts, and virtual memory, for example.

Analytic (formal) approaches exist for hardware and software.
= |n case of software, it requires the analysis of the program flow and the analysis of the
hardware (microarchitecture). Both are combined in a complex analysis flow, see for
example www.absint.de and the lecture “Hardware/Software Codesign”.
= For the rest of the lecture, we assume that reliable bounds on the WCET are available,
for example by means of exhaustive measurements or simulations, or by analytic
formal analysis.

-17

Different Programming Paradigms

Why Multiple Tasks on one Embedded Device?

= The concept of concurrent tasks reflects our intuition about the functionality of
embedded systems.

= Tasks help us manage the complexity of concurrent activities as happening in the
system environment:
» |nput data arrive from various sensors and input devices.

= These input streams may have different data rates like in multimedia processing,
systems with multiple sensors, automatic control of robots

® The system may also receive asynchronous (sporadic) input events.

= These input event may arrive from user interfaces, from sensors, or from
communication interfaces, for example.

-19

Example: Engine Control

Typical Tasks:

= spark control

= crankshaft sensing r
= fuel/air mixture -
= OXygen sensor

engine
controller

= Kalman filter — control
algorithm

Overview

= There are many structured ways of programming an embedded system.
= In this lecture, only the main principles will be covered:
» time triggered approaches
= periodic
= cyclic executive
= generic time-triggered scheduler

= event triggered approaches
" non-preemptive
* preemptive — stack policy
= preemptive — cooperative scheduling
= preemptive - multitasking

-21

Time-Triggered Systems

Pure time-triggered model:
= no interrupts are allowed, except by timers

= the schedule of tasks is computed off-line and therefore, complex sophisticated
algorithms can be used

= the scheduling at run-time is fixed and therefore, it is deterministic
= the interaction with environment happens through polling

interrupt polllng

4_’. \ interfaces

CPU 4-—» «— tosensor/

/ actuator
—1

set timer

Simple Periodic TT Scheduler

= A timer interrupts regularly with period P.
= All tasks have same period P.

lTl | T2 . JTI | TZ . jTl ‘ TZ ._‘t

t(0) ;

P
= Properties:

= later tasks, for example T, and T,, have unpredictable starting times

= the communication between tasks or the use of common resources is safe, as
there is a static ordering of tasks, for example T, starts after finishing T,

* asa necessary precondition, the sum of WCETs of all tasks within a period is
bounded by the period P:

S WCET(T,) < P
(k)

-23

Simple Periodic Time-Triggered Scheduler

) usually done offline
malin:

determine table of tasks (k, T(k)), for k=0,1,.,m-1;
i=0; set the timer to expire at initial phase t(0):
while (true) sleep();

\-__‘ set CPU to low power mode;

Timer Interrupt: processing starts again after interrupt

i=i+1; k T (k)
set the timer to expire at 1*P + t(0);: 0 Ty
for (k=0,..,m=-1){ execute task T(k); } 1 ity
return; \ 5 T,
for example using a function pointer in C; 3 T,
task(= function) returns after finishing. 4 T.
m=5

Time-Triggered Cyclic Executive Scheduler

= Suppose now, that tasks may have different periods.
= To accommeodate this situation, the period P is partitioned into frames of length f.

L T [T
0 2 4 6 8 10 1I2 14 16 1.8 ZIO

— P

f

= We have a problem to determine a feasible schedule, if there are tasks with a
long execution time.
* |ong tasks could be partitioned into a sequence of short sub-tasks

* but this is tedious and error-prone process, as the local state of the task must be
extracted and stored globally

Time-Triggered Cyclic Executive Scheduling

= Examples for periodic tasks: sensory data acquisition, control loops, action
planning and system monitoring.

= When a control application consists of several concurrent periodic tasks with
individual timing constraints, the schedule has to guarantee that each periodic
instance is regularly activated at its proper rate and is completed within its
deadline.

= Definitions:

I :denotes the set of all periodic tasks

: denotes a periodic task

denotes the jth instance of task /

denote the release time and absolute deadline of the

jth instance of task i

o, : phase of task i (release time of its first instance)

D;

T
B
L dy

: relative deadline of task i

Time-Triggered Cyclic Executive Scheduling

= Example of a single periodic task z;:

% | T |

i I 1

mlm

LB - .

C.

i

= A set of periodic tasks I':
r

task instances should execute in these intervals

A S Y Y Y A Y Y A A Y 74

t | 1 | l
{

| .

Time-Triggered Cyclic Executive Scheduling

= The following hypotheses are assumed on the tasks:

= The instances of o periodic task are reqularly activated at a constant rate. The
interval T, between two consecutive activations is called period. The release times

satisfy
r =0+ -1

= Allinstances have the same worst case execution time C;. The worst case
execution time is also denoted as WCET{(i) .

= All instances of a periodic task have the same relative deadline D,-. Therefore, the
absolute deadlines satisfy

di ;=@ +(j-1)T;+D;

Time-Triggered Cyclic Executive Scheduling

Example with 4 tasks:
= T lTl :G,Dl =G.C1 =2
T3:T3=12,D3=8,C3 =2

‘."-2:T-2=9,Dg=9.(‘2=2
74: Ty =18,04=10,C1 =4

- requirement

Time-Triggered Cyclic Executive Scheduling

Some conditions for period P and frame length f:

= Atask executes at most once within a frame:
f<T; Vtasks7;

= Pisamultiple of f. period of task

= Period P is least common multiple of all periods 7, .

= Tasks start and complete within a single frame:

f=C; ¥tasks 7 worst case execution time

of task
= Between release time and deadline of every task there is at least one full frame:

2f —gcd(T;, f) € D; Vtasks 7

relative deadline of task

« P=36f=4
I schedule
T4 T1 T1| T3 5 Rkl T4 T1 e 73
0 4 8 12 16 20 24 28 32 36 -

B=2 o, 4 ! S B 4

R A — 4 A | o

Pa=4_p—d —t S

®i=0_1 : — —1 : } : :

l_r_l
not given as part of the requirement 1-29

Sketch of Proof for Last Condition
i l release times and

deadlines of tasks

e

frames

starting time ime

f—gcd(T;, f)

latest finishing

at least gcd(73, f)

Example: Cyclic Executive Scheduling

Conditions:
f < min{4,5,20} = 4 ' |T; | D;|C;
f>max{1.0,1.0,1.8,2.0} = 2.0 |4 |4 |10
2f — gcd(Ty, f) < D; V tasks 7; T2 |5 |5 |18
T3 [20 |20 |10
possible solution: f = 2 T4 |20 |20 |20

Feasible solution (f=2):
ml [=]A [[=]
! ! i 1 ! >t
0 2 4 8 10 12 14 16 18 20

— P

Time-Triggered Cyclic Executive Scheduling

Checking for correctness of schedule:
= fij denotes the number of the frame in which that instance j of task 7; executes.
= |s Pa common multiple of all periods T} ?
= |sPamultipleof f?
= |s the frame sufficiently long?
Y. Gl Visks
{i| fi7=k)
= Determine offsets such that instances of tasks start after their release time:

o, = 15,?%2’1/1", {(fis —f -G -1T}

|

V tasks 7;

= Are deadlines respected?

-1DTi+®+Di = fi;f Vtasks 7y, 1 < j < P/T;

4-33

Generic Time-Triggered Scheduler

= |n an entirely time-triggered system, the temporal control structure of all tasks is
established a priori by off-line support-tools.

= This temporal control structure is encoded in a Task-Descriptor List (TDL) that
contains the cyclic schedule for all activities of the node.

= This schedule considers the required precedence and mutual exclusion
relationships among the tasks such that an explicit coordination of the tasks by
the operating system at run time is not necessary.

= The dispatcher is activated by a

i . Time Action WCET

synchronized clock tick. 1t looks at the = — =

. start 2
TDL, and then performs the action 7 send M5 @
that has been planned for this 22 stop T1)
. 18 start T2 20 Dispatcher
instant [Kopetz]. : : 2

47 send M3

Simplified Time-Triggered Scheduler

main: usually done offline

determine stat#€ schedule (t(k), T(k)), for k=0,1,..,n-1;
determine period of the schedule P;

set i=k=0 initially; set the timer to expire at t(0);
while (true) sleep();

i set CPU to low power mode; = t(k) | Tk
Timer Interrupt: processing continues after interrupt

k old := k; 0 0 T

i := i+l; k := i mod n; 1 3 T

set the timer to expire at Li/n) * P + t(k);: -

execute task T(k old); 2 7 T

return; 3 8 Ty
for example using a function pointer in C;

B 4 12 Ts

task returns after finishing. 2

n=5, P = 16

Summary Time-Triggered Scheduler

Properties:

= deterministic schedule; conceptually simple (static table); relatively easy to
validate, test and certify

= no problems in using shared resources

= external communication only via polling
= nflexible as no adaptation to the environment
= serious problems if there are long tasks

Extensions:
= gllow interrupts = be careful with shared resources and the WCET of tasks!!
= allow preemptable background tasks
= check for task overruns (execution time longer than WCET) using a watchdog timer

Event Triggered Systems

The schedule of tasks is determined by the occurrence of external or internal events:

* dynamic and adaptive: there are possible problems with respect to timing, the use
of shared resources and buffer over- or underflow

= guarantees can be given either off-line (if bounds on the behavior of the
environment are known) or during run-time

interrupt interrupt or polling

/
—1
\ interfaces

CPU — — tosensor/

/ actuator
—1

set timer

-37

Non-Preemptive Event-Triggered Scheduling

Principle:
= To each event, there is associated a corresponding task that will be executed.
= Events are emitted by (a) external interrupts or (b) by tasks themselves.

= All events are collected in a single queue; depending on the queuing discipline, an
event is chosen for execution, i.e., the corresponding task is executed.

= Tasks can not be preempted.

Extensions:
= A background task can run if the event queue is empty. It will be preempted by
any event processing.
= Timed events are ready for execution only after a time interval elapsed. This
enables periodic instantiations, for example.

Non-Preemptive Event-Triggered Scheduling

main: ‘ set the CPU to low power mode;
while (true) {

) continue processing after interrupt
if (event gqueue iM
sleep();

for example using a function pointer in C;
task returns after finishing.

} else {
extract event from event gueue; ’,f"

execute task corresponding to event;

}
ISR

(interrupt service
Interzupt: routine) O O O tasks
put event into event gueue; R event 4 : K
return; interrupts N
event C

extract event;

event queue ”
dispatch corresponding task

-39

Non-Preemptive Event-Triggered Scheduling

Properties:

= communication between tasks does not lead to a simultaneous access to shared
resources, but interrupts may cause problems as they preempt running tasks

= buffer overflow may happen if too many events are generated by the environment or
by tasks

= tasks with a long running time prevent other tasks from running and may cause
buffer overflow as no events are being processed

during this time task with a long
= partition tasks into smaller ones execution time
= but the local context must be stored ‘ partition

save — *——___ restore

context global memory context

Preemptive Event-Triggered Scheduling — Stack Policy

= This case is similar to non-preemptive case, but tasks can be preempted by
others; this resolves partly the problem of tasks with a long execution time.

= |f the order of preemption is restricted, we can use the usual stack-based context
mechanism of function calls. The context of a

function contains the necessary state such as local main memory
variables and saved registers. context of addresses
/ main()
main () {
gl 0 ; context of
f1()
£10) 1 context of
£2(); t
4-41

Preemptive Event-Triggered Scheduling — Stack Policy

task T, t l

task T, t l

task T, 1t - B l
preemption t

= Tasks must finish in LIFO (last in first out) order of their instantiation.
= this restricts flexibility of the approach

® jtis not useful, if tasks wait some unknown time for external events, i.e., they are
blocked

= Shared resources (communication between tasks!) must be protected, for
example by disabling interrupts or by the use of semaphores.

Preemptive Event-Triggered Scheduling — Stack Policy

main:
while (true) {

if rent i npt
if (event queue is empty] (set CPU to low power mode;

1 i ; :)
sleep() T ———— . processing continues after interrupt

} else {
select event from event gueue;

execute selected task; ———_ for example using a function pointer

: remove selected event from gqueue; in C; task returns after finishing.

}

InsertEvent: Interrupt:

put new event into event queue; InsertEvent (..} 7

select event from event gqueue; return;

if (selected task # running task) f{
execute selechext tark; may be called by interrupt service
remove selected event from queue; routines(ISR] or tasks

1

return;

Thread

= Athread is a unique execution of a program.
= Several copies of such a “program” may run simultaneously or at different times.
= Threads share the same processor and its peripherals.

= A thread has its own local state. This state consists mainly of:
= register values;
= memory stack (local variables);
® program counter;

= Several threads may have a shared state consisting of global variables.

Threads and Memory Organization

= Activation record (also denoted as the thread context) contains the
thread local state which includes

registers and local data structures.
thread 1
= Context switch: L
registers
= current CPU context thread 2
goes out —
= new CPU context CPU
goesin
memory

Co-operative Multitasking

= FEach thread allows a context switch to another thread at a call to the
cswitech () function.

= This function is part of the underlying runtime system (operating system).
= A scheduler within this runtime system chooses which thread will run next.

= Advantages:
= predictable, where context switches can occur
= |ess errors with use of shared resources if the switch locations are chosen carefully

= Problems:

= programming errors can keep other threads out as a thread may never give up
CPU

= real-time behavior may be at risk if a thread runs too long before the next context
switch is allowed

Example: Co-operative Multitasking

Thread 1 Thread 2

if (x > 2) procdata(r,s,t);
subl (y) ; eswitch() ;

else if (vall == 3)
sub2 (y) ; abe (val2) ;

cswitch() ;
proca(a,b,c);

rst(val3) ;

Scheduler

p = choose process();

save_ state (current);
lload;gnd_go(p);

Preemptive Multitasking

= Most general form of multitasking:

= The scheduler in the runtime system (operating system) controls when contexts
switches take place.

= The scheduler also determines what thread runs next.

terminate thread

= State diagram corresponding to each single thread:

= Run: A thread enters this state as it starts executing
on the processor

= Ready: State of threads that are ready to execute
but cannot be executed because the processor
is assigned to another thread.

» Blocked: A task enters this state when it waits

for an event. signal

activate thread

Embedded Systems

4a. Timing Anomalies

© Lothar Thiele

Computer Engineering and Networks Laboratory

Timing Peculiarities in Modern Computer Architectures

* The following example is taken from an exercise in
“Systemprogrammierung”.

+ It was not! constructed for challenging the timing
predictability of modern computer architectures; the
strange behavior was found by chance.

+ A straightforward GCD algorithm was executed on an
UltraSparc (Sun) architecture and timing was
measured.

* Goal in this lecture: Determine the cause(s) for the
strange timing behavior.

4a-

Program
» Only the relevant assembler program is shown (and
the related C program); the calling main function just
jumps to label ggt 1.000.000 times.
text Here, we will introduces nop
.global ggt statements; there are NOT
.align 32 executed. »
gat: | %00:= x,%01 := y
cmp %00, %o1 int ggt_c (int x, inty) {
blu,a ggt 1if (%00 < %o1) {goto ggt;} while (x I=y) {
sub %o1, %00, %01 !%o1="%01- %00 if(x<y){y-=x;}
bgu,a ggt 1if (%00 > %o1) {goto gt} else { x -= y:}
sub %00, %01, %00 ! %00 = %01 - %00 }
retl return (x);
nop }

da-

Observation

» Depending on the number of nop statements before
the ggt label, the execution time of ggt(17, 17*97)
varies by a factor of almost 2. The execution time of
ggt(17*97, 17) varies by a factor of more than 4.

» This behavior is periodic in the number of nop
statements, i.e. it repeats after 8 nop statements.

*« Measurements:

Simple Calculations

* The CPU is UltraSparc with 360 MHz clock rate.

» Problem 1 (ggt(17,17*97)):

+ Fast execution: 96*3*1.000.000 / 0.35 = 823 MIPS and
0.35 * 360/ 96 = 1.31 cycles per iteration.

+ Slow execution: 96*3*1.000.000 / 0.65 = 443 MIPS and
0.65 * 360 / 96 = 2.44 cycles per iteration.

» Therefore, the difference is about 1 cycle per iteration.
» Problem 2 (ggt(17*97, 17)):

Fast execution: 96*4%1.000.000 / 0.63 = 609 MIPS and
0.63 * 360 / 96 = 2.36 cycles per iteration.

+ Slow execution: 96*4*1.000.000/ 2.78 = 138 MIPS and
2.78 * 360/ 96 = 10.43 cycles per iteration.

* Therefore, the difference is about 8 cycles per iteration.

nop | time[s] time[s] nop | time[s] time[s]
ggt(17,17*97) | ggt(17*97,17) ggt(17,17*97) | ggt(17*97,17)
0 (036 0.62 4 1037 0.63
1 0.35 2.78 5 |[0.35 0.62
2 |0.36 0.64 6 0.65 0.64
3 |0.35 2.79 7 0.64 0.63
4a
Explanations

* Problem 1 (ggt(17,17*97)):

+ The first three instructions (cmp, blu, sub) are called 96
times before ggt returns. The timing behavior depends on
the location of the program in address space.

* The reason is most probably the implementation of the 4
word instruction buffer between the instruction cache and
the pipeline: The instruction buffer can not be filled by
different cache lines in one cycle.

* In the slow execution, one needs to fill the instruction buffer
twice for each iteration. This needs at least two cycles
(despite of any parallelism in the pipeline).

4a-

Block Diagram of UltraSparc

L] 1 1
EXTERNAL CACHE UNIT Mhl’-:l ‘:YL‘W: H—'::A:'«
H {ECU; CONTROL UNIT {(MCU)
Instruction buffer 1
for hiding latency l !
to CaChe NSTR;\‘:‘ ON CACHE DATA CACHE
(I CACHE) {0 CACHE)
STRUCTION STRUCTIO DATA
N‘e? rLF'E? N f;*::;”:";“_ 1’3/&??:[‘(2 TRANSLATION
[GROUPING LOGIC] [ﬂ-r'u-.w hwma‘;::;m,»--k BUFFER (dTLB;

FLOATING PONT LOAD STORE
REGISTER FILE UNIT (LSU}
FPU)
FPMULTIPLY
INTEGER FP ADD
EXECUTION UNIT FP DIVIDE

(IEUy
GRAPHICS UNIT(GRU

| I

INTEGER
REGISTER FILE

LoaD | STORE
QUEUE QUEUE

4a-7

User Manual (page 361 ...)

Instruction Availability

Instruction dispatch is limited to the number of instructions available in the
instruction buffer. Several factors limit instruction availability. UltraSPARC-I1i
fetches up to four instructions per clock from an aligned group of eight instructions.

When the fetch address (modulo 32) is equal to 20, 24, or 28, then three, two, or one
instruction(s) respectively are added to the instruction buffer. The next cache line

and set are predicted using a next field and set predictor for each aligned four
instructions in the instruction cache. When a set or next field mispredict occurs,
instructions are not added to the instruction buffer for two clocks.

Address Alignment

Cache line:
| cmp | blu | sub | | | | | |
0 HOR Instruction buffer:
cmp | blu | sub | |
Cache line:
[nop] nop] nop I nop] nop I cmp] blu [sub l
5 nop Instruction buffer:
cmp | blu | sub | |
Cache lines:
nop nop nop nop nop nop cmp blu
6 nop sub

Instruction buffer:

K= 2 fetches are necessary

as sub is missing

Explanations

« Problem 2 (ggt(17*97,17)):

* The loop is executed (cmp, blu, sub, bgu, sub) 96 times,
where the first sub instruction is not executed (since blu is
used with ',a" suffix, which means, that instruction in the
delay slot is not executed if branch is not taken). Therefore,
there are four instructions to be executed, but the loop has 5
instructions in total.

* The main reason for this behavior is most probably due to
the branch prediction scheme used in the architecture.

* In particular, there is a prediction of the next block of 4
instructions to be fetched into the instruction buffer. This
scheme is based on a two bit predictor and is also used to
control the pipeline and to prevent stalls.

+ But there is a problem due to the optimization of the state
information that is stored (prediction for blocks of
instructions and single instructions):

4a-10

User Manual (page 342 ...)

The following cases represent situations when the prediction bits and/or the next
field do not operate optimally:

1. When the target of a branch is word 1 or word 3 of an I-cache line (FIGURE 21-2)
and the fourth instruction to be fetched (instruction 4 and 6 respectively) is a
branch, the branch prediction bits from the wrong pair of instructions are used.

0 1 2 3 4 5 6 7

}

FIGURE 21-2 Odd Fetch to an I-cache Line

Qdd Fetches
We exactly have this situation, if
there are 1 or three nops
statements inserted

4a-11

Conclusions

» Innocent changes (just moving code in address
space) can easily change the timing by a factor of 4.

* In our examﬁle, the timing oddities are caused by two
different architectural features of modern superscalar
processors:

* branch prediction
* instruction buffer

« It is hard to predict the timing of modern processors;
this is bad in all situations, where timing is of
importance (embedded systems, hard real-time
systems).

« What is a proper approach to predictable system
design ?

4a-12

Embedded Systems
5. Operating Systems

© Lothar Thiele

Computer Engineering and Networks Laboratory

& Hachachule Zorich
af Technelogy Zurich

Embedded Operating Systems

Where we are ...

. Software Development

; . Hardware-Software Interface
Software \ --4, Programming Paradigms
::;- . Embedded Operating Systems
16. Real-time Scheduling

Shared Resources

-8. Hardware Components

Lo NV A WN R

. Power and Energy
*10. Architecture Synthesis

Hardware <

Introduction to Embedded Systems .

"‘3‘\ Hardware-
/ Software

Embedded Operating System (0OS)

= Why an operating system (OS) at all?
= Same reasons why we need one for a traditional computer.
= Not every devices needs all services.

= |In embedded systems we find a large variety of requirements and environments:

= Critical applications with high functionality (medical applications, space shuttle,
process automation, ...).

= Critical applications with small functionality (ABS, pace maker, ...).
= Not very critical applications with broad range of functionality (smart phone, ...).

Embedded Operating System

= \Why is a desktop OS not suited?

= The monolithic kernel of a desktop OS offers too many features that take space in
memory and consume time.

* Monolithic kernels are often not modular, fault-tolerant, configurable.

* Requires too much memory space and is often too ressource hungry in terms of
computation time.

* Not designed for mission-critical applications.
» The timing uncertainty may be too large for some applications.

Embedded Operating Systems

Essential characteristics of an embedded OS: Configurability
= No single operating system will fit all needs, but often no overhead for
unused functions/data is tolerated. Therefore, configurability is needed.
= For example, there are many embedded systems without external memory, a
keyboard, a screen or a mouse.

Configurability examples:
= Remove unused functions/libraries (for example by the linker).
= Use conditional compilation (using #if and #ifdef commands in C, for example).
= But deriving a consistent configuration is a potential problem of systems with a
large number of derived operating systems. There is the danger of missing
relevant components.

Example: Configuration of VxWorks

=]
Active Buld [oetaun |

= ar Reall piConfin Veworks 2]
it # Cot componants
%l apphcation components
= g developmeant taol components

do_2_ds.pdf

toolsfide/s

= @ opersting system components . - g
4 o ANSI C aompanents (i) g Image sive change (batea]: | oww mage size foytes)
b ol = :

e bugesd | lew dea bmtowl
99572 14360 1056 1149 75052 aB0B 2ATE A0GSTE

- =T

bt/ furww windriver.com)/produc

Automatic dependency analysis and size calculations allow users to quickly custom-
tailor the VxXWORKS operating system. Windriver

Real-time Operating Systems

A real-time operating system is an operating system that supports the
construction of real-time systems.

Key requirements:
1. The timing behavior of the OS must be predictable.
For all services of the OS, an upper bound on the execution time is necessary. For
example, for every service upper bounds on blocking times need to be available,
i.e. for times during which interrupts are disabled. Moreover, almost all
processor activities should be controlled by a real-time scheduler,

2. OS must manage the timing and scheduling

= 0OS has to be aware of deadlines and should have mechanism to take them
into account in the scheduling

= OS must provide precise time services with a high resolution

Embedded Operating Systems
Features and Architecture

Embedded Operating System

Device drivers are typically handled directly by tasks instead of drivers that are
managed by the operating system:
= This architecture improves timing predictability as access to devices is also handled by
the scheduler
= |f several tasks use the same external device and the associated driver, then the access
must be carefully managed (shared critical resource, ensure fairness of access)

Embedded OS Standard OS

application software application software

middleware] middleware middleware ‘ middleware |

device driver|device driver operating system

real-time kernel device driver ‘ device driver |

Embedded Operating Systems

Every task can perform an interrupt:
= For standard OS, this would be serious source of unreliability. But embedded
programs are typically programmed in a controlled environment.
= |tis possible to let interrupts directly start or stop tasks (by storing the tasks start
address in the interrupt table). This approach is more efficient and predictable
than going through the operating system’s interfaces and services.

Protection mechanisms are not always necessary in embedded operating systems:

* Embedded systems are typically designed for a single purpose, untested programs
are rarely loaded, software can be considered to be reliable.

* However, protection mechanisms may be needed for safety and security reasons.

-11

Main Functionality of RTOS-Kernels

Task management:
= Execution of quasi-parallel tasks on a processor using processes or threads (lightweight
process) by
= maintaining process states, process queuing,
= allowing for preemptive tasks (fast context switching) and quick interrupt handling
= (CPU scheduling (guaranteeing deadlines, minimizing process waiting times, fairness in
granting resources such as computing power)
= |nter-task communication (buffering)
= Support of real-time clocks
= Task synchronization (critical sections, semaphores, monitors, mutual exclusion)
= |n classical operating systems, synchronization and mutual exclusion is performed via
semaphores and monitors.

= |n real-time OS, special semaphores and a deep integration of them into scheduling is
necessary (for example priority inheritance protocols as described in a later chapter).

Task States

Minimal Set of Task States:

,

—————————
- ~,

instantiate

blocked

delete

dispatch

preemption

Task states

Running:
= Atask enters this state when it starts executing on the processor. There is as
most one task with this state in the system.

Ready:
= State of those tasks that are ready to execute but cannot be run because the
processor is assigned to another task, i.e. another task has the state “running”.

Blocked:
= A task enters the blocked state when it executes a synchronization primitive to
wait for an event, e.g. a wait primitive on a semaphore or timer. In this case,
the task is inserted in a queue associated with this semaphore. The task at the
head is resumed when the semaphore is unlocked by an event.

Multiple Threads within a Process

-Text -.za
Stack

[

-~ »
£
thread —» L
dynamic Data

static Data

Text

process with a single thread

] (o]
y
Thread 2 stack registers || registers ||| registers
S
stack stack stack
s

dynamic Data

static Data

Text

t— thread

process with several threads

Threads

A thread is the smallest sequence of programmed instructions that can be
managed independently by a scheduler; e.g., a thread is a basic unit of CPU
utilization.

= Multiple threads can exist within the same process and share resources such
as memory, while different processes do not share these resources:
= Typically shared by threads: memory.
= Typically owned by threads: registers, stack.

= Thread advantages and characteristics:

= Faster to switch between threads; switching between user-level threads requires
no major intervention by the operating system.

= Typically, an application will have a separate thread for each distinct activity.

= Thread Control Block (TCB) stores information needed to manage and schedule a
thread

Threads

= The operating system maintains for each thread a data structure (TCB — thread control block)
that contains its current status such as program counter, priority, state, scheduling information,
thread name.

= The TCBs are administered in linked lists:

o, moo] (15

—'3' 1/0 device queues

executing process

e a2+
[Y
e o

ready queue

activate

-17

Context Switch: Processes or Threads

process or thread PO operating system process or thread P1

Interrupt or system call process control block or
executing 1 L /“__l / thread control block
T3 [save state into Pea, |]
2 idle
[retoad state from PCB, | |
- idle interrupt or system call exacuting
J 4
| savestate into PCB, |
idle
| _J [retoad state from PCE, |
executing ff < ——__
v T—]

Embedded Operating Systems
Classes of Operating Systems

-19

Class 1: Fast and Efficient Kernels Class 2: Extensions to Standard OSs

Fast and efficient kernels Real-time extensions to standard OS:
= Attempt to exploit existing and comfortable main stream operating systems.
For hard real-time systems, these kernels are questionable, because they are = A real-time kernel runs all real-time tasks.

designed to be fast, rather than to be predictable in every respect. = The standard-OS is executed as one task.

Examples include

FreeRTOS, QNX, eCOS, RT-LINUX, VXWORKS, LynxOS.

RT-task 1

RT-task 2

non-RT task 1

non-RT task 2

device driver |device driver

Standard-0S

real-time kernel

+ Crash of standard-0S does not affect RT-tasks;
- RT-tasks cannot use Standard-OS services;
less comfortable than expected

revival of the concept:

Example: Posix 1.b RT-extensions to Linux Example: RT Linux

The standard scheduler of a general purpose operating system can be replaced by RT-tasks cannot use standard OS calls.

ibi real-time pri jies. : ‘ : 5
a scheduler that exhibits (soft) real-time properties e | [ser] [veor | [veer Gommercidilyavailable from femiabs and
- , = WindRiver (www.fsmlabs.com)
Special calls for real-time
as well as standard * ' ’ . ;
\ \ operating system calls Linux kerne “‘iii”«’"" Fet:;"e nﬁ:’:f‘ —
| POSIX L.b scheduler | _ . i . = . 5
available. » ' : b
Linux-Kernel o intarmipts
i Simplifies programmin Direct
driver birt F:IO gua?'an%ees for & Harchware Abstracton Layer Real-time scheduler "?;':';Z“
1/0, interrupts b . 3
| /p meeting deadlines are
rOVided o INT2 IS
Hardware P :

Systemn hardware

Class 3: Research Systems

Research systems try to avoid limitations of existing real-time and embedded
operating systems.
= Examples include L4, selL4, NICTA, ERIKA, SHARK

Typical Research questions:
= Jow overhead memory protection,
= temporal protection of computing resources
= RTOS for on-chip multiprocessors
= quality of service (QoS) control (besides real-time constraints)
= formally verified kernel properties

List of current real-time operating systems:
http://en.wikipedia.org/wiki/Comparison_of real-time_operating_systems

Embedded Operating Systems
FreeRTOS in the Embedded Systems Lab (ES-Lab)

-25

Example: FreeRTOS (ES-Lab)

FreeRTOS (http://www.freertos.org/) is a typical embedded operating system. It is
available for many hardware platforms, open source and widely used in industry. It
is used in the ES-Lab.

= FreeRTOS is a real-time kernel (or real-time scheduler).

= Applications are organized as a collection of independent
threads of execution.

= Characteristics: Pre-emptive or co-operative operation,
queues, binary semaphores, counting semaphores,
mutexes (mutual exclusion), software timers,
stack overflow checking, trace recording,

Example: FreeRTOS (ES-Lab)

Typical directory structure (excerpts):

FreeRTOS

T /functicms that implement the handling of tasks (threads)
tasks.c i i i i
Tint. o e implementation of linked list data type

b b i~ . .
timers.c implementation of queue and semaphore services
eventﬁ_grotﬁ#\

BEOUEIRE. software timer functionality

portahle-._.______\
directory containing all port specific source files

= FreeRTOS is configured by a header file called FreeRTOSConfig.h that
determines almost all configurations (co-operative scheduling vs. preemptive,
time-slicing, heap size, mutex, semaphores, priority levels, timers, ...}

-27

Embedded Operating Systems
FreeRTOS Task Management

Example FreeRTOS — Task Management

Tasks are implemented as threads.
= The functionality of a thread is implemented in form of a function:

* Prototype! .34 ATaskFunction(void *pvParameters) ;
/ ._--—-‘—-_

some name of task function pointer to task arguments

» Task functions are not allowed to return! They can be “killed” by a specific call to a
FreeRTOS function, but usually run forever in an infinite loop.

= Task functions can instantiate other tasks. Each created task is a separate
execution instance, with its own stack.

= Exanqphg; void vTaskl(void *pvParameters) {
volatile uint32_t ul; /* volatile to ensure ul is implemented. */
for(;;) {
. /* do something repeatedly */
for(ul = 0; ul < 10000; ul++) { /* delay by busy loop */ }

Example FreeRTOS — Task Management

= Thread instantiation: a pointer to the function
BaseType t xTaskCreate(TaskFunction_t pv'i‘askcode,/that implements the task

const char * const chame,_q_h_~__‘ L
/ uintlé t usStackDepth, a descriptive name for the task

void *pvParameters,
UBaseType t uxPriority,
returns pdPASS or pdFAIL TaskHandl;_t *pxCreatidTask) ;
depending on the success

of the thread creation

each task has its own unique
stack that is allocated by the
kernel to the task when the
task is created; the
usStackDepth value
determines the size of the

the priority at which the
stack (in words)

task will execute; priority 0
is the lowest priority

task functions accept a parameter
pxCreatedTask can be of type pointer to void; the
used to pass out a handle value assigned to pvParameters is
to the task being created. the value passed into the task.

Example FreeRTOS — Task Management

Examples for changing properties of tasks:

» Changing the priority of a task. In case of preemptive scheduling policy, the ready
task with the highest priority is automatically assigned to the “running” state.

void vTaskPrioritySet(TaskHandle t pxTask, UBaseType_t uxNewPriority);

———

handle of the task whaose priority is being modified new priority (0 is lowest priority)

= A task can delete itself or any other task. Deleted tasks no longer exist and cannot
enter the “running” state again.

void vTaskDelete(TaskHandle_t pxTaskToDelete);

Y

handle of the task who will be deleted; if NULL, then the caller will be deleted

Embedded Operating Systems
FreeRTOS Timers

Example FreeRTOS — Timers

= The operating system also provides interfaces to timers of the processor.

= Asan example, we use the FreeRTOS timer interface to replace the busy loop by
a delay. In this case, the task is put into the “blocked” state instead of
continuously running.

void vTaskDelay(TickType t xTicksToDelay) ;
- _-—-—-—-—‘—-—
time is measured in “tick” units that are defined in the
configuration of FreeRTOS (FreeRTOSConfig.h). The
function pdMS_TO TICKS () converts msto “ticks”.

void vTaskl(void *pvParameters) {
for(;7) |
. /* do something repeatedly */
vTaskDelay (pdMS_TO_TICKS(250)); /* delay by 250 ms */
}
}

-33

Example FreeRTOS — Timers

= Problem: The task does not execute strictly periodically:

execution of “something” task in ready state again
A ——————————————l
_— f
4—bl
task moved to run state wait 250ms

= The parameters to vTaskDelayUntil() specify the exact tick count value at which
the calling task should be moved from the “blocked” state into the “ready” state.
Therefore, the task is put into the “ready” state periodically.

void vTaskl(void *pvParameters) { The xLastWakeTime variable needs to

TickType_t xLastWakeTime = xTaskGetTickCount(); be initialized with the current tick

for(;;) { \ count. Note that this is the only time
... /* do something repeatedly */ the variable is written to explicitly.
vTaskDelayUntil (&xLastWakeTime, pdMS_TO TICKS(250)); After this xLastWakeTime is
) I automatically updated within
vTaskDelayUntil().

automatically updated ‘when task is unblocked time to next Dnblocking

Embedded Operating Systems
FreeRTOS Task States

-35

Example FreeRTOS — Task States

What are the task states in FreeRTOS and the corresponding transitions?

= A task that is waiting for an event is said to be
in the “Blocked” state, which is a sub-state of
the “Not Running” state.

= Tasks can enter the “Blocked” state to wait for
two different types of event:

= Temporal (time-related) events—the event
being either a delay period expiring, or an
absolute time being reached.

= Synchronization events—where the events
originate from another task or interrupt. For
example, queues, semaphores, and mutexes, can
be used to create synchronization events.

not much
used
Not Running
(super state)
Suspended
VTaskSuspend()

vTaskSuspend()
called

vTaskResume)
called

call

Event Blocking API
function called

\ Blcked ./

wTaskSuspend)
called

Example FreeRTOS — Task States

Example 1: Two threads with equal priority.

void vTaskl(void *pvParameters) {
volatile uint32 t ul;
for(;) {
. /* do something repeatedly */
for(ul = 0; ul < 10000; ul++) { }

}

void vTask2(void *pvParameters) {
volatile uint32 t u2;
for(;;) |
. /* do scmething repeatedly */
for{(u2z = 0; u2 < 10000; u2++) { }

int main(void)} (

vTaskStartScheduler() ;
for(;; };

xTaskCreate (vTaskl, "Task 1", 1000, NULL, 1, NULL);
xTaskCreate (vTask2, "Task 2", 1000, NULL, 1, NULL):; until time t2

Attime {1, Task 1%, | At time 2 Task 2 enters the Running [,
enters the Running state and execules until time {3 - at

state and executes which point Task1 re-enters the
Running state

Task 1 a-—‘ — | EN

Both tasks have priority 1. In this case,
FreeRTOS uses time slicing, i.e., every
task is put into “running” state in turn.

Task 2 80 [S R

0 @ 3 Time

Example FreeRTOS — Task States

Example 2: Two threads with delay timer.

void vTaskl(void *pvParameters) { int main(wvoid) {
TickType t xLastWakeTime = xTaskGetTickCount(); xTaskCreate (vTaskl,"Task 1",1000,NULL,1,NULL) ;
for(;;) { xTaskCreate (vTask2,"Task 2",1000,NULL,2,NULL) ;
. /* do something repeatedly */ vTaskStartScheduler() ;
vTaskDelayUntil (&xLastWakeTime,pdMS_TO TICKS(250)) ; for{ 7:; 1;
} }
}
void vTask2(void *pvParameters) {
Tick‘l'ypa_t xLastWakeTime = xTaskGetTickCount () ;
for(i:) { Task 1
. /* do something repeatedly */
vTaskDelayUntil (&xLastWakeTime,de57T07TICKS {250)) ; TaSk 2
}
. Idle !
If no user-defined task is in the running state, [11 22 3 Time tn

FreeRTOS chooses a built-in Idle task with priority
0. One can associate a function to this task, e.g.,
in order to go to low power processor state.

Embedded Operating Systems

FreeRTOS Interrupts

-39

Example FreeRTOS - Interrupts

How are tasks (threads) and hardware interrupts scheduled jointly?
= Although written in software, an interrupt service routine (ISR) is a hardware
feature because the hardware controls which interrupt service routine will run,
and when it will run.
= Tasks will only run when there are no ISRs running, so the lowest priority interrupt
will interrupt the highest priority task, and there is no way for a task to pre-empt
an ISR. In other words, ISRs have always a higher priority than any other task.

= Usual pattern:

= |SRs are usually very short. They find out the reason for the interrupt, clear the
interrupt flag and determine what to do in order to handle the interrupt.

= Then, they unblock a regular task (thread) that performs the necessary processing
related to the interrupt.
* For blocking and unblocking, usually semaphores are used.

Example FreeRTOS — Interrupts

| 2-The ISR executes, handles]™. [3 - The priority of Task 2 is higher than
the interrupting peripheral, the priority of Task 1, so the ISR returns
clears the interrupt, then directly to Task 2, in which the interrupt

[unblocks ask 2. processing is completed.

ISR 4 - Task 2 enters the R

| Blocked state to wait for
the next interrupt, allowing
Task 1 to re-enter the
Running state.

blocking and
unblocking is
typically
implemented
via semaphores

Task2 (B
(deferred processing task) " —
!

-
P
{

Task1 e

™~

T ke wu /
1 - Task1 is Running when an \

| interrupt occurs.

Example FreeRTOS - Interrupts

The semaphore is not
available ask
50 the task is blocked
waiting for the semaphore I!l xSemaphore Take()
|
| |
v that now successfully
temmupt] ‘takes' the semaphore, so it
xSemaphoreGiveFromISR() 1 1s unavailable once more
| |
An interrupt occurs.. that v
‘gives’ the semaphore.

ask The task can now perform its action, when complete
it will once again attempt to ‘take’ the semaphore
which will cause it to re-enter the Blocked state

errupll

xSemaphoreGiveFromISR() xSemaphoreTake()

which unblocks the task
(the semaphore is now
available)

Embedded Systems
6. Aperiodic and Periodic Scheduling

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Esdgensssische Technische Hochschule Zurich
Swizs Federal Institute af Technelogy Zurich

Where we are ...

Hardware <

1. Introduction to Embedded Systems
2. Software Development ;
3. Hardware-Software Interface ‘\
4. Programming Paradigms i
-5. Embedded Operating Systems \':\Hardware—
> 6. Real-time Scheduling ,"1 Software
"7, Shared Resources 2
-8. Hardware Components
9. Power and Energy

*10. Architecture Synthesis

Basic Terms and Models

Basic Terms

Real-time systems

Hard: A real-time task is said to be hard, if missing its deadline may cause
catastrophic consequences on the environment under control. Examples are
sensory data acquisition, detection of critical conditions, actuator servoing.

Soft: A real-time task is called soft, if meeting its deadline is desirable for
performance reasons, but missing its deadline does not cause serious damage to
the environment and does not jeopardize correct system behavior. Examples are
command interpreter of the user interface, displaying messages on the screen.

Schedule

Given a set of tasks J ={J|,J5,...}:

A schedule is an assignment of tasks to the processor, such that each task is
executed until completion.

A schedule can be defined as an integer step function o: R — N

where a(t) denotes the task which is executed at time t. If

o(t)=0 then the processor is called idle.

If o(t) changes its value at some time, then the processor performs a context
switch.

Each interval, in which J(t) is constant is called a time slice.

A preemptive schedule is a schedule in which the running task can be arbitrarily
suspended at any time, to assign the CPU to another task according to a
predefined scheduling policy.

Schedule and Timing

= Aschedule is said to be feasible, if all task can be completed according to a set
of specified constraints.

= A set of tasks is said to be schedulable, if there exists at least one algorithm that
can produce a feasible schedule.

= Arrival time a; or release time r; is the time at which a task becomes ready for
execution.

= Computation time Ciis the time necessary to the processor for executing the
task without interruption.

= Deadline d;is the time at which a task should be completed.
= Start time $;is the time at which a task starts its execution.
®= Finishing time f;is the time at which a task finishes its execution.

Schedule and Timing

= Using the above definitions, we have d; >, +C;

= Lateness L, = f; —d; represents the delay of a task completion with respect to
its deadline; note that if a task completes before the deadline, its lateness is
negative.

= Tardiness or exceeding time E;, = max(0, ;) is the time a task stays active after
its deadline.

= laxity or slack time X; =d; —a; —C; is the maximum time a task can be delayed
on its activation to complete within its deadline.

Schedule and Timing

= Periodic task t;: infinite sequence of identical activities, called instances or jobs,
that are regularly activated at a constant rate with period T;. The activation
time of the first instance is called phase @, .

relative deadline o P
first Dj kth

i R
instance imstance

o | | e | o |]

/'nn1 "—"T_ = 0+ kDT \

initial phase period” ' i deadline of period k
D D, arrival time of instance k

-—

| | | |

i I R i
ajg dip a2 din
instance 1 instance 2

Example for Real-Time Model

r, r, :
1 2 dy d,

Computation times: C;=9, C,=12
Starttimes:s,=0,5,=6

Finishing times: f, =18, f,= 28
Lateness: L;=-4,L[,=1

Tardiness: £,=0,E,=1

Laxity: X, =13, X,=11

Precedence Constraints

= Precedence relations between tasks can be described through an acyclic directed
graph G where tasks are represented by nodes and precedence relations by
arrows. G induces a partial order on the task set.

= There are different interpretations possible:
= All successors of a task are activated (concurrent task execution). We will use this
interpretation in the lecture.
= One successor of a task is activated:
non-deterministic choice.

Precedence Constraints

Example for concurrent activation:
* Image acquisition acgl acg?
* Low level image processing edgel edge?2
* Feature/contour extraction shape
* Pixel disparities disp
* Object size H
= Object recognition rec

-11

Classification of Scheduling Algorithms

= With preemptive algorithms, the running task can be interrupted at any time to
assign the processor to another active task, according to a predefined
scheduling policy.

= With a non-preemptive algorithm, a task, once started, is executed by the
processor until completion.

= Static algorithms are those in which scheduling decisions are based on fixed
parameters, assigned to tasks before their activation.

= Dynamic algorithms are those in which scheduling decisions are based on
dynamic parameters that may change during system execution.

Classification of Scheduling Algorithms

= An algorithm is said optimal if it minimizes some given cost function defined
over the task set.

= An algorithm is said to be heuristic if it tends toward but does not guarantee to
find the optimal schedule.

= Acceptance Test: The runtime system decides whenever a task is added to the
system, whether it can schedule the whole task set without deadline violations.

W l

Example for the ,,domino

Qj effect”, if an acceptance test

L)
wrongly accepted a new task.

Im
h
m

T4

-13

Metrics to Compare Schedules Metrics Example

n
= Average response time: [= lZ(f, —r

) task J; task J,
"

i=1

* Total completion time: t. = max(f;)-min(7;) 77/

s s s S B B s s B B B B B A s e

n T
.) Twi(fi—r7) i5 10 15 20 25
= Weighted sum of response time: t, =kl i i |
gw Iy ry d, d,
=i
= Maximum lateness: Lo :(max(f»—d‘) —
max i to Average response time: t, =} (18+24)=21
[] Number of |ate tasks: Nlate = Zmlss(f;) TOtal Comp|eti0n timEZ tc‘ = 28 - O = 28
i= Weighted sum of response times: w; =2,w, =1: 1, =2 %*24 =20
miss(f;) = {0 if fi<d, Number of late tasks: Nige =1
i .
1 otherwise Maximum lateness: Linax =1

Metrics and Scheduling Example

In schedule (a), the maximum lateness is minimized, but all tasks miss their deadlines.
In schedule (b), the maximal lateness is larger, but only one task misses its deadline.

Real-Time Scheduling of Aperiodic Tasks

Lopag = LI =3
dl d2 d3 d4 ds
ll.\:zx le 4 ‘lu:. lu=—s ll§_4
b) ‘ I, | Ia T4 | Is l I
r T T T T T T T T T T T T £
0 2 4 6 B W0 12 14 16 B N 2 H %
| o
I =
Logs = LI = 23

Overview Aperiodic Task Scheduling

Scheduling of aperiodic tasks with real-time constraints:
= Table with some known algorithms:

Equal arrival times Arbitrary arrival times

non preemptive preemptive

Independent | EDD EDF (Horn)
tasks (Jackson)
Dependent LDF (Lawler) EDF* (Chetto)

tasks

Earliest Deadline Due (EDD)

Jackson’s rule: Given a set of n tasks. Processing in order of non-decreasing
deadlines is optimal with respect to minimizing the maximum lateness.

Earliest Deadline Due (EDD)

Example 1:

ISEE I PY S P
Gl v 1| 1| 32
;| 31w 7] 8|5

d, ds dy dy4 dj

L Is I3 Ja I Lmax =Lg = -1
I T T T T T T T T T T t
6 1 2 3 4 5 6 1 8 9 10

Earliest Deadline Due (EDD)

Jackson’s rule: Given a set of n tasks. Processing in order of non-decreasing
deadlines is optimal with respect to minimizing the maximum lateness.

Proof concept:
Y ENE

Lmax = max (L7, L)

ab

LX) i fa

if (L, 2 L'y) then Ligg = fy-dy < fy-d,
ab inhothcases: Ly < Lo
i . . . ab b
if {Ly<Ly) then Ly = fp-dy< fy-d, 2 =
ab

Earliest Deadline Due (EDD)

Example 2:
T Jal s da]Ts
Cil 121472
d;| 2| 5| 4|86
d, d3 d; ds dy
T 13)2 Is Ja Lpage =Lg =2
r T T T T T T T T T T =
0 1 2 3 4 5 & 7 8 9o 10 L

Earliest Deadline First (EDF)

Horn’s rule: Given a set of n independent tasks with arbitrary arrival times, any
algorithm that at any instant executes a task with the earliest absolute deadline
among the ready tasks is optimal with respect to minimizing the maximum
lateness.

-23

Earliest Deadline First (EDF)

Ty Fa| 33|45

Example:
a;| o0 0 2 3 6

clil|2]2]2]2

dil 2|54 |w|o

Earliest Deadline First (EDF)

Horn’s rule: Given a set of n independent tasks with arbitrary arrival times, any
algorithm that at any instant executes the task with the earliest absolute deadline
among the ready tasks is optimal with respect to minimizing the maximum
lateness.

Concept of proof:

For each time interval [t,.t +1) it is verified, whether the actual running task is
the one with the earliest absolute deadline. If this is not the case, the task with the
earliest absolute deadline is executed in this interval instead. This operation cannot
increase the maximum lateness.

-25

Earliest Deadline First (EDF)

which task is
executing ?

which task has
earliest deadline ?

S .

Ja b : E—
4 | S —— - | BN e e S R B B e | t
time slice T 2 7 08 9 0 11 12 13 M4 15
tg=6 (a)

slice for
interchange

situation after
interchange

% I —
T T T T ! T T T T T T t
0 1 2 3 4 5 6 T R 9 U0 I 12 13 M4 U5
t=4 tg=6 b) 6-26

Earliest Deadline First (EDF)

remaining worst-
case execution time

Acceptance test:

worst case finishing time of task i:

EDF guarantee condition: vi=1

algorithm:

A :!+Zq{{)
k=1

of task k

TR H-Zq (1) <d,

k=1

Algorithm: EDF_guarantee (J, J.,)
t = current time();
£, = t;
for (each J,eJ') {
£, = £, + c;(t);
}
return (FEASIBLE) ;

{ ‘=Ju{J,..}; /* ordered by deadline */

if (f; > d,) return(INFEASIBLE) ;

Earliest Deadline First (EDF*)

= The problem of scheduling a set of n tasks with precedence constraints
(concurrent activation) can be solved in polynomial time complexity if tasks are
preemptable.

= The EDF* algorithm determines a feasible schedule in the case of tasks with
precedence constraints if there exists one.

= By the modification it is guaranteed that if there exists a valid schedule at all
then

= atask starts execution not earlier than its release time and not earlier than the
finishing times of its predecessors (a task cannot preempt any predecessor)

= all tasks finish their execution within their deadlines

EDF*

EDF*

Earliest Deadline First (EDF*)

Modification of deadlines:
= Task must finish the execution time within its deadline.
= Task must not finish the execution later than the maximum start time of its

successor.
task b depends on task a: Ja _>Jb
C,

fa<d, Ta

H T H Cy .
fa€dy-Cy Jb (I

fra Th fa dy, dy

= Solution: d;*=min(d;,min(d ; *~C; : J; > J)) =

-31

Earliest Deadline First (EDF*)

Modification of release times:
= Task must start the execution not earlier than its release time.
= Task must not start the execution earlier than the minimum finishing time of its

predecessor.
task b depends on task a: Ja —> Jb
C, l
Sp =Ty Ja ‘
5 : Cp
sp2T,+C, Jp o
fa Tp Sh d, dy
= Solution: r;* = max(r;,max(r, *+C, : J; > J ;)

Earliest Deadline First (EDF*)

Algorithm for modification of release times:
1. For any initial node of the precedence graph set rf* =t

2. Select a task j such that its release time has not been modified but the release times of
all immediate predecessors i have been modified. If no such task exists, exit.

3. Set rj* = max[rj,max(r,- *+C 1 J; > JJ-))

4. Return to step 2

Algorithm for modification of deadlines:
1. Forany terminal node of the precedence graph set d;* = d;

2. Select a task i such that its deadline has not been maodified but the deadlines of all
immediate successors j have been modified. If no such task exists, exit.

3. Set d;*=min(d;,min(d; *~C;:J; > J,))
4. Return to step 2

-33

Earliest Deadline First (EDF*)

Proof concept:

= Show that if there exists a feasible schedule for the modified task set under EDF
then the original task set is also schedulable. To this end, show that the original
task set meets the timing constraints also. This can be done by using rg* =7
d;*<d; ;weonly made the constraints stricter.

= Show that if there exists a schedule for the original task set, then also for the
modified one. We can show the following: If there exists no schedule for the
modified task set, then there is none for the original task set. This can be done by
showing that no feasible schedule was excluded by changing the deadlines and
release times.

= |n addition, show that the precedence relations in the original task set are not
violated. In particular, show that
= atask cannot start before its predecessor and
= atask cannot preempt its predecessor.

Real-Time Scheduling of Periodic Tasks

Overview

Table of some known preemptive scheduling algorithms for periodic tasks:

Deadline equals Deadline smaller than

period period

static RM DM
priority rate-monotonic deadline-monotonic
priority

Model of Periodic Tasks

= Examples: sensory data acquisition, low-level actuation, control loops, action
planning and system monitoring.

= When an application consists of several concurrent periodic tasks with individual
timing constraints, the OS has to guarantee that each periodic instance is
regularly activated at its proper rate and is completed within its deadline.

= Definitions:

I :denotes a set of periodic tasks
7; :denotes a periodic task
7; ; - denotes the jth instance of task i
T js Sije ff,f’ dl.’j : denote the release time, start time, finishing time, absolute
' deadline of the jth instance of task i
@, : denotes the phase of task i (release time of its first instance)
D; denotes the relative deadline of task i
T, : denotes the period of task i

Model of Periodic Tasks

= The following hypotheses are assumed on the tasks:

The instances of a periodic task are regularly activated at a constant rate. The
interval T; between two consecutive activations is called period. The release times
satisfy

r; =@+ =17

All instances have the same worst case execution time C;

All instances of a periodic task have the same relative deadline D,-. Therefore, the
absolute deadlines satisfy
d; ;= @;+(j=1)I; + D;

Often, the relative deadline equals the period D; =T; (implicit deadline), and

therefore)
di;j=®;+ T,

Model of Periodic Tasks

= The following hypotheses are assumed on the tasks (continued):

= All periodic tasks are independent; that is, there are no precedence relations and
no resource constraints.

* No task can suspend itself, for example on 1/O operations.
= All tasks are released as soon as they arrive.
= All overheads in the OS kernel are assumed to be zero.

Rate Monotonic Scheduling (RM)

= Assumptions:

Task priorities are assigned to tasks before execution and do not change over time
(static priority assignment).

RM is intrinsically preemptive: the currently executing job is preempted by a job of
a task with higher priority.

Deadlines equal the periods D, =7 .

Rate-Monotonic Scheduling Algorithm: Each task is assigned a priority. Tasks with
higher request rates (that is with shorter periods) will have higher priorities. Jobs of
tasks with higher priority interrupt jobs of tasks with lower priority.

= Example:
h Y-; '
(% ED,-? D, T3
oo I
71 = .2 Si3 fis
Periodic Tasks

Example: 2 tasks, deadlines = periods, utilization = 97%

RM

T

JET (T R
time overflow L

3

0

kLS

(a)

T2

(b)

-41

Rate Monotonic Scheduling (RM)

Optimality: RM is optimal among all fixed-priority assignments in the sense that
no other fixed-priority algorithm can schedule a task set that cannot be
scheduled by RM.

= The proofis done by considering several cases that may occur, but the main
ideas are as follows:

= A critical instant for any task occurs whenever the task is released
simultaneously with all higher priority tasks. The tasks schedulability can easily
be checked at their critical instants. If all tasks are feasible at their critical
instant, then the task set is schedulable in any other condition.

= Show that, given two periodic tasks, if the schedule is feasible by an arbitrary
priority assignment, then it is also feasible by RM.

= Extend the result to a set of n periodic tasks.

6-42

Proof of Critical Instance

Definition: A critical instant of a task is the time at which the release of a job
will produce the largest response time.

Lemma: For any task, the critical instant occurs if a job is simultaneously
released with all higher priority jobs.

Proof sketch: Start with 2 tasks 7, and z,.

Response time of a job of z, is delayed by jobs of z; of higher priority:

Proof of Critical Instance

Delay may increase if 7, starts earlier:

Tzh\ || ||
o = [

C,+3C,

Maximum delay achieved if 7, and 7, start simultaneously.

Repeating the argument for all higher priority tasks of some task 1, :

The worst case response time of a job occurs when it

is released simultaneously with all higher-priority jobs.

Proof of RM Optimality (2 Tasks)

We have two tasks 7, 7, with periods T, < T,.
Define F=| T,/T, | the number of periods of 7, fully contained in T,

Consider two cases A and B:
Case A: Assume RM is not used = prio(7;) is highest:

-
af 1 1
C
* — — ¢
CZ

Schedule is feasible if C,+C,< 7, and G, < 7, (A)

Proof of RM Optimality (2 Tasks)

Case B: Assume RM is used = prio(z;) is highest:

TIIﬁ | T—\ -
[i —: t

F T, T,

Schedulable is feasible if
FCAHCAmMIn(T—FT,, C})< T, and C, < T, (B)

We need to show that (A) = (B): C+C, < T, =C(C, < T,
CH+G = T, = FCHC, < FC+FC,SFT =
FC,+C,+min(T,—FT,, C,) £ FT, +min(T,—FT,, C;) < min(T,, C;+FT,) < T,

Given tasks 7, and 7, with T, < T,, then if the schedule is feasible by an
arbitrary fixed priority assignment, it is also feasible by RM.

Proof of RM Optimality (2 Tasks)

Case B: Assume RM is used = prio(z;) is highest:

= & b=
i T |
Ll — — - .

.'-'T1 T,
Schedulake is feasible if
FCAC,+min(T,~FT,, C,)< T, and C, < T, (B)
o

We need to show that (A) = (B): C+C, < T, =C, < T,
C+G < T, = FC+C, < FC+FC,SFT =
FC+C+min(T,—FT,, C,) £ FT, +min(T,—FT,, C;) £min(T,, C+FT,) < T,

Given tasks 7, and 7, with T, < T,, then if the schedule is feasible by an
arbitrary fixed priority assignment, it is also feasible by RM.

Proof of RM Optimality (2 Tasks)

Case B: Assume RM is used = prio(z;) is highest:

)

FT, T,
Schedu is feasible if
FCHACHMIN(T,—FT, C)< T, and C; < T, (B)

P —
We need to show that (A) = (B): C+C, < T, =C(C, < T,
CHG, < T = FC+C, S FC+FC, S FT =
FC,+C,+min(T,—FT,, C,) £ FT, +min(T,—FT,, C;) < min(T,, C;+FT,) < T,

Given tasks 7, and 7, with T, < T,, then if the schedule is feasible by an
arbitrary fixed priority assignment, it is also feasible by RM.

Proof of RM Optimality (2 Tasks)

Case B: Assume RM is used > prio(z;) is highest:

9@@\;t

FT, T,

Schedu is feasibla if
FC{HC,4min(T,—FT,, C}) < 7, and C; < T, (B)
o

We need to show that (A) = (B): C+C, < T, =C, < T,
C+C, < T = FC+C, < FC+FC, S FT, =
FC,+C,+#min(T,—FT,, C,) < F7, +min(T,—FT,, C,) £ min(T,, C;+FT,) <T,

Given tasks 7, and 7, with T, < T,, then if the schedule is feasible by an
arbitrary fixed priority assignment, it is also feasible by RM.

Proof of RM Optimality (2 Tasks)

Case B: Assume RM is used = prio(z;) is highest:

AT [-
G T TFT
o oo s . .

FT, T,

Schedulable is feasible if
FCAHCAmMIn(T—FT,, C})< T, and C, < T, (B)

We need to show that (A) = (B): C+C, < T, =C(C, < T,
CHG S T = FCHG S FOHFCESFT =
FC+Cy+min(T,—FT,, C,) < F7, +min(T,—FT,, C,) <min(T,, C,;+FT,) <T,

Given tasks 7, and 7, with T, < T,, then if the schedule is feasible by an
arbitrary fixed priority assignment, it is also feasible by RM.

Admittance Test

-51

Rate Monotonic Scheduling (RM)

Schedulability analysis: A set of periodic tasks is schedulable with RM if

n
Z% = "(zlfn_l) n(2]ﬁ—1)

i=1 "

This condition is sufficient but not necessary.

]
Theterm U = ZQ denotes the processor
i=1 "

utilization factor U which is the fraction of processor
time spent in the execution of the task set.

Proof of Utilization Bound (2 Tasks)

We have two tasks 7;, r, with periods T, < T..
Define F= [T,/T, |: number of periods of z, fully contained in T,

Proof Concept: Compute upper bound on utilization U such that the task set is
still schedulable:

= assign priorities according to RM;

= compute upper bound U,, by increasing the computation time C, to just
meet the deadline of z,; we will determine this limit of C, using the results
of the RM optimality proof.

= minimize upper bound with respect to other task parameters in order to
find the utilization below which the system is definitely schedulable.

-53

Proof of Utilization Bound (2 Tasks)

As before: .
A = o
. T
7 |___— I ¢
FT, T,

Schedulable if FC,+Cy+min(T,—FT,, C)< 7, and C; < T,

Utilization: /

_ ¢ Cy _ Cy To—FCi—min{T:—FT,,C1}
U_T1+T2_T1+ T>

. 1 + Cl(TszTl)le Hlill{Tg*FTl,Cl}

- T T

Proof of Utilization Bound (2 Tasks)

_ & @ _ & Tg—FCl—min{Tg—FTl,Cl}
V=g + g St Ty

_ 1_._ Cl(T;]—FTl)—Tl miD{T2—FT1,Cl}

- Ty

Proof of Utilization Bound (2 Tasks)

Minimize utilization bound w.r.t C;:
= If C, < T,—FT, then U decreases with increasing C,
= |If T,—FT, £ C, then U decreases with decreasing C,
= Therefore, minimum U is obtained with C; = T,—FT, :

U=1+ (TrFTl)Qi’%(Trm)}

=1+ BB - PP = (} - F)

We now need to minimize w.r.t. G =T,/T, where F=|.T,/T, land T, < T,. As Fis
integer, we first suppose that it is independent of G = T,/T,. Then we obtain

U=R((R - FP+F) = CRE

Proof of Utilization Bound (2 Tasks)

Minimizing U with respect to G yields
2G(G-F)—(G-F)Y?-F=G?-(F?*+F)=0

If we set F =1, then we obtain

G=%2=v2 U=2(+v2-1)

It can easily be checked, that all other integer values for F lead to a larger upper
bound on the utilization.

Deadline Monotonic Scheduling (DM)

= Assumptions are as in rate monotonic scheduling, but deadlines may be smaller
than the period, i.e.

Algorithm: Each task is assigned a priority. Tasks with smaller relative deadlines will
have higher priorities. Jobs with higher priority interrupt jobs with lower priority.

= Schedulability Analysis: A set of periodic tasks is schedulable with DM if
n C 1/
>ol< n(z " 1)
i=1 D;

This condition is sufficient but not necessary (in general).

Deadline Monotonic Scheduling (DM) - Example

U=0.874 iﬁ 108> n2"-1)=0.757

i=1 i

‘Holk R e

Tzi 10
!_!:]_!::.l[_!::.ll
1:1 10
R s 0 O s RO B B
'I:1 10
-.uu-.iil_luuuuu
1 10

-59

Deadline Monotonic Scheduling (DM)

There is also a necessary and sufficient schedulability test which is computationally
more involved. It is based on the following observations:

= The worst-case processor demand occurs when all tasks are released
simultaneously; that is, at their critical instances.

= For each task i, the sum of its processing time and the interference imposed
by higher priority tasks must be less than or equal to D; .

= A measure of the worst case interference for task i can be computed as the
sum of the processing times of all higher priority tasks released before some
time f where tasks are ordered accordingtom<n<«< D, <D, :

=1 |

Deadline Monotonic Scheduling (DM)

= The longest response time R; of a job of a periodic task i is computed, at the
critical instant, as the sum of its computation time and the interference due to
preemption by higher priority tasks:

R =C;+1,

= Hence, the schedulability test needs to compute the smallest R, that satisfies

i-1
=l T.f

for all tasks i. Then, R, <D, must hold for all tasks i.
= |t can be shown that this condition is necessary and sufficient.

-61

Deadline Monotonic Scheduling (DM)

The longest response times R; of the periodic tasks i can be computed iteratively
by the following algorithm:

Algorithm: DM guarantee (I')
{ for (each t,€l){
I=20;
do {
R=1I4+C;
if (R > D;) return(UNSCHEDULABLE) ;
1 = Xt G b[r/e] g
} while (I + C; > R);
}
return (SCHEDULABLE) ;

DM Example

Example:
* Task1: Gy =LT =4D; =3
» Task2: O =1;7, =5;D, =4
* Task3: (3 =2;T3=6;D3=5
» Taskd: Cy =17, =11;D4 =10
= Algorithm for the schedulability test for task 4:
* Step0: Ry =1
* Stepl: Ry=35
= Step 2: Ry=6
= Step3: Ry =7
* Step4: Ry =9
* Step5: Ry =10

DM Example
n
U=0.874 Z% 108> n2V7-1)=0.757
i=1 i
T

SNSRI

T, 10
mI =
1:1 10
N s I s RO O B
1 10

1:4::::::::!_!l:l

1 10

EDF Scheduling (earliest deadline first)

= Assumptions:
= dynamic priority assignment
= intrinsically preemptive

= Algorithm: The currently executing task is preempted whenever another
periodic instance with earlier deadline becomes active.

d; ;=@ +(j-1)I;+D;

= Optimality: No other algorithm can schedule a set of periodic tasks if the set that
can not be scheduled by EDF.

= The proof is simple and follows that of the aperiodic case.

Periodic Tasks

Example: 2 tasks, deadlines = periods, utilization = 97%

RM | -

T

T2

EDF | : : ©

Tl

1,

(b

EDF Scheduling

A necessary and sufficient schedulability test for D, =T, :

e,
A set of periodic tasks is schedulable with EDF if and only if Z_L =

n

T

=l £

U<l

C.

n
Theterm U =) -t
T;

i=1

denotes the average processor utilization.

EDF Scheduling

If the utilization satisfies [/ > 1, then there is no valid schedule: The total
demand of computation time in interval 7'=1,-7,-...-7, is

n

i%T:UT> T

=1 i

and therefore, it exceeds the available processor time in this interval.

If the utilization satisfies I/ <1 , then there is a valid schedule.

We will proof this fact by contradiction: Assume that deadline is missed at some
time t, . Then we will show that the utilization was larger than 1.

EDF Scheduling

If the deadline was missed at t, then define t, as a time before t, such that (a) the processor is
continuously busy in [t, t,] and (b) the processor only executes tasks that have their arrival

time AND their deadlinein [t,, t,].

Why does such a time t, exist? We find such a t, by starting at t, and going backwards in time,
always ensuring that the processor only executed tasks that have their deadline before or at t, :
= Because of EDF, the processor will be busy shortly before t, and it executes on the task that has
deadline at t,.
= Suppose that we reach a time such that shortly before the processor works on a task with deadline
after t, or the processor is idle, then we found t;: We know that there is no execution on a task with
deadline after t, .
= But it could be in principle, that a task that arrived before t, is executing in [t,, t,].
= |f the processor is idle before t,, then this is clearly not possible due to EDF (the processor is not idle, if
there is a ready task).

= [f the processor is not idle before t,, this is not possible as well. Due to EDF, the processor will always
work on the task with the closest deadline and therefore, once starting with a task with deadline after t,

all task with deadlines before t, are finished.

EDF Scheduling

= Within the interval [t, ,tg] the total computation time demanded by the periodic
tasks is bounded by

n t,—t
C,(h.1)= Z;,\‘

number of complete periods
of task i in the interval

= Since the deadline at time 1, is missed, we must have:

=1, <C(t.,)<(t, -t = U >1<§

Periodic Task Scheduling

Example: 2 tasks, deadlines = periods, utilization = 97%
RM T s 1 s

L |

T2

EDF

T

5 [

Real-Time Scheduling of Mixed Task Sets

Problem of Mixed Task Sets

In many applications, there are aperiodic as well as periodic tasks.

= Periodic tasks: time-driven, execute critical control activities with hard timing
constraints aimed at guaranteeing regular activation rates.

= Aperiodic tasks: event-driven, may have hard, soft, non-real-time requirements
depending on the specific application.

= Sporadic tasks: Offline guarantee of event-driven aperiodic tasks with critical
timing constraints can be done only by making proper assumptions on the

environment; that is by assuming a maximum arrival rate for each critical event.

Aperiodic tasks characterized by a minimum interarrival time are called
sporadic.

-75

Background Scheduling

Background scheduling is a simple solution for RM and EDF:
= Processing of aperiodic tasks in the background, i.e. execute if there are no
pending periodic requests.
= Periodic tasks are not affected.
= Response of aperiodic tasks may be prohibitively long and there is no possibility to
assign a higher priority to them.

= Example:
RM
_>| Periodic Tasks }—\
High-Priority Queue @
FCFS
—)’ Apcriodic Tasks

Low-Priority Queue

Background Scheduling

Example (rate monotonic periodic schedule):

aperiodic 1 2

requests ﬁ SR
f T T T T T T S T T T
[2 4 6 8 012 14 0 2 24

-77

Rate-Monotonic Polling Server

= Jdea: Introduce an artificial periodic task whose purpose is to service aperiodic
requests as soon as possible (therefore, “server”).

= Function of polling server (PS)
= At regularintervals equal to TS , a PS task is instantiated. When it has the highest

current priority, it serves any pending aperiodic requests within the limit of its
capacity C.
= |f no aperiodic requests are pending, PS suspends itself until the beginning of the

next period and the time originally allocated for aperiodic service is not preserved
for aperiodic execution.

= |ts priority (period!) can be chosen to match the response time requirement for
the aperiodic tasks.

= Disadvantage: If an aperiodic requests arrives just after the server has
suspended, it must wait until the beginning of the next polling period.

Rate-Monotonic Polling Server

l Ci| T,
Example: , Server
Tl 1| 4
C,=2
T2 2 6 T,=5

m B m |

server has current : E | E)
highest priority .
and checks the aperiodic T 2 T ! : :
queue of tasks requesrrs e ,4 |
2 4 6] 012 14 16 I8 200 2 M
T T T h T T h " h T
0 2 4 6 3 1 12 14 16 18 20 22 4

remaining budget is lost

-79

Rate-Monotonic Polling Server

Schedulability analysis of periodic tasks:

= The interference by a server task is the same as the one introduced by an
equivalent periodic task in rate-monotonic fixed-priority scheduling.

= A set of periodic tasks and a server task can be executed within their deadlines if

CS
+
T,

5

iCpf < (M))

i

n
2
i=1

= Again, this test is sufficient but not necessary.

Rate-Monotonic Polling Server

Guarantee the response time of aperiodic requests:

= Assumption: An aperiodic task is finished before a new aperiodic request
arrives.
* Computation time C,,, deadline D,
= Sufficient schedulability test:

1+[Q-‘)TS <D,

If the server task
has the highest
priority there is a

necessary test also.

C

The aperiodic task arrives
shortly after the activation
of the server task.

Maximal number of
necessary server periods.

-81

EDF — Total Bandwidth Server

Total Bandwidth Server:
= When the kth aperiodic request arrives at time t = r, it receives a deadline

C
dk = max(rk,dk_])+—k
Us
where C, is the execution time of the request and U is the server utilization

factor (that is, its bandwidth). By definition, d,=0.

= Once a deadline is assigned, the request is inserted into the ready queue of
the system as any other periodic instance.

-83

EDF — Total Bandwidth Server

Example:
U,=0.75 U,=025 U,+U, =1
T
0 6 12 24
5 |
0 & 24
! dy 2 | dy ds
aperiodic
requests ; l - r—i l
(le 2 ,1.-;;(.73;1('” 12 |_11I4;5|n|7 K19 20 21 2 23 24

EDF — Total Bandwidth Server

Schedulability test:

Given a set of n periodic tasks with processor utilization U, and a total bandwidth
server with utilization U,, the whole set is schedulable by EDF if and only if

U,+U,<I

Proof:

* Ineachinterval of time [z,.1,], if C,,, is the total execution time demanded by
aperiodic requests arrived at t, or later and served with deadlines less or equal to

t,, then

q{pe < (tz -1)U.\

-85

EDF — Total Bandwidth Server

If this has been proven, the proof of the schedulability test follows closely that of the
periodic case.

Proof of lemma:

fea

e,

=k,

v
C ape

k

\,i(dﬁ, —max(r,.d,,))

k=k,

U
U‘.(dﬁ.: —max(r;, 7dk,—t))
Ut —1,)

IA A

Embedded Systems

6a. Example Network Processor

Lothar Thiele

m Swiss Federal 6a-1 Computer Engineering r' ‘
Institute of Technology a- and Networks Laboratory

Software-Based NP

Network Processor:
Programmable Processor Optimized to
Perform Packet Processing

» How to Schedule the CPU cycles meaningfully?
= Differentiating the level of service given to different flows
= Each flow being processed by a different processing function

m Swiss Federal 6a-2 Computer Engineering f' ‘
Institute of Technology - and Networks Laboratory

Our Model — Simple NP

Real-Time Flows (RT) {\

—_ packet

______——P
Best Effort Flows (BE) / processor

» Real-time flows have deadlines which must be met

» Best effort flows may have several QoS classes and
should be served to achieve maximum throughput

m Swiss Federal 6a-3 Computer Engineering T' ‘
Institute of Technology a- and Networks Laboratory

Task Model

» Packet processing
functions may be
represented by directed
acyclic graphs

» End-to-end deadlines for

RT packets X
voice processing l
(&)
1
()
A
. 1
m ﬂg:?t:tzegfe?e’chnomgy 6a Q/)

Architecture

Real-time
Flows
,Packet Processing functions

; 7
4 Y%
F

||IIQ

2]
™~ <
£ i 1| s 5
S [uy i =
5 & [0 m—7"| &2 5
- 5 3
Q. (&) : =
= : 3
F, /
\ il m” /
Best effort | |
m} [CPU Sched_uler]
m ﬂﬂist:t?grw?%’chnohgy 6a-5 andc!:l,:'tﬁg::; i:%gxgpyg f"

CPU Scheduling

» First Schedule RT, then BE (background scheduling)
» Qverly pessimistic

» Use EDF Total Bandwidth Server
» EDF for Real-Time tasks
* Use the remaining bandwidth to server Best Effort Traffic

» WFQ (weighted fair queuing) to determine which best effort
flow to serve; not discussed here ...

Computer Engineering
and Networks Laboratory

m Swiss Federal 6a-6
Institute of Technology a-

TiE

CPU Scheduling

Real-time
Flows

Packet Processing functions

F1 N \

- g

F £
= — 3 "
& a o
o= Fs
8 — 1 g >
E : J I g
= =

i:n Assign Deadline using

:ﬂm . remaining CPU bandwidth

Best effort
flows

/

One Packet out

m Swiss Federal 6a-7
Institute of Technology -

Computer Engineering f"
and Networks Laboratory

CPU Scheduling

» As discussed, the basis is the TBS.:
computation demand of best effort packet

o dp = max{?‘k,dk—l}}‘f'k/Us

deadline of best effort packet utilization by real-time flows

arrival of best effort packet

» But: utilization depends on time (packet streams) !
» Just taking upper bound is too pessimistic

= Solution with time dependent utilization is (much) more
complex — BUT IT HELPS ...

m Swiss Federal 6a-8 Computer Engineering f' ‘
Institute of Technology - and Networks Laboratory

CPU Scheduling

» Before
-2
X ID_! AF T T T - - ; . .
;H L a) plain best effort + EDF scheme 1
16 ‘
14

1.2
101
081 |1k
06 |4

end-to-end
packet delay
[sec]

oal (S | NAT i fow

(]

a0

deadline car
RT flows o6

Q.4

0.0

o2 et VL At

plain best effort + EDF scheme |

NAT fip flow

AT video flow
' 1

end-to-end
packet delay
[sec]

m Swiss Federal
Institute of Technology

Computer Engineering

6a-9 and Networks Laboratory

TiE

CPU Scheduling

» After :
deadline
20 1 RT flows
1aF €) approximation with two segments E
1.6 A
155 L il
=) T T T T T T T [T T T T T
1'0 | = - =
sk) approximation with two segments
0B
‘ HI | -
041
ozl &r 4
0oL |
1 1 1 1 1 06 -
2 0.0 0.5 1.0 15 2.0 4
————————— simulation time [sec] 0.4 NETAp fow
0.2 j
i S FTvieolow ™ , 1

Q00 005 010 015 Q.20 0.25 030 0.35 0.40 0.45 Q50 055
simulation time [sec]

Computer Engineering f"
and Networks Laboratory

m Swiss Federal 6a- 10
Institute of Technology a-

Embedded Systems

7. Shared Resources

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Esdgensssische Technische Hochschule Zurich
Swizs Federal Institute af Technelogy Zurich

Where we are ...

. Introduction to Embedded Systems .
. Software Development :
. Hardware-Software Interface ‘\
. Programming Paradigms |
“"'.\HardwarE-
Software

1

. Embedded Operating Systems
. Real-time Scheduling

Shared Resources 2
. Hardware Components

. Power and Energy

L

W RN O WA W N e

Hardware <

-
o

. Architecture Synthesis

Ressource Sharing

Resource Sharing

= Examples of shared resources: data structures, variables, main memory area,
file, set of registers, 1/0 unit,

= Many shared resources do not allow simultaneous accesses but require mutual
exclusion. These resources are called exclusive resources. In this case, no two
threads are allowed to operate on the resource at the same time.

= There are several methods available to protect exclusive resources, for example

= disabling interrupts and preemption or dispaitchi

= using concepts like semaphores sitatlon
and mutex that put threads into the
blocked state if necessary.

termination

Protecting Exclusive Resources using Semaphores

= Each exclusive resource R; 1 T2
must be protected by a different - e —
semaphore S, . Each critical = Ry =
section operating on a resource U owaisy) 1 7 4 i)
must begin witha wait (S,) Cowe 1 M e
primitive and end with a | S | S
P raR— ' k \ ' k)
signal (S rimitive. : ')
g L B \ signal(Sy) | ; signal(Sy) !

= All tasks blocked on the same resource are kept in a queue associated with the
semaphore. When a running task executes a wait on a locked semaphore, it
enters a blocked state, until another tasks executes a signal primitive that
unlocks the semaphore.

Example FreeRTOS (ES-Lab)

To ensure data consistency is maintained at all times access to a resource that is
shared between tasks, or between tasks and interrupts, must be managed using a
‘mutual exclusion’ technique.

One possibility is to disable all interrupts:

taskENTER_CRITICAL() ;
/* access to some exclusive resource */
taskEXIT CRITICAL() ;

This kind of critical sections must be kept very short, otherwise they will adversely
affect interrupt response times.

Example FreeRTOS (ES-Lab)

Another possibility is to use mutual exclusion: In FreeRTOS, a mutex is a special type of
semaphore that is used to control access to a resource that is shared between two or
more tasks. A semaphore that is used for mutual exclusion must always be returned:

* When used in a mutual exclusion scenario, the mutex can be thought of as a
token that is associated with the resource being shared.

= For a task to access the resource legitimately, it must first successfully ‘take’
the token (be the token holder). When the token holder has finished with the
resource, it must ‘give’ the token back.

= Only when the token has been returned can another task successfully take the
token, and then safely access the same shared resource.

Example FreeRTOS (ES-Lab)

Example FreeRTOS (ES-Lab)

The resource being

ask A
The mutex used to Tk e xSemaphoreGive() |*
guard the resource s
m) Guarded £ N
/" resou - :
Ll LD xsemaph
L~ . s

! Task B opts to enter the Blocked state to wait for the mutex - allowing Task A to run again.

Two tasks each want to accass the resource, but a task is not permitted to access the Task A finishes with the resource 5o ‘gives’ the mutex back

some defined constant for infinite timeout;
otherwise, the function would return if the
create mutex semaphore mutex was not available for the specified time

P /

Example:

resource unless it is the mutex (token) holder.

gy

Task A glving the mutex back causes Task B to exit the Blocked state (the mutex is now
Task A attempts to take the mutex. Because the mutex is available Task A successfully available). Task B can now successfully obtain the mutex, and having done so is permitted to
becomes the mutex holder so is permitted to access the resource aceess the resource.

Task A "
/\ /
Guarded ’
e L,
xSemaphoreGive() L~

Task B executes and attempts to take the same mutex. Task A stil has the mutex so the When Task B finishes accessing the resource it too gives the mutex back. The mutex is now
attempt fails and Task B is not permitted to access the guarded resource. once again avallable to both tasks.

SemaphoreHandle t xMutex; wvoid vTaskl(void *pvParameters } (
for(;:) {
int main(void) {

xMutex = xSemaphoreCreateMutex(); xSemaphoreTake (xMutex ,portMAX DELAY) ;

if(xMutex != NULL) { . /* access to exclusive resource */
xTaskCreate (vTaskl, “Taskl",1000,NULL,1,NULL) ; xSemaphoreGive (xMutex) ;
xTaskCreate (vTask2, “Task2",1000,NULL, 2,NULL) ; w U}
vTaskStartScheduler() ; }
}
for(;;); void vTask2(void *pvParameters) {
} for(;;) (

xSemaphoreTake (xMutex, portMAX DELAY) ;
. /* access to exclusive resource */
xSemaphoreGive (xMutex) ;
-1

Ressource Sharing
Priority Inversion

[H111

Priority Inversion (1)) =
:' e u_\; wait(Sy) 4

Unavoidable blocking: ' | e |
{ sy | g

B normal cxecution _dispatching_

critical section

I, blocked

s‘g"a}\@)c_ked wait

activation T termination
ready run -
—F S_preemption 7~

-11

Priority Inversion (2)

Priority Inversion:
EEEE normal execution

{1 critical section

J| blocked X
!
U | :
: L can last arhitrarily long
I,
1, S G

[But97, 5.184]

Solutions to Priority Inversion

Disallow preemption during the execution of all critical sections. Simple approach,
but it creates unnecessary blocking as unrelated tasks may be blocked.

EEEE normal execution

critical section

1‘ J, blocked

-13

Resource Access Protocols

Basic idea: Modify the priority of those tasks that cause blocking. When a task J,
blocks one or more higher priority tasks, it temporarily assumes a higher priority.

Specific Methods:
= Priority Inheritance Protocol (PIP), for static priorities
= Priority Ceiling Protocol (PCP), for static priorities
= Stack Resource Policy (SRP),
for static and dynamic priorities

= others...

Priority Inheritance Protocol (PIP)

Assumptions:

n tasks which cooperate through m shared resources; fixed priorities, all
critical sections on a resource begin with a wait (S,) and end with a
signal (S;) operation.

Basic idea:

When a task J; blocks one or more higher priority tasks, it temporarily assumes
(inherits) the highest priority of the blocked tasks.

Terms:
We distinguish a fixed nominal priority P, and an active priority p, larger or
equal to P,. Jobs J,, ...J, are ordered with respect to nominal priority where J,
has highest priority. Jobs do not suspend themselves.

-15

Priority Inheritance Protocol (PIP)

Algorithm:

= Jobs are scheduled based on their active priorities. Jobs with the same priority are
executed in a FCFS discipline.

= When a job J; tries to enter a critical section and the resource is blocked by a lower
priority job, the job J; is blocked. Otherwise it enters the critical section.

= When a job J;is blocked, it transmits its active priority to the job J, that holds the
semaphore. J, resumes and executes the rest of its critical section with a priority
p=p; (it inherits the priority of the highest priority of the jobs blocked by it).

= When J, exits a critical section, it unlocks the semaphore and the highest priority
job blocked on that semaphore is awakened. If no other jobs are blocked by J,,
then p, is set to P,, otherwise it is set to the highest priority of the jobs blocked by
J.

= Priority inheritance is transitive, i.e. if 1 is blocked by 2 and 2 is blocked by 3, then
3 inherits the priority of 1 via 2.

Priority Inheritance Protocol (PIP)

Example:

EEEEE normal execution direct bloeking
[T critical section

/ push-through blocking
. [— // e

J 5 i T CEEEEEEELE
T3 _h_i I ;] R
tg ty to ta 1a ts tg te

Direct Blocking: higher-priority job tries to acquire a resource held by a lower-priority job

Push-through Blocking: medium-priority job is blocked by a lower-priority job that has
inherited a higher priority from a job it directly blocks

=47

Priority Inheritance Protocol (PIP)

Example with nested critical sections:

priority does not change

EEEEE normal execution

T critical section

[Buts7, 5. 189)

Priority Inheritance Protocol (PIP)

Example of transitive priority inheritance:

J1 blocked by J2, J2 blocked by J3.
J3 inherits priority from J1 via J2.

B normal exccution

1 critical section

‘ab a .

B

‘
g

TButa?, 5. 190]

Priority Inheritance Protocol (PIP)

Still a Problem: Deadlock
.... but there are other protocols like the Priority Ceiling Protocol ...

I P
EEE normal execution
critical section E =
blockedon S , — —
/ blockedon § , .)
J wait(S ;) wait(S},)
l it ’
: . : J wait(S,) wait(S ;)
] 2 hT\ : b signal(Sp) signal(S4)
it t3 ta ts signal(S;) signal(Sy)
[But97, 5. 200]

The MARS Pathfinder Problem (1)

“But a few days into the mission, not long after Pathfinder started gathering

meteorological data, the spacecraft began experiencing total system resets, each
resulting in losses of data.

The MARS Pathfinder Problem (2)

“VxWorks provides preemptive priority scheduling of threads. Tasks on the
Pathfinder spacecraft were executed as threads with priorities that were assigned
in the usual manner reflecting the relative urgency of these tasks.”

“Pathfinder contained an "information bus", which you can think of as a shared
memory area used for passing information between different components of the
spacecraft.”

= A bus management task ran frequently with high priority to move certain kinds of
data in and out of the information bus. Access to the bus was synchronized with
mutual exclusion locks (mutexes).”

The MARS Pathfinder Problem (3)

= The meteorological data gathering task ran as an infrequent, low priority thread.
When publishing its data, it would acquire a mutex, do writes to the bus, and release
the mutex.

= The spacecraft also contained a communications task that ran with medium priority.

High priority: retrieval of data from shared memory
Medium priority: communications task
Low priority: thread collecting meteorological data

-23

The MARS Pathfinder Problem (4)

“Most of the time this combination worked fine.

However, very infrequently it was possible for an interrupt to occur that caused the
(medium priority) communications task to be scheduled during the short interval
while the (high priority) information bus thread was blocked waiting for the (low
priority) meteorological data thread. In this case, the long-running communications
task, having higher priority than the meteorological task, would prevent it from
running, consequently preventing the blocked information bus task from running.

After some time had passed, a watchdog timer would go off, notice that the data
bus task had not been executed for some time, conclude that something had gone
drastically wrong, and initiate a total system reset. This scenario is a classic case of
priority inversion.”

Priority Inversion on Mars

Priority inheritance also solved the Mars Pathfinder problem: the VxWorks
operating system used in the pathfinder implements a flag for the calls to mutex
primitives. This flag allows priority inheritance to be set to “on”. When the
software was shipped, it was set to “off”.

The problem on Mars was corrected
by using the debugging facilities of
VxWorks to change the flag to “on”,
while the Pathfinder was already on
the Mars [Jones, 1997].

Timing Anomalies

Timing Anomaly

Suppose, a real-time system works correctly with a given processor architecture.
Now, you replace the processor with a faster one.

Are real-time constraints still satisfied?

Unfortunately, this is not true in general. Monotonicity does not hold in general,
i.e., making a part of the system operate faster does not lead to a faster system
execution. In other words, many software and systems architectures are fragile.

There are usually many timing anomalies in a system, starting from the
microarchitecture (caches, pipelines, speculation) via single processor scheduling
to multiprocessor scheduling.

-27

Single Processor with Critical Sections

Example: Replacing the

processor with one
that is twice as fast
leads to a deadline
miss.

D normal execution
[] critical section

Multiprocessor Example (Richard’s Anomalies)

Example: 9 tasks with precedence constraints and the shown execution times. Scheduling
is preemptive fixed priority, where lower numbered tasks have higher priority than higher
numbers. Assignment of tasks to processors is greedy.

P 1 ‘ Ig optimal
schedule on a
o, =3(0—9)¢,=9 | £ 4 s i 3-processor
— — Py | I3 Ig Ig architecture
G=2(2) (8) Cy=4 — e
0 1 304 5 6 7T 8 9 10 1 o121 14 15t

.
¢:=2(3)

-29

Multiprocessor Example (Richard’s Anomalies)

Example: 9 tasks with precedence constraints and the shown execution times. Scheduling
is preemptive fixed priority, where lower numbered tasks have higher priority than higher
numbers. Assignment of tasks to processors is greedy.

Multiprocessor Example (Richard’s Anomalies)

Example: 9 tasks with precedence constraints and the shown execution times. Scheduling
is preemptive fixed priority, where lower numbered tasks have higher priority than higher
numbers. Assignment of tasks to processors is greedy.

o, =3(0—9)¢,=9
(8) ¢,=4
(7) ¢, =4
(6) C,=4
(8) c,=4

P

Ig

3]

optimal
schedule on a
3-processor
architecture

slower if all
computation
times are
reduced by 1!

w
s
"

Py 1 Iy optimal
schedule ona
Py 1s Iy Is 17
C = 3@—-@ Cy=9 - N i 3-processor
L I T Ty architecture
OB OR
0 1 2 3 e 5 6 T 9 10 1 12 14 15 L
2@ @
P I Iy
C,=2(4 (8) C,=4
Py | I, Is sloweron a
9 Ci=4 4-processor
Ps I3 Ig X
architecture!
Py | 14 1q
I T T T
0 1 2 3 4 5 6 7 :
7-30
Iti le (Richard’ li
Multiprocessor Example (Richard’s Anomalies)
Example: 9 tasks with precedence constraints and the shown execution times. Scheduling
is preemptive fixed priority, where lower numbered tasks have higher priority than higher
numbers. Assignment of tasks to processors is greedy.
Py 1 Iy optimal
schedule ona
Py 1s Iy Is 17
C = 3@—-@ Cy=9 - N i 3-processor
L I T Ty architecture
=22 (@®G=4
0 1 2 3 e 5 6 T 9 10 1 12 14 15 L
¢,=2(3) (@) ;=4
Ci=24 Co=4 Py Iy] Te ‘ slower if
5.)1 0= P, 5 some
P2 | 12 14 's precedences
Py | Js 17 \ are removed!
T T T T T T T T -
0 1 2 3 4] 6 7 L

Communication and Synchronization

Communication Between Tasks

Problem: the use of shared memory for implementing communication between
tasks may cause priority inversion and blocking.

Therefore, either the implementation of the shared medium is “thread safe” or
the data exchange must be protected by critical sections.

I I
wail(s} shared =
Tesource -
critical wait(s}
section
critical
signal(s) section
signal(s}

e

Communication Mechanisms

Synchronous communication:

= Whenever two tasks want to communicate they must be synchronized for a
message transfer to take place (rendez-vous).

= They have to wait for each other, i.e. both must be at the same time ready to do
the data exchange.

= Problem:
= In case of dynamic real-time systems, estimating the maximum blocking time
for a process rendez-vous is difficult.
= Communication always needs synchronization. Therefore, the timing of the
communication partners is closely linked.

Communication Mechanisms

Asynchronous communication:
= Tasks do not necessarily have to wait for each other.

= The sender just deposits its message into a channel and continues its execution;
similarly the receiver can directly access the message if at least a message has
been deposited into the channel.

= More suited for real-time systems than synchronous communication.

= Mailbox: Shared memory buffer, FIFO-queue, basic operations are send and
receive, usually has a fixed capacity.

= Problem: Blocking behavior if the channel is full or empty; alternative approach is
provided by cyclical asynchronous buffers or double buffering.

mailbox

Example: FreeRTOS (ES-Lab)

Task A _ Task B
JD e

A queus is created to aliow Task A and Task B to communicate. The queue can hold a maximum of §
integers. When the queus is created it doss not contain any values 5o is smpty.

o -1 1

Task A writes (sends) the value of a local variable to the back of the queue. As the queue was previously
fempty the value written Is now the anly item In the queue. and is therefore both the value at the back of the
queue and the value at the front of the queue.

Task B reads (receives) from the queue into a different variable. The value received by Task B s the
value from the head of the queue, which is the first value Task A wrote to the queue (10 in this illustration)

Task A changes the value of Its local varlable befors writing it to the queue again. The queue now
contains copies of both values written to the queue. The first vaiue written remains at th front of the
queue, the new value is inserted at the and of the queue. The queus has three empty spaces remaining.

X =3

Task B has removed one item, ieaving only the second value written by Task A remaining in the queue.
This is the value Task B would receive next f it read from the queus again. The queus now has four
empty spaces remaining.

Example: FreeRTOS (ES-Lab)

Creating a queue:

QueueHandle t xQueueCreate(UBaseType_t uxQueueLength, UBaseType t uxItemSize)

returns handle to the maximum number of items that the queue
created queue being created can hold at any one time

the size in bytes of
each data item

Sending item to a queue:

BaseType t xQueueSend (Queuel-landle_t xQueue, a pointer to the
/ const void * vatemToQueue,-_._______data to be copied

TickType_t xTicksToWait) h
into the queue
returns pdPASS if / a

item was successfully - -
the maximum amount of time the task
added to queue L .
should remain in the Blocked state to wait
for space to become available on the queue

Example: FreeRTOS (ES-Lab)

Receiving item from a queue:

BaseType t XQueueReceive (Qu.euel-landle_t XQueue, a pointer to the
void * const pvBuffer, . .
TickType t xTicksToWait); memory'mto which

the received data
/ will be copied

the maximum amount of time the task

should remain in the Blocked state to wait

for data to become available on the queue

returns pdPASS if data
was successfully read
from the queue

Example:
* Two sending tasks with equal priority 1 and one receiving task with priority 2.

» FreeRTOS schedules tasks with equal priority in a round-robin manner: A blocked
or preempted task is put to the end of the ready queue for its priority. The same
holds for the currently running task at the expiration of the time slice.

Example: FreeRTOS (ES-Lab)

Example cont.:

T- The Receiver task runs first because it has e -
highest priority. It attempts to read from the queue. The[:\ 3 - The Recelver lask empties the queue
queue is empty 5o the Receiver enters the Blocked state | | €0 g”e'e"; the B"’“ﬁ“ 5“’[9;9"‘“' This
to wail for data to become available. Sender 2 runs after ”m";‘sk edme{ 1 runs after the Recelver has

| the Receiver has blocked. _

Receiver

Sender 2 |

receiver

Sender 1

/

tﬁ J Timeml" . S

&~ Sender 1 wiites o the QueLE, causing W

2 - Sender 2 writes to the queue, causing the
Receiver o exit the Blocked state. The
Receiver has the highest priority so pre-empts
Sender 2.

the Receiver to exit the Blocked state and
pre-empt Sender 1 -and soitgoeson ...

Communication Mechanisms

Cyclical Asynchronous Buffers (CAB):

* Non-blocking communication between tasks.

» Areader gets the most recent message put into the CAB. A message is not
consumed (that is, extracted) by a receiving process but is maintained until
overwritten by a new message.

= Asaconsequence, once the first message has been put in a CAB, a task can never
be blocked during a receive operation. Similarly, since a new message overwrites
the old one, a sender can never be blocked.

= Several readers can simultaneously read a single message from the CAB.

writing reading
buf_pointer = reserve(cab_id); mes_pointer = getmes(cab_id);
<copy message in *buf _pointer> <use message>

putmes (buf_pointer, cab_id); unget(mes_pointer, cab_id);

Embedded Systems

8. Hardware Components

© Lothar Thiele

Computer Engineering and Networks Laboratory

e Hochschule Zrich

Eid he Technisch
Swiss Foderal Institute of Technology Zurich

Where we are ...

Software

Hardware <

\

R IR T, T T N

=
[=]

Introduction to Embedded Systems .

Software Development
Hardware-Software Interface

. Programming Paradigms
. Embedded Operating Systems
. Real-time Scheduling

Shared Resources

. Hardware Components
. Power and Energy !
. Architecture Synthesis

J

'

N)

)

‘~1:\ Hardware-

/ Software

Do you Remember ?

High-Level Physical View

ON power domain

RF power
amplifier

10DOF IMU

- 3-axis accelerometer
axis gyro

- 3-axis magnetomer

- Pressure sensor

:

12C

Power switched by nRF51 (VCC)

Motor driver

ISP 2C/GPIO/PWM

45V S Power supplies
and battery charger

WEup/OW/GPIO
Expansion port

Charge/VBAT/VCC

USB Data
to STM32

EEPROM

Crazyflie 2.0 system architecture

High-Level Physical View

Always ON power domain

Power switched by nRF51 (

10DOF IMU

- 3-axis accelerometer

RF power
amplifier

- 3-axis magnel

Wkup/OW/GPIO

SPI/IZCIGPIO/PWM

+5V Power suppli
and battery charger

USB Data
HUSB port to STM32

Charge/VBAT/VCC

Expansion port

’EEPRUM

Crazyflie 2.0 system architecture

Implementation Alternatives

General-purpose processors

Application-specific instruction set processors
(ASIPs)

Performance

* Microcontroller
* DSPs (digital signal processors)

Flexibility

Energy Efficiency

Programmable hardware

* FPGA (field-programmable gate arrays)

Application-specific integrated circuits (ASICs)

8-6
"
Energy Efficiency
1000
100
10
2
o e
o 1
01
0.01
© Hugo De Man, IMEC, 0.001
Philips, 2007 =) o 0 o
8-8

Topics

= General Purpose Processors

= System Specialization

= Application Specific Instruction Sets
= Micro Controller
= Digital Signal Processors and VLIW

® Programmable Hardware

= ASICs

= System-on-Chip

General-Purpose Processors

= High performance
= Highly optimized circuits and technology
= Use of parallelism
= superscalar: dynamic scheduling of instructions
= super-pipelining: instruction pipelining, branch prediction, speculation
= complex memory hierarchy
= Not suited for real-time applications

= Execution times are highly unpredictable because of intensive resource sharing
and dynamic decisions

= Properties
* Good average performance for large application mix
= High power consumption

-10

General-Purpose Processors

= Multicore Processors
= Potential of providing higher execution performance by exploiting parallelism

= Especially useful in high-performance embedded systems, e.g. autonomous driving
= Disadvantages and problems for embedded systems:

» |ncreased interference on shared resources such as buses and shared caches
= |ncreased timing uncertainty

Multicore Examples

Memory Controller

Shared L3 Cacl’ie; !

4 cores

-12

Multicore Examples

Intel Xeon Phi
(5 Billion transistors,
22nm technology,
350mm? area)

Oracle Sparc TS

-13

Implementation Alternatives

| General-purpose processors

Application-specific instruction set processors
(ASIPs)

* Microcontroller
* DSPs (digital signal processors)

Performance

Energy Efficiency Flexibility

Programmable hardware

* FPGA (field-programmable gate arrays)

Application-specific integrated circuits (ASICs)

-14

Topics

= General Purpose Processors
= System Specialization
= Application Specific Instruction Sets
= Micro Controller
= Digital Signal Processors and VLIW
® Programmable Hardware
= ASICs

= Heterogeneous Architectures

-15

System Specialization

= The main difference between general purpose highest volume microprocessors
and embedded systems is specialization.

= Specialization should respect flexibility
= application domain specific systems shall cover a class of applications
= some flexibility is required to account for late changes, debugging

= System analysis required
= identification of application properties which can be used for specialization
= quantification of individual specialization effects

-16

Embedded Multicore Example

Recent development:
= Specialize multicore processors towards real-time processing and low power
consumption

= Target domains: 0 (o)) W VX %
IMAGE SIGNAL DATA SCIENTIFIC c?_,ﬂnol_

Andey 256 i5 75

Bostan (2014) 256 50 a0

Coolidge (2015) | 84/256/1024 75 115

Example: Code-size Efficiency

= RISC (Reduced Instruction Set Computers) machines designed for run-time-, not
for code-size-efficiency.

= Compression techniques: key idea

uP WP
Addr [] Addr [|

((de)compressor

ROM

ROM

-18

Example: Multimedia-Instructions

* Multimedia instructions exploit that many registers, adders etc. are
quite wide (32/64 bit), whereas most multimedia data types are
narrow (e.g. 8 bit per color, 16 bit per audio sample per channel).

» |dea: Several values can be stored per register and added in parallel.

64 bits —— =

= 64bits

| words‘ word 2 | word 1 | word 0 | | word3| word 2 ‘ word 1 | word 0 l

—

+

/ 4 additions per instruction; carry

64 bits
disabled at word boundaries.

| wnrd3| word 2 [word 1 ‘ word 0 |

Example: Heterogeneous Processor Registers

Example (ADSP 210x):

Address-
registers
AD, A1, A2 ..

Address
generation
unit (AGU)

Different functionality of registers AR, AX, AY, AF,MX, MY, MF, MR

-20

Example: Multiple Memory Banks

Address-
registers
AD, AL, A2 ..

Address
generation
unit (AGU)

Enables parallel fetches for some operations

-21

Example: Address Generation Units

= Data memory can only be fetched with
address contained in register file A, but
its update can be done in parallel with
operation in main data path (takes
effectively 0 time).

» Register file A contains several
precomputed addresses A[i].

* There is another register file M that

Example (ADSP 210x):

instruction

Topics

= System Specialization
= Application Specific Instruction Sets
= Micro Controller
= Digital Signal Processors and VLIW
= Programmable Hardware
= ASICs

= Heterogeneous Architectures

-23

address modify contains modification values M[j].
register register
file A file M« Possible updates:
M[j] := ‘immediate’
data A[!] = A[{] £ MIj]
memory Ali] :=Afi]+1
Ali] := A[i] £ ‘immediate’
Ali] := ‘immediate’
-22
Microcontroller

= (Control-dominant applications

= supports process scheduling
and synchronization

» preemption (interrupt),
context switch

= short latency times

= Low power consumption

= Peripheral units often integrated 8051 core

SIECO51 (Siemens)

= Suited for real-time applications

24

Microcontroller as a System-on-Chip Topics

voe ves P12PLS

I I PP « complete system = System Specialization
xis gy Asour W v i I " .
o PO | i imers = Application Specific Instruction Sets
Nl L S I (g | P * I2C-bus and par./ser. = Micro Controller
T Tcix venoma | fatupionn interfaces for communi-
rosstons ; - .
L | cation * Digital Signal Processors and VLIW
16MHz st |
H:“m — _ _ 1y | » A/D converter = Programmable Hardware
» watchdog (SW activity = ASICs
e timeout): safety
Watchdag Tener_A2 1
p— Wors r— = Heterogen Archi r
Brclecksn O | * on-chip memory {volatile/non-volatile) eterogeneous Architectures
4] e interrupt controller
]
FETiNw

MSP 430 RISC Processor (Microchip)

8-25
Data Dominated Systems Digital Signal Processor
= Streaming oriented systems with mostly periodic behavior = optimized for data-flow applications
= Underlying model of computation is often a signal flow graph or data flow graph: = suited for simple control flow Figure 2-1. TMS320C62v/C67x Block Diagram
= parallel hardware units (VLIW) i v o el 3o addreas
256-bit data 8-, 16-, ?E-DI(data JTAlﬁall\e:rl;
(e)— = specialized instruction set Ewr | SIKHSRAN bl f ool
A 52
= high data throughput b : M
8: buffer - W Multichannel
= zero-overhead loops 5000 CPU core oA i
{four
. e) = specialized memory _Program bih. Soe || fenanne
= Typical application examples: batnsion depuich o[[e TIEY) biffered
» signal processing Datapann 1| Osapatz | | forannay| | |
;. . . . A register file B registerfile_| | r: [r
* multimedia processing ® suited for real-time applications TTT 5 T T T | cmmen i
P T TTSC I SR . ¥ ¢ ___‘Hmer
* automatic control e e sl % | N
Power management FP'E’;E 4| gé'L‘:’Iaotg |
8-27 8

Very Long Instruction Word (VLIW)

Key idea: detection of possible parallelism to be done by compiler, not
by hardware at run-time (inefficient).

VLIW: parallel operations (instructions) encoded in one long word

(instruction packet), each instruction controlling one functional unit.

instruction packet

|instruc’(ion1 | instruction 2 } instruction 3 | instruction 4 ‘

{ { { {

floating point | | integer integer memory
unit unit unit unit

Explicit Parallelism Instruction Computers (EPIC)

The TMS320C62xx VLIW Processor as an example of EPIC:

31 031 031 031 031 031 031 0
| o 4 | 0| | n 0|
Instr. A Instr.B Instr.C Instr.D Instr.E Instr. F Instr. G

Cycle Instruction

1 A

2 B C D

3 E F G

Example Infineon

0.001

Processor core for car mirrors

Infineon

o = ASIC x cell
F o FPGA o MPU
A DSP + RISC

200MHz , 0.76 Watt
100Gops @ 8b
25Gops @ 32b

1990

1995
2000
2005

Example NXP Trimedia VLIW

GOP/J

Nexperia Digital Video Platform
NXP

1000

100

oal U’, -7 e = ASIC x cell (E
L-- o FPGA o MPU e T - 5
a A-DER i 1 MIPS, 2 Trimedia

0.001
60 coproc,

266MHz, 1.5 watt 100 Gops

1990
1995
2000
2005
2010

8-

32

Topics

= System Specialization
= Application Specific Instruction Sets
= Micro Controller
= Digital Signal Processors and VLIW
= Programmable Hardware
= ASICs
= System-on-Chip

FPGA — Basic Strucutre

Floor-plan of VIRTEX Il FPGAs

Configurable Logic
Configurable Logic

Programmble |/Os

Block RAM

Multiplier

= Logic Units !
) OO0 00O oo gg ok
= |/O Units ook
7
» Connections 10 ock—{] [j]
3 Ollo =
L] L]
. ol ollo]l| B
Ol]
. Ollo]lo]|E
]]
- o[=] =iks
0d oo Ood oo
8-34
0 0
SOPIN > ORCY
$————— > SOPOUT
Virtex Logic o e x|
63>
Cell =
WG > GYMUX -
Ao _h CILATCH
= U & DYMUX D al——=>a
= PROD v
l 1% frog Km
By > ED ° i =
SLICEWE[2:0] SR
DG
CE =
[@ and source: Xilinx Inc.: Virtex-1l
CL Pro™ Platform FPGAs: Functional
SR> Description, Sept. 2002,

/fwwwiliny.com]

Example Virtex-6

= Combination of flexibility (CLB’s), Integration and performance (heterogeneity of
hard-IP Blocks)

clock distribution

logic (CLB)

interfaces
(PCI, high speed)

Logic Cell
Device memory (RAM)

DSP slice fast communication

XILINX Virtex UltraScale
Effective LEs (K) 3435
Logic Cells (K) 2,883 o
UltraRAM (Mb) 4320 _ﬁl P
Block RAM (Mb) 945 N
DSP Siices 11.804
VO Pins. a3z ‘
. K
e !
; ; 2=
Virtex-6 CLB Slice <2 T
'U—m- IIJN
wiss Federal
ETH 55, =

computer Engineering
and Netwarks Laboratory

TiE

Topics

= System Specialization
= Application Specific Instruction Sets
= Micro Controller
= Digital Signal Processors and VLIW
= Programmable Hardware
= ASICs

= Heterogeneous Architectures

Application Specific Circuits (ASICS)

Custom-designed circuits are necessary
= if ultimate speed or
= energy efficiency is the goal and
= large numbers can be sold.
Approach suffers from
= long design times,

= lack of flexibility
(changing standards) and

= high costs
(e.g. Mill. S mask costs).

Topics

= System Specialization
= Application Specific Instruction Sets
= Micro Controller
= Digital Signal Processors and VLIW
= Programmable Hardware
= ASICs

= Heterogeneous Architectures

Example: Heterogeneous Architecture

Exynas 4412 Application Processor

JTAG
PLL/OSC
DMA
ML IMB L2-Cache + VFPv3
PWM/ADC
DMC + LPDDR2 RAM SGbit (PoP)
EBI
Samsung Galaxy Note ||
— Eynos 4412 System on a Chip (SoC) LopRen hoxd
— ARM Cortex-A9 processing core HDMI UART x4
— 32 nanometer: transistor gate width MIPI)
) DSI/CSl LR
— Four processing cores el
8-42

Example: Heterogeneous Architecture

Hexagon DSP
VLIW: Area & power efficient multi-issue

+ Dual 84-ba execution units

Snapdragon 835

(Galaxy S8)

Snapdragon
X16 LTE modem

Hexagon DSP

i All-Wave

g
Qualeomm®

Agstic Audio

Qualocomm®

|1Zat™ Location

Adreno 540

Graphics Processing
Unit (GPU)

uma
(DPU)

Qualcamm
Spectra 180
Camera

Kryo 280 CPU

Qusleomm
Haven Security

Example: ARM big.LITTLE Architecture

i} Available on certain proguct familes Note: Accessing muxable controfier's full capabiiies fs dependent upon board companent choic

Core Complex 1 Core Complex 2 Connectivity
Carlen MHF 1x0C ART
24 £ ARMS Cartea® AZ5 e = Gy
32 KB Lesche: 2 K8 D-cache 0K Do 82050 Barc
512 K8 L2 cache with ECC 15 TPM Temer 4xspl
Multimedia
.................. R
i G 381
B

Aadio i
DSP Core -
1062 % USA2 OTG wPHY

Security
TeralicatHFi4 | TKEI | ABKED HAB, BRTC, &ITAG, TrusiZone®
£12 KB SRAM {448 K3 OCRAM, 84 KB of TOM) | AES296, REAKDI0, SHAZS0 i

Toradex Colibri Compute-on-Module

MOST 2580
Display and Camera /0 . Low System Load High System Load
s _— Weyped
= - 5 % g Chuster
2% MIPLDSILYDS Combo PHY®

Sl

Cache Coharont fcen

Embedded Systems

9. Power and Energy

© Lothar Thiele

Computer Engineering and Networks Laboratory

Lecture Overview

Software &

Hardware <

=

. Introduction to Embedded Systems ;,
. Software Development :

Hardware-Software Interface

. Programming Paradigms
[-5. Embedded Operating Systems
6. Real-time Scheduling

Shared Resources

-8. Hardware Components

R - T I TR

. Power and Energy { ::

+10.

Architecture Synthesis

'

N)

)

“, Hardware-

/ Software

S—

General Remarks

Power and Energy Consumption

= Statements that are true since a decade or longer:

.Power is considered as the most important constraint in embedded
systems.” [in: L. Eggermont (ed): Embedded Systems Roadmap 2002, STW]

“Power demands are increasing rapidly, yet battery capacity cannot
keep Up.” (in Diztel et al.: Power-Aware Architecting for data-dominated applications, 2007, Springer]

= Main reasons are:

= power provisioning is expensive
* battery capacity is growing only slowly
= devices may overheat

» energy harvesting (e.g. from solar cells) is limited due to the relatively low energy
available density

Huthnmpenalmeum.wn Device
weill be tumed off for your safety if

the temperature rises higher

Please use after a while

Some Trends Implementation Alternatives
40 Years of Microprocessor Trend Data
107 T T T r
. g 4a 4 Iﬁpﬂera_l-purpnse'proce_;sors
10° | ‘fi‘}:‘
105 b EVPCA o Single-Thread
- A L -
i A T ikl RN Application-specific instruction set processors (ASIPs)
I N . - —
’ < ifc\?‘ “*-.“" Freauency (M2 Performance Mmrocn_lm'qlle'f
i ..*. Typical Power Power Efficiency PSES "dlgltal lpl"ﬂc — !’S) FlEXibilitV
102 i B A e"'- v"'.',;;!%&*"';{’ - (Watts)
3 = oty T et Number of s sardws
10 b = S = =g 2 . i Sl] Uogicat s Programmable hardware
. v v Ve Ty
100 -3 R R A T RS S g . FPGA (field-programmable gate arrays)
1 'l 1 1
1970 1980 1990 2000 2010 2020
Year A Spiive .
Original data up 10 the year 2010 collected and plotled by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammand, and C. Batten Appllcaﬁnn—spemﬂl: "'Itegrated Clrcuits (ASICS)
oo s o e fr 240 515y . Pug
9-5
Energy Efficiency
= |tis necessary to 1000
optimize HW and SW.
100
= Use heterogeneous)
architectures in order to LA
c 10 L
adapt to required performance
RS L s Ho A 2 '\ Power and Energy
and to class of application. & i B
1 o
= Apply specialization techniques. . P
£
01
SC
0.01
x cell
o MPU
0.001 |t RISC
o n =] W o
® Hugo De Man, % 2 2 8 =Y
IMEC, Philips, 2007 - & = N
9-7

Power and Energy

E—/Pmﬁ

t

In some cases, faster execution also means less energy, but
the opposite may be true if power has to be increased to allow
for a faster execution.

Power and Energy

E—/Pmﬁ

t

In some cases, faster execution also means less energy, but
the opposite may be true if power has to be increased to allow
for a faster execution.

Power and Energy

E—/Pmﬁ

P

t

In some cases, faster execution also means less energy, but
the opposite may be true if power has to be increased to allow
for a faster execution.

Power and Energy

E—/Pmﬁ

P

t

In some cases, faster execution also means less energy, but
the opposite may be true if power has to be increased to allow
for a faster execution.

Low Power vs. Low Energy Power Consumption of a CMOS Gate

= Minimizing the power consumption (voltage * current) is important for Voo subthreshold (lsg), junction (l,yyc) and
= the design of the power supply and voltage regulators ‘ gate-oxide (l;,¢) leakage

= the dimensioning of interconnect between power supply and components el
= cooling (short term cooling) I (3{ ’7 [
= high cost
= |imited space lint . - Drain
= Minimizing the energy consumption is important due to \ i eadhii N "sw o_.—Ll : -— f"
= restricted availability of energy (mobile systems) o [' \- = - - W
= limited battery capacities (only slowly improving) Y Y| Clood e
= very high costs of energy (energy harvesting, solar panels, maintenance/batteries) Ko Jemkoge crrent hesk l

1, - short circuit current
I, : switching current

= |ong lifetimes, low temperatures

Gnd
9-13
Power Consumption of a CMOS Processors Reducing Static Power - Power Supply Gating
Main sources: Power gating is one of the most effective ways of minimizing static power consumption
2
10 300 |
eakage
= Dynamic power consumption [b inesoet = (ge) o _
5 B e 6 = = Cut-off power supply to inactive units/components
= charging and discharging capacitors 5 1F \\ - 2 Dynamic Power -.225 &
=) =
= Short circuit power consumption: 5 X, s L
s z | \/ \ | c o—
short circuit path between supply rails L 10 ‘\\ Gate Oxide | ' ﬁ GiERGER o—— e | — o
during switching £ M i = SapG: —| swoek | -
E 104 | “__7 475 E D__q = __{_‘;
= |eakage and static power 2 e * e | &—
Gate Length ™ > VIRTUAL VIRTUAL
= gate-oxide/subthreshold/junction 10 : : : : : 0 ROMER GROUND
oak 1980 1995 2000 2005 2010 2015 2020 o—
eakage —o0
o | weic O——| | FOOTER
= becomes one of the major factors _ | Btock | — [switoH
due to shrinking feature sizes in [J. Xue, T. Li, Y. Deng, Z. Yu, Full-chip leakage analysis for 85 nm CMOS B —@ —
technology and beyond, Integration VLSI J. 43 (4) (2010) 353-364] J_
semiconductor technology
9-15

Dynamic Voltage Scaling (DVS)

Average power consumption of CMOS Delay of CMOS circuits:
circuits (ignoring leakage):
2 Via
P~ CECLVddf T ~ CLW
(Vaa — V)

Via :supply voltage
Via :supply voltage

o : switching activity

. Vr : threshold voltage
L : load capacity Ve < V.
f : clock frequency T dd

Decreasing V,, reduces P quadratically (f constant).
The gate delay increases reciprocally with decreasing V.
Maximal frequency f,,., decreases linearly with decreasing V,; .

Dynamic Voltage Scaling (DVS)

P~ aCLVif
E ~ QOLV(fdft = CECLVJQO{ (#CyCIGS)

Saving energy for a given task:
—reduce the supply voltage V,
— reduce switching activity a
—reduce the load capacitance C;
—reduce the number of cycles #cycles

Techniques to Reduce Dynamic Power

Parallelism

E ~ V2, (#cycles)
By = 1F;

Vo2
\ Finax/2

E ~ V2, (Fcycles)

Ey = %El

VLIW (Very Long Instruction Word) Architectures

= Large degree of parallelism
= many parallel computational units, (deeply) pipelined
= Simple hardware architecture

= explicit parallelism (parallel instruction set)
all 4 instructions are
executed in parallel

instruction packet /

= parallelization is done offline (compiler)

|instruction 1 | instruction 2 | instruction 3 | instruction 4 |
floating point | | integer integer memory
unit unit unit unit

-22

Example: Qualcomm Hexagon

Hexagon DSP Snapdragon 835

VLIW: Area & power efficient multi-issue

(Galaxy S8)

28 DauaUnt
(Load/
Store’
ALU)

DataUnzt Exacution Execution

(Loag/
Store/
ALy

Unit
4ot

Unit

Snapdragon
X16 LTE modem

Haxagon DSP

e
Aq—snc Audio

Qualcomm®
|1Zat™ Location

Adreno 540

Graphics Proces:
Unit (GPU)

Qualcomm
Spectra 180
Camera

Kryo 280 CPU

Qi
Haven Security

Dynamic Voltage and Frequency Scaling -

Optimization

24

Dynamic Voltage and Frequency Scaling (DVFS)

2 energy per cycle reduce voltage -> reduce energy per task
P ~aCLVyf — -g/ P
E ~ aCpVi ft = aCL V2, (#cycles)
1

/ f ~ ; ~ Vdd “——reduce voltage -> reduce clock frequency
maximum \ gate delay
frequency
of operation | Saving energy for a given task:
—reduce the supply voltage V,,
—reduce switching activity a
—reduce the load capacitance C;
—reduce the number of cycles #cycles

-25

Example DVFS: Samsung Exynos (ARM processor)

ARM processor core A53 on the Samsung Exynos 7420 (used in
mobile phones, e.g. Galaxy S6)

Exynos 7420 - A53 Power Curves .

=81 core =8=2 cores =8-3 cores =4 cores
Zozs [1000

606

Power Consumption (mW)

Sty s O ANANGTECH
— 3546 y
400 500 600 700 BOD 900 1000 1104 1200 1295 1400 1500

Frequency (MHz)

Example: Dynamic Voltage and Frequency Scaling

g 50 50MH 50)
£ Maximum Clock Frequency =" ‘ ‘O’W
3 401 -~ 140 =
g™ g
s | :
30r 30 2
oy : <
=
20r Energy Consumption 20 Z
| 5
10} ¢ 10

25 30 35 40 45 50
[Courtesy, Yasuura, 2000] Vaa

-27

Example: DVFS — Complete Task as Early as Possible

Vaa [V] 50 40 25
Energy per cycle [nJ] 40 25 10
fr.ncr.\- [MHZ] 50 40 25
cycle time [ns] 20 25 40

[We suppose a task that needs 10° cycles to execute within 25 seconds.

a) [V , 109 cycles@50 MHz

E,=10° x40 x 10
52 =40 [J]
42 deadline
2.52 :
| T | |

5 10 15 20 25 tIs]

Example: DVFS — Use Two Voltages

Vaa [V]

Energy per cycle [n]]

Jmax [MHZ]

cycle time [ns]

50 40 25
40 25 10
50 40 25
20 25 40

Example: DVFS — Use One Voltage

Vaa [V] 50 4.0 25
Energy per cycle [nJ] 40 25 10
_]{r.mrx [MHZ] 50 40 25
cycle time [ns] 20 25 40
c) [V 9 5 5
52 | 10¥ cycles@40 MHz E,=10°x25x 10
=25 [J]
42
2.52
T | T
5 10 15 20 25 tIs]

-30

b) [V 750M cycles @ 50 MHz + 250M cycles @ 25 MHz
2
5 E,= 750 108 x 40 x 10°
42 +250 108 x 10 x 10°
2,52 ' =32.5[J]
T T T
5 10 15 20 25 t[s]
DVFS: Optimal Strategy
Ply) Execute task in fixed time T

with variable voltage V,4(t):

1
gatedelay: 7~ —
Vi

execution rate: f(f) ~ Via(t)

invariant: / Vaa(t)dt = const.

= case A: execute at voltage x for T - a time units and at
voltage y for (1-a) - T time units;
energy consumption: T (P(x)-a + P(y) - (1-a))

DVFS: Optimal Strategy

Execute task in fixed time T
with variable voltage V,(t):

1
gate delay: 7~ —
Vi

execution rate: f(t) ~ Vaa(t)

invariant:] Via(t)dt = const.

= case A: execute at voltage x for T - a time units and at
voltage y for (1-a) - T time units;
energy consumption: T-(P(x)-a + P(y) - (1-a))

= case B: execute at voltagez=a - x + (1-ag) - y for T time units;

energy consumption: T - P(z)

DVFS: Optimal Strategy

Vyy Ply) Execute task in fixed time T

P(z) . 2 o
Px) with variable voltage V,,(t):

1
gatedelay: 7~ —
Viaa

T.0 T ¢ execution rate: f(f) ~ Vya(t)

Z2-T=a-T-x+ invariant: j Vaa(t)dt = const.

z=g-x+(1-a)-y

= case A: execute at voltage x for T - a time units and at
voltage y for (1-a) - T time units;
energy consumption: T (P(x)-a + P(y) - (1-a))

= case B: execute at voltage z = a - x + (1-ag) - y for T time units;
energy consumption: T: P(z)

DVFS: Optimal Strategy

Assumption: Dynamic power
is a convex function of V,

2 Ply)
5 Pg-a+ply)-(10) ; e
= !
g3 P(x). \
§ q%) \. - 2 — P{)
° = £ : (Z,
% _/'/:/ ez ‘+ (1—a)y y

Wdd

If possible, running at a constant frequency (voltage) minimizes the energy

consumption for dynamic voltage scaling:

case A is always worse if the power consumption is a convex function of the

supply voltage

-34

DVFS: Real-Time Offline Scheduling on One Processor

= |et us model a set of independent tasks as follows:
= We suppose that a task v, e V
= requires ¢; computation time at normalized processor frequency 1
= arrives at time g;
= has (absolute) deadline constraint d,

= How do we schedule these tasks such that all these tasks can be finished no
later than their deadlines and the energy consumption is minimized?
= YDS Algorithm from “A Scheduling Model for Reduce CPU Energy”, Frances
Yao, Alan Demers, and Scott Shenker, FOCS 1995.”

If possible, running at a constant frequency (voltage) minimizes
the energy consumption for dynamic voltage scaling.

YDS Optimal DVFS Algorithm for Offline Scheduling

N
1 T
E 7|
I T T T T T T T T T T T T TTTTT :
0 4 8 12 16 time

= Define intensity G([z, z']) in some time interval [z, z°]:
= average accumulated execution time of all tasks that
have arrival and deadline in [z, z‘] relative to the length
of the interval z-z

V([,2]) ={w eV :z<a <d; <2}

Gz = 3 el ~2)

v €V ([z,2'])

‘]

-36

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 1: Execute jobs in the interval with the highest intensity by using the earliest-deadline first
schedule and running at the intensity as the frequency.

N
1 | T —
4]
D82
FT T T T T T T T T T T I T T T 1)
0 4 8 12 16 time
G([0,8]) = (5+3)/6=8/8, G([0,8]) = (5+3+2)/ (8-0) = 10/8, 10,14,6

G([0,14]) = (5+3+2+6+6)/14=11/7, G([0,17]) = (5+3+2+6+6+2+2)(17=26/17

G([2, 8]) = (5+3)/(6-2)=2, G([2,14]) = (5+3+6+6) / (14-2) = 5/3,

G([2,17]) = (5+3+6+6+2+2)115=24/15

G([3,6]) =5/3, G([3,14]) = (5+6+6)/(14-3) = 17/11, G([3,17])=(5+6+6+2+2)/14=21/14
G([6,14]) = 12/(14-6)=12/8, G([6,17]) = (6+6+2+2)/(17-6)=16/11

G([10,14]) = 6/4, G([10,17]) = 10/7, G([11,17]) = 4/6, G([12,17]) = 2/5

=)
~J
()

-37

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 1: Execute jobs in the interval with the highest intensity by using the earliest-deadline first
schedule and running at the intensity as the frequency.

I Bes]
21 e [263 |
A]
| T 1T T T T T 1T T T T T T .
0 4 8 12 16 time
I |
G([0,6]) = (5+3)/6=8/6, G([0,8]) = (5+3+2)/ (8-0) = 10/8, 10,14.6

G([0,14]) = (5+3+2+6+6)/14=11/7, G([0,17]) = (5+3+2+6+6+2+2)/17=26/17

G([2,14]) = (5+3+6+86) / (14-2) = 5/3, 5 i
G([2,17]) = (5+3+6+6+2+2)/15=24/15 Gt Sl
G([3,6]) =5/3, G([3,14]) = (5+6+6)/(14-83) = 17/11, G([3,17])=(5+6+6+2+2)/14=21/14

G([6,14]) = 12/(14-6)=12/8, G([6,17]) = (6+6+2+2)/(17-6)=16/11
G([10,14]) = 6/4, G([10,17]) = 10/7, G([11,17]) = 4/6, G([12,17]) = 2/5

-38

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 1: Execute jobs in the interval with the highest intensity by using the earliest-deadline first
schedule and running at the intensity as the frequency.

N (363]

- Ji— I 263]
[— =

L L R R B Y A time (6146]

—]

| |

LR
8 12 16

0 4

-39

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 2: Adjust the arrival times and deadlines by excluding the possibility to execute at the previous
critical intervals.

-40

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 2: Adjust the arrival times and deadlines by excluding the possibility to execute at the previous
critical intervals.

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 3: Run the algorithm for the revised input again

04,2
M] :
CI,WIIJI\IS\II!ltIIIWEIﬁme —
G([0,4])=2/4, G([0,10]) = 14/10, G([0,13])=18/13
G([2,10])=12/8, G([2,13]) = 16/11, G([6,10])=6/4
G([6,13])=10/7, G([7,13])=4/6, G([8,13])=4/5 -

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 3: Run the algorithm for the revised input again

a4]
3
T T, .
G([0.41)=2/4, G([0,10]) = 14/10, G([0,13])=18/13
[z 10)=12/8 J(12,13)) = 16/11, G(t6, 10))=6/4
G(6,13])=10/7, G((7,13))=4/6, G([8,13))=4/5 -

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 3: Run the algorithm for the revised input again

la]
3
T T, .
GI[0,41)=2/4, G([0,10]) = 14/10, G([0,13])=18/13
[Giz10)=12/8Jo(12,13)) = 16/11, G(16,10))=6/4
G(6,131)=1017. G([7,13])=4/6, G(8,13))=4/5 -

5
T T T
8 12 16

0 4

time

YDS Optimal DVFS Algorithm for Offline Scheduling

Step 3: Run the algorithm for the revised input again
Step 4: Put pieces together

frequency 02,2

02,2 0,2,2

time

frequency 2 2 1 15 | 1.5 | 4/3 4/3

9-45

YDS Optimal DVFS Algorithm for Online Scheduling

frequency
3

L L L S £
0 4 8 12 16 time

Continuously update to the best schedule for all arrived tasks:
Time 0: task v, is executed at 2/8

YDS Optimal DVFS Algorithm for Online Scheduling

frequency
3

. [263 |
1
LY L L L 2
0 4 8 12 16 B

Continuously update to the best schedule for all arrived tasks:
Time 0: task v, is executed at 2/8
Time 2: task v, arrives
= G([2,6]) = %, G{[2,8]) = 4.5/6=3/4 =>execute vy, v, at %

9-45
YDS Optimal DVFS Algorithm for Online Scheduling
frequency
3 Bes]
2 263
1
I N L L s
0 4 8 12 16 time
Continuously update to the best schedule for all arrived tasks:
Time 0: task v, is executed at 2/8
Time 2: task v, arrives
= G([2,6]) = %, G([2,8]) = 4.5/6=3/4 =>execute vy, v,at %
Time 3: task v, arrives
= G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v, and v, at 29/12 _
9-48

YDS Optimal DVFS Algorithm for Online Scheduling

frequency
3

Bes]
2 263]
0,82

0 4 8 12 16 B

Continuously update to the best schedule for all arrived tasks:
Time 0: task v, is executed at 2/8
Time 2: task v, arrives
* Gl[2,6]) = %, G([2,8]) = 4.5/6=3/4 =>execute v,, v, at %
Time 3: task v, arrives
= G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v, and v, at 29/12
Time 6: task v, arrives
= G([6,8]) = 1.5/2, G([6,14]) = 7.5/8 => execute v, and v, at 15/16

-49

YDS Optimal DVFS Algorithm for Online Scheduling

f
(65|

[T [£
0 4 8 12 16 time

Continuously update to the best schedule for all arrived tasks:
Time 0: task v, is executed at 2/8
Time 2: task v, arrives
= G([2,6]) = %, G([2,8]) = 4.5/6=3/4 =>execute v,, v, at %
Time 3: task v, arrives
= GI((3,6]) = (5+3-3/4)/3=29/12, G((3,8]) < G([3,6]) => execute v, and v, at 29/12 -
Time 6: task v, arrives
= G([6,8]) = 1.5/2, G([6,14]) = 7.5/8 => execute v, and v, at 15/16
Time 10: task v; arrives
= G([10,14]) = 39/16 => execute v, and v, at 39/16

;

-50

YDS Optimal DVFS Algorithm for Online Scheduling

frequency

(365]
(263]

8 12 time

Continuously update to the best schedule for all arrived tasks:
Time 0: task v, is executed at 2/8
Time 2: task v, arrives
* Gl[2,6]) = %, G([2,8]) = 4.5/6=3/4 =>execute v, v, at %
Time 3: task v, arrives
= G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v, and v, at 29/12
Time 6: task v, arrives
= G([6,8]) = 1.5/2, G([6,14)) = 7.5/8 => execute v, and v, at 15/16
Time 10: task v; arrives
* G([10,14]) = 39/16 => execute v, and v, at 39/16
Time 11 and Time 12
®= The arrival of v, and v; does not change the critical interval
Time 14:
* G([14,17]) = 4/3 => execute v, and v, at 4/3

]
-~
[Ee]

-51

Remarks on the YDS Algorithm

= Offline
* The algorithm guarantees the minimal energy consumption while satisfying the
timing constraints
* The time complexity is O(N3), where N is the number of tasks in V
= Finding the critical interval can be done in O(N?)
= The number of iterations is at most N
= Exercise:

= For periodic real-time tasks with deadline=period, running at constant speed with
100% utilization under EDF has minimum energy consumption while satisfying the
timing constraints.

= Online

= Compared to the optimal offline solution, the on-line schedule uses at most 27
times of the minimal energy consumption.

-52

Dynamic Power Management

Dynamic Power Management (DPM)

* Dynamic power management tries to assign optimal
power saving states during program execution

+ DPM requires hardware and software support

Example: StrongARM SA1100
_400mW

RUN: operational
10us

IDLE: a SW routine may stop the aw 160ms
CPU when not in use, while 10 90us 64m)
monitoring interrupts “5 36pl

SLEEP: Shutdown of on-chip
activity

IDLE

‘ SLEEP

J

50mwW SPJ " 160uW

-54

Dynamic Power Management (DPM)

application states shut down wake up
T

| busy | waiting Ibusy |
1]

d
[PR e 0 rra—

ower states
T4: shutdown delay Tyt Wakeup delay

T,: waiting time

Desired: Shutdown only during long waiting times. This
leads to a tradeoff between energy saving and overhead.

Break-Even Time

Definition: The minimum waiting time required to compensate
the cost of entering an inactive (sleep) state.

= Enter an inactive state is beneficial only if the waiting time is longer than the
break-even time

= Assumptions for the calculation:

* No performance penalty is tolerated.

* Anideal power manager that

has the full knowledge of the future
workload trace. On the previous slide,
we supposed that the power manager
has no knowledge about the future.

SYSTEM

Break-Even Time

Tu: Jou‘
[Busy [waiting | busy |
State transition Sppllcation siates
[run [. | sleep | - [run I power states
sd wi
P;d P'; Pl(,‘it.

Scenario 1 (no transition): Fy =T, - P,
Scenario 2 (State transition): E2 = :Fsd . Psd + T‘wu . Ruu + (I‘w - T?d - T'u.'u) : Ps‘

Break-Even Time

Tw Py
| busy | waiting | busy |
 State transition application states
[run | . | sleep | - | run | scer sais
sd wu
Psd P'; Pl(,‘it.

remove, if power manager has
. " no knowledge about future
Scenario 1 (no transition): E; =17, - P,

Scenario 2 (state transition): Bz = Tsg - Psq + Tou - Puu + (L,

_Twzl) - Ps

Break-even time: Limit for T, such that E.
break-even
o time
I-«r 2 Ps‘u = PR
Break-even constraint: Ty = o - (Fod) ~p
Time constraint: Ty 2 Tea+ Tun

Break-even time: Limit for T, such that E; < E;
o break-even
. P time
. . Isd . (Pml - Pe) —+ Inlu . (Pu:n - Pﬁ)
Break-even constraint: Ty >
Pn\ o P&'
Time constraint: Tw 2 Tsq + T
9-57
Power Modes in MSP432 (Lab)
LEXIN, LEXOUT, P
il Prampios Pix
T S uimmm{m The MSP432 has one
s ||| O active mode in 6 different
[oo ||| e configurations which all
o =@ I| mvoe | | evoe allow for execution of
R ——F31- Il code.
i 0 oo | [It has 5 major low power
. Pl cen || sveem || aesee
] [e |- et N R i | i oy | Qe modes (LPO, LP3, LP4,
i = oo ; P | comrater || Conwoner | | Ercrypion LP: LP4 f
! | s i Dacypeon 3.5, .5), some o
1 them can be in one of
I 1 .
1| e spme | H i 1 1 1 several configurations.
| : o : A
: muew | 1 ‘:::S ::"-‘: s el a2 En:_;cm;néza In total, the MSP432 can
] B ansill B0 Rt L U | be in 18 different low
S === Power configurations.
active mode (32MHz): 6 - 15 mW ; low power mode (LP4): 1.5 - 2.1 yW 9-59

Power Modes in MSP432 (Lab)

= Transition between modes can be handled using C-level interfaces to the power
control manger.

= Examples of interface functions:
= uint8_t PCM_getPowerState (void)
* bool PCM_gotoLPMO (void)

* bool PCM_gotoLPM3 (void) | .
* bool PCM_gotoLPM4 (void) ' ‘
* bool PCM_shutdownDevice (uint32_t shutdownMode)

Battery-Operated Systems and Energy Harvesting

-61

detachment zone

Embedded\)

»

y_stems in the

Lo

Extreme - Permas

o A i

ense
-

Reasons for Battery-Operated Devices and Harvesting

= Battery operation:

= no continuous power source available 'g_est
= mobility .

= Energy harvesting:
= prolong lifetime of battery-operated devices
= infinite lifetime using rechargeable batteries
= autonomous operation

N/ e,
Zml

Typical Power Circuitry — Power Point Tracking

Energy Generated [} Power
Energy Dissipated [} Management
Controls

Thermoelectric [. 7

Photovoltaic . + > \
Piezoelectric L::::ii

Harvesters

Conversion Energy Voltage Electronic
Circuit(s) Storage Stabilization Load

/

power point tracking / impedance
matching; conversion to voltage
of energy storage

rechargeable battery
or supercapacitor

: Kinetic ¥ Thermo
Antenna Matching RectifierFilter Pwr Mgmi Module Low Power Load n
Battery/Capacitor L
radio frequency (RF) harvesting ‘ 6 i
Solar Panel Characteristics
18 = S = Variable output power
AM-1.5, 100mW/ .
16 4o = |lluminance level
~ 14 v = Electrical operation point
T 12 i = (Temperature, age, ...)
(&)
E 10
= » |-V-Characteristics
[=
g 5 = Non-linear
=
& i = Dependent on ambient
2 . . .
0 = Maximum Power Point Tracking
0 02 04 06 08 10 = Dynamic algorithm to find P*
Voltage [V/cell] 1/
Diagram: Amorton Amorphous Silicon Solar Cells Datasheet, © Panasonic
9-67

Typical Power Circuitry — Maximum Power Point Tracking

U/l curves of a typical solar cell: simple tracking algorithm (assume constant illumination) :
start new iteration k: = k+1
[P [)
MPP sense V(K), I(K)

P(k) = V(k) * I(K)

red: current for different light intensities
blue: power for different light intensities
grey: maximal power

tracking: determine optimal impedance

seen by the solar panel end iteration k

[set V{k+1) = V(k) + A

set V(k+1) = V(k) - A |

Maximal Power Point Tracking

"~
IAP y.d
F
AARA
0 0.1 02 03 04 05V

[start new iteration k := k+1|

sense W[k], I[k]
Pk = ?{[kl 1K

l set = VIK] + A || set VIk+1] = VIK] - A |

IQ_**_I

[&nd iteration k]

Maximal Power Point Tracking

[start new iteration k: = k+1]

/ sense V[k), I(k)
JAP //"" P() = k) * 1K)
\ yes P(k) > Ak-1) ? no
A A YL M) > Vike1) T Vi) > T~
A A
i > set V(k+1) = V(k) + A

00 01 02 03 04 05V set Viks1) = V(g4

end iteratio

9-69
Maximal Power Point Tracking
/ [start new itepation k: = k+1]
sense Wk), I(k)
4P AT
\ yes [P(k-1) ? no
A A y Vik) > VIRRL? V(k) > V(k-1) ? =
A A
: + + + A set V(k+1) = V(k) + A
0 0.1 02 03 04 05V sejVikel) = Vik) -
end iteration k
9-71

Maximal Power Point Tracking

[start new iteration k: = k+1]

/ sense V[k), I(k)

IAP o
\ yes P(k)>P ? no
A A YL) > V1) T2 (e >
A A
+ ; : ; A set V(k+1) = V(kpF A
0 01 02 03 04 05V set Vike1) = Vik -4

end iteration k

Maximal Power Point Tracking

[start new iteration k: = k+1]

/ sense V(k), I(k)

AP /./‘ "3 Pik) = Vi) * (k)

no

<>
set V(k+1) = V(k) - A

. end iterationk

Typical Challenge in (Solar) Harvesting Systems

Challenges:
= What is the optimal maximum capacity of the battery?
= What is the optimal area of the solar cell?

= How can we control the application such that a continuous system operation is
possible, even under a varying input energy (summer, winter, clouds)?

Example of a solar energy trace: .

-]

2

=]
daily energy (MJ m™)

solar radiation (MJ m?)

‘ by
| "“I 10 ‘ ‘

17 Iy VY I i
AR ™ J I
Ll e | o 1}

o 60 120 180 240 300 360

=)

2000 2001 2002 2003
day of the year 9-74

Example: Application Control

Scenario:

energy flow

energy source energy storage

information
flow

energy estimator controller consumer

= The controller can adapt the service of the consumer device, for example the
sampling rate for its sensors or the transmission rate of information. As a result,
the power consumption changes proportionally.

= Precondition for correctness of application control: Never run out of energy.

= Example for optimality criterion: Maximize the lowest service of (or
equivalently, the lowest energy flow to) the consumer.

Application Control

Formal Model:

s energy capacity B
’ s

u(t)

discrete time t

energy source energy storage

b(t)
p(7) u(t)

energy estimator —5 7 controller consumer

= harvested and used energy in [t, t+1): p(t), u(t)

* battery model: b(t + 1) = min{b(t) + p(t) — u(t), B}

= failure state: b(t) + p(t) —u(t) <0

= utility: 1 is a strictly concave function;

Uty ty) = Z plu(7)) higher used energy gives a reduced

reward for the overall utility.
t <T<ts 45

Application Control

= What do we want? We would like to determine an optimal control u*(t) for
time interval [t, t+1) for all t in [0, T) with the following properties:

VO<t<T : b"(t) +p(t) —u*(t) >0
There is no feasible use function u(t) with a larger minimal energy:

9 : 1 9 f < i T
v g0l = e L0}

The use function maximizes the utility U(0, T).

We suppose that the battery has the same or better state at the end than at the
start of the time interval, i.e., b*(T) = b*(0).

= We would like to answer two questions:

Can we say something about the characteristics of u*(t) ?
How does an algorithm look like that efficiently computes u*(t) ?

Application Control

Theorem: Given a use function u*(t), t € [0,T) such that the system never enters a
failure state. If u*(t) is optimal with respect to maximizing the minimal used energy
among all use functions and maximizes the utility U(t, T), then the following
relations hold for all 7 € (0,T):

empty battery
uw(r—1) <u(r) = b*(r) =0 —

full batt
W(r—1)>u(r) = b (r) =B—"

Sketch of a proof: First, let us show that a consequence of the above theorem is
true (just reverting the relations):

Vre (st : 0<b(r)< B = Yrelsit] : u'(r)=u*(t)

In other words, as long as the battery is neither full nor empty, the optimal use
function does not change.

Application Control

= Proof sketch cont.:

a

-
&

Weekly Energy Wh|

8

1 L 1 1 1
%5 240 250 260 270 280 200 300 a0 320 3

State-of-Charge (%]
5 8 8

-]

ol NS

200 300 31 320 33

1
L) 240 250 260 270 280
Time [weeks]

(top) Example of an optimal use function «*(t) for a given harvest function p(f)
and (bottom) the corresponding stored energy b (t).

9-80

Application Control

= Proof sketch cont.: T T T L ' T T ==
gsa_- I N, (AP —p(::J

suppose we change o Y\, IV imvi ™]
the use function 5 o\) v
locally from being — Vi 1
CDnStant SUCh that 330 2-‘!0 2;0 2;0 2J7D Zéﬂ 2;0 3II)D 3:0 3%0 33
the overall battery
state does not change

ﬂ T T T = T T —vwm

then the utility is worse
due to the concave
function gt : diminishing

L
280 27

reward for higher

use function values; and
the minimal use function
is potentially smaller

280
Time [weeks]

and (bottom) the corresponding stored energy b*(t).

(top) Example of an optimal use function u*(f) for a given harvest function p(f)

Application Control

= Proof sketch cont.: Now we show that for all T € (¢,7')

uw(r—1) <u"(r) = b"(r)=0
or equivalently

b (r) > 0= u"(t—1) = u"(7)
We already have shown this for 0 < b*(7) < B. Therefore, we only need to
show that|b"(7) = B = u" (7 — 1) > u™(7) | Suppose now that we have
u*(r — 1) < u*(7) if the battery is full at 7. Then we can increase the use at
time 7 — 1 and decrease it at time 7 by the same amount without changing the
battery level at time 7 + 1 . This again would increase the overall utility and
potentially increase the minimal use function.

b'(r)=B@ L)
* @ b(r+1) initial, not optimal
Ty Gl choice of the use
o u function
71 T T+1

-82

Application Control

= Proof sketch cont.: Now we show that for all 7 € (¢,7)

u(r—1) <u*(r) = b"(r) =0
or equivalently

b () > 0= u"(r — 1) = u"(7)
We already have shown this for 0 < b*(7) < B. Therefore, we only need to
show that|b" (1) = B = w" (7 — 1) > u”(7) | Suppose now that we have
uw*(r — 1) < u*(r) if the battery is full at 7. Then we can increase the use at
time 7 — 1 and decrease it at time 7 by the same amount without changing the
battery level at time 7 4 1 . This again would increase the overall utility and
potentially increase the minimal use function.

V(r)< B

® @b (r+1) feasible, but
eu” u e better choice of
use function with
. \ . 3 n
' ') w(r—1)>u
T—1 T T+1 ()2

(1)

Application Control

3

Waekly Energy Wh|
&

P
S

L
230 240 250 260 270 280 290 300 310 320 33

State-ol-Charge %]

| | 1 I | 1 1 I al:
230 240 250 260 270 300 310 320 33

280
Time waeks]

(top) Example of an optimal use function #*(t) for a given harvest function p(t)
and (bottom) the corresponding stored energy b'(f).

-84

Application Control

= How can we efficiently compute an optimal use function?
= There are several options available as we just need to solve a convex optimization
problem.
= Asimple but inefficient possibility is to convert the problem into a linear program.
At first suppose that the utility is simply

UO,T)= > u(r)

u(t)

P T b(t)

41

3 ®

2 L ®

1 ® L4

R 4 ; + t
0 1 2 3 4 5 6=T

- 86

Application Control

0<T<T
Then the linear program has the form: maximize Z u(7)
0<r<T
[Concave functions /¢ could be Y7 € [0,T) : b7+ 1) = b(7) — u(r) + p(7)
piecewise linearly approximated. YT € [[].T) c0<b(r+1)<B
This is not shown here.] ' - -
YT e0,T) : u(r) >0
b(T) = b(0) = by
9-85
u(t) u(t)
PO T b(t) ORI
4 : 4
3 & 3 ®
2 ® ® 2 @ ®
1 & T 1+ @ o
k4 t + . + h 4 + } t
0 1 2 3 4 5 6=T 0 1 2 3 4 5 6=T

= But what happens if the estimation of the future incoming energy is not correct?

* If it would be correct, then we would just compute the whole future application
control now and would not change anything anymore.
= This will not work as errors will accumulate and we will end up with many
infeasible situations, i.e., the battery is completely empty and we are forced to
stop the application.
= Possibility: Finite horizon control
= At time t, we compute the optimal control (see previous slides) using the currently
available battery state b(t) with predictions 25(7') forall t <7 <t+T and
bt +T)=b(t)-
= From the computed optimal use function u(7) forallt <7 <t +T we just take the
first use value u(t) in order to control the application.
= At the next time step, we take as initial battery state the actual state; therefore, we
take mispredictions into account. For the estimated future energy, we also take the
new estimations.

-88

Application Control

= Finite horizon control:

; | compute the optimal use function in [t, t+T)

j ! using the actual battery state at time t

t t+T

— | apply this use function in the interval [t, t+1).

t t+1
; . | compute the optimal use function in [t+1, t+T+1)
; ' using the actual batter state at time t+1
t+1 t+T+1

Application Control using Finite Horizon

——i~——, estimated input
energy

‘ ‘ | | | .
3a 240 250 0 270 280 280 300 310 W\\L still energy

breakdown
due to misprediction

1 |
280 300

L L 1
EJ[! 240 250 260 270

280
Time [weeks]

Application Control using Finite Horizon

Weekly Energy [Wh]

State-of-Charge [%]

. more pgssimistic
prediction

simplified
optimization
using a look-
230 24 250 260 e 280 70 300 ato %20 2 up-table

[not covered]

@
3
T

@
=]
T

»
=3
T

»
S
T

1 1 |
240 250 260 270

o
N
=]

280
Time [weeks]

Remember: What you got some time ago ...

0-1

What we told you: Be careful and please do not ...

10-

Return the boards at the
embedded systems exam!

10-3

Embedded Systems
10. Architecture Synthesis

© Lothar Thiele

Computer Engineering and Networks Laboratory

ETH

Esdgenissische Techaische Hochschule Zarich
Swizs Fedaral Institute of Technology Zurich

Lecture Overview

Software \

Hardware <

‘\ 4“' 4" v i\ ‘\‘.
0N OV AW N

. Introduction to Embedded Systems
. Software Development k
. Hardware-Software Interface

. Programming Paradigms

. Embedded Operating Systems
. Real-time Scheduling

. Shared Resources

. Hardware Components

9.
|10.

Power and Energy
Architecture Synthesis

“Hardware-
/ Software

10-5

Implementation Alternatives

Performance
Power Efficiency

| General-purpose processors

Application-specific instruction set processors (ASIPs)

Microcontroller
DSPs (digital signal processors)

Programmable hardware

FPGA (field-programmable gate arrays)

Application-specific integrated circuits (ASICs)

Flexibility

10-

Architecture Synthesis

Determine a hardware architecture that efficiently executes a given algorithm.

= Major tasks of architecture synthesis:
= gllocation (determine the necessary hardware resources)
* scheduling (determine the timing of individual operations)

* binding (determine relation between individual operations of the algorithm and
hardware resources)

= (Classification of synthesis algorithms:
= heuristics or exact methods

= Synthesis methods can often be applied independently of granularity of
algorithms, e.g. whether operation is a whole complex task or a single
operation.

10-

10-

Specification Models

10-

Specification

= Formal specification of the desired functionality and the structure (architecture)
of an embedded systems is a necessary step for using computer aided design
methods.

= There exist many different formalisms and models of computation, see also the
models used for real-time software and general specification models for the
whole system.

= Now, we will introduce some relevant models for architecture level (hardware)
synthesis.

10-10

Task Graph or Dependence Graph (DG)

Sequence
constraint .. GE& e
@ »program” described in
some programming

@_) language, e.g. C or Java; or

just a single operation.

A dependence graph is a directed graph G=(V,E) in which EC V x V
is a partial order.

If (v1, v2) € E, then v1 is called an immediate predecessor of v2 and
v2 is called an immediate successor of v1.

Suppose E*is the transitive closure of E. If (v1, v2) € E*, then vl is
called a predecessor of v2 and v2 is called a successor of vi.

10-11

Dependence Graph

= A dependence graph describes order relations for the execution of single
operations or tasks. Nodes correspond to tasks or operations, edges correspond
to relations (,,executed after”).

= Usually, a dependence graph describes a partial order between operations and
therefore, leaves freedom for scheduling (parallel or sequential). It represents
parallelism in a program but no branches in control flow.

= Adependence graph is acyclic.

= QOften, there are additional quantities associated to edges or nodes such as
= execution times, deadlines, arrival times
= communication demand

10-12

Dependence Graph and Single Assignment Form

given basic block: dependence graph
x=a+b; a b c d
y=c-d; O\
z=x*y;
y=b+d;
X Y
single assignment
form: J

Xx=a+b;

:zi*:, z yl

yl=b+d;

10-13

Example of a Dependence Graph

10-14

Marked Graph (MG)

= A marked graph G =(V, A,del) consists of
* nodes (actors) vel
* edges a=(v;,v,)ed, AcVxV
* number of initial tokens (or marking) on edges del : A — Z=°

d.(?ll
= The marking is often represented in form of a vector: del = | del;
d(“.t‘Al

==

10-15

10-16

Marked Graph

= The token on the edges correspond to data that are stored in FIFO queues.

= A node (actor) is called activated if on every input edge there is at least one
token.
= A node (actor) can fire if it is activated.

= The firing of a node v, (actor operates on the first tokens in the input queues)
removes from each input edge a token and adds a token to each output edge.
The output token correspond to the processed data.

= Marked graphs are mainly used for modeling regular computations, for example
signal flow graphs.

10-17

Marked Graph

Example (model of a digital filter with infinite impulse response IIR)
= Filter equation:

()= a’-u(l)+bl- y(i—1)+c“- (! —2)+dﬁ-vy(l—3)

* Possible mot,ie'l’as a marked graph

vl'—

v nodes 3-5:
a s d~ cr b w
) N X
2 3 4 5 N
@ ©&—@
output y
Y

input u Tk node 2: x=0

10-18

Implementation of Marked Graphs

= There are different possibilities to implement marked graphs in hardware or
software directly. Only the most simple possibilities are shown here.
= Hardware implementation as a synchronous digital circuit:
= Actors are implemented as combinatorial circuits.
* Edges correspond to synchronously clocked shift registers (FIFOs).

—

clock

10-19

Implementation of Marked Graphs

= Hardware implementation as a self-timed asynchronous circuit:
= Actors and FIFO registers are implemented as independent units.
= The coordination and synchronization of firings is implemented using a handshake
protocol.
= Delay insensitive direct implementation of the semantics of marked graphs.

ack ack

> — O

rdy actor rdy 1 *

= =
dy

FIFO rdy actor v FIFO
<': -_

ack ack

10-20

Implementation of Marked Graphs

= Software implementation with static scheduling:

= At first, a feasible sequence of actor firings is determined which ends in the
starting state (initial distribution of tokens).

» This sequence is implemented directly in software.
= Example digital filter:

feasible sequence: (1,2,3,9,4,8,5,6,7)
program: while (true) {
tl = read(u);

t2 = a*tl;
0 t3 = t2+d*t9;

a d ¢
9 e o G t9 = t8;
.. DUtpUty t4 - t3+c*t9;
t8 = t6;
@ ©),

b
® t5 = td+b*t8;
input u T fork £6 = €55

write(y, té6);}

10-21

Implementation of Marked Graphs

= Software implementation with dynamic scheduling:

= Scheduling is done using a (real-time) operating system.
= Actors correspond to threads (or tasks).

= After firing (finishing the execution of the corresponding thread) the thread
is removed from the set of ready threads and put into wait state.

= |tis putinto the ready state if all necessary input data are present.

= This mode of execution directly corresponds to the semantics of marked
graphs. It can be compared with the self-timed hardware implementation.

10-22

Models for Architecture Synthesis

= Asequence graph Gg = (Vg, Eg) isadependence graph with a single start node
(no incoming edges) and a single end node (no outgoing edges).
V. denotes the operations of the algorithm and E denotes the dependence relations.

= Aresource graph Gg = (Vg.Eg), Vg = Vg U V- models resources and bindings.
V; denote the resource types of the architecture and G, is a bipartite graph. An edge
(vs,v1) € Ep represents the availability of a resource type v, for an operation v,.

®» Cost function ¢ : Vip — Z

= Execution times w : Ep — Z=0 are assigned to each edge (vs, v¢) € En
and denote the execution time of operation v5 € Vg on resource type vy € V.

10-23

Models for Architecture Synthesis - Example

Example sequence graph:
= Algorithm (differential equation):

int diffeq(int x, int y, int u, int dx, int a) {
int x1, ul, yl;
while (x < a) {

xl = x + dx;

ul =u - (3 * x *u * dx) - (3 * y * dx);
vyl =y + u * dx;

x = x1;

u = ul;

y = yl;

}

return y;

}

10-24

Models for Architecture Synthesis - Example

= Corresponding sequence graph: Gg = (Vg, Eg)

nop -0

int diffeq(int x, int y, int u, int dx, int a) {
int x1, ul, yl;
while (x < a) {
x1 = x + dx;
ul =u - (3 * x *u*dx) - (3 *y *dx);
yl =y + u * dx;
X x1;
u = ul;
y = yl;
1
return y;

}

10-25

Models for Architecture Synthesis - Example

1

= Corresponding resource graph
with one instance of a
multiplier (cost 8) and one 3
instance of an ALU (cost 3):

multiplier
o (r))=1

ALU

o (ry) =1

Gs = (Vg, Eg) Gr=(Vr, Eg), VR =VgU V7 .

Allocation and Binding

An allocation is a function a : Vp — Z=0 that
assigns to each resource type vy € Vr the num-
ber a(v;) of available instances.

A binding is defined by functions 3 : Vg — Vp
and v : Vg — Z>0. Here, 8(vs) = v and v(vs) =
r denote that operation vs € Vg is implemented
on the rth instance of resource type v; € Vp.

10-27

Models for Architecture Synthesis - Example

= Corresponding resource graph
with 4 instances of a
multiplier (cost 8) and two 3
instance of an ALU (cost 3):

multiplier
o r N 4

nop ~0 7

Gs = (Vs, Esg) |Gr= (Vi Ep), Ve =VsU V7|

Models for Architecture Synthesis - Example

= Example binding (a(r,) = 4, a(r,) = 2): *'\'”rr'-”

Blvr) =r1,v(v1) =1,
B(v2) = r1,v(v2) =2,
B(vz) = ry,v(v3) =2,
B(vg) = ro,v(va) = 1,
B(vs) = ra,v(vs) =1,
B(vg) = r1,v(ve) = 3,
Bvr) = r1,v(v7) =3,

B(vg) = r1,v(vg) = 4, 2
B(vg) = r2,v(vg) = 1, \B/ /
B(v10) = r2,v(v10) = 2, \J“gﬁﬁlll
B(v11) = r2,7v(v11) =2

10-29

Scheduling

A schedule is a function 7 : Vg — Z>0 that
determines the starting times of operations. A
schedule is feasible if the conditions

7(v;) — 7(v;) > w(v;) V(v;,v;) € Eg

are satisfied. w(v;) = w(v;, #(v;)) denotes the
execution time of operation v;.

The latency L of a schedule is the time differ-
ence between start node vg and end node vy:

L = 7(vn) — m(vg) .

10-30

10-31

Example: L=1(vy,) - tlvg) =7
T(vg) =1

T(vy) =1(vy) =1
T(v,) = T(vy) = 2
t(v;) =3
T(ve) =tlv,) =4
t(v;)=5
T(vg) =T(Ve) =6 —
W) =7 ——

w(v,) =8 —

)

|

10-32

Multiobjective Optimization

10-33

Multiobjective Optimization

= Architecture Synthesis is an optimization problem with more than one objective:
= Latency of the algorithm that is implemented
= Hardware cost (memory, communication, computing units, control)
= Power and energy consumption

= Optimization problems with several objectives are called “multiobjective
optimization problems”.

= Synthesis or design problems are typically multiobjective.

Multiobjective Optimization

= et us suppose, we would like to select a typewriting device. Criteria are
= mobility (related to weight)
= comfort (related to keyboard size and performance)

- ; comfort

lcon Device weight (kg) tating
Ex PC of 2020 20.00 10
& PCof1984 7.50 7
= Laptop 3.00 9
B Typewriter 9.00 5
| Touchscreen Smartphone 0.09 3
& PDA with large keyboard 0.11 2

10-35

10-34
i D& Wkt (4 comfort
Icon Device weight (kg)
Multiobjective Optimization B e
B PCof 1984 7.50 7
H Laptop 3.00 9
B Typewriter g.00
L Touchscreen Smartphone 009
&2 PDA with large keyboard 0.11 9.
writing comfort
better
1
1T i | ® Pareto-optimal
1 i .
4 I O PDAwith O dominated
: larger keyboard
4 @y
= i
- i
5 o Touchscreen i
Smartphone 1
+ i
[
I
+ i
i
i
1 |
i PCof2009
+ P D e s e 1
10 + &---———-
' r/a L L i L
77— t 1 t u 1 +
0.1 4 10 20 weight
10-36

Pareto-Dominance

Definition : A solution a € X weakly Pareto-dominates a
solution b € X, denoted as a < b, if it is as least as good in
all objectives, i.e., fi(a) < fi(b) for all 1 < i < n. Solution
a is better then b, denoted as a < b, iff (a 2 b) A (b 2 a).

Decision space Objective space

10-37

Pareto-optimal Set

= A solution is named Pareto-optimal, if it is not Pareto-dominated by any other
solution in X.

= The set of all Pareto-optimal solutions is denoted as the Pareto-optimal set and
its image in objective space as the Pareto-optimal front.

Q...
e ° e
objective space Z: L@ o -dominated
Q
Pareto-optimal = not dominated
f1

10-38

Architecture Synthesis without Resource Constraints

10-39

Synthesis Algorithms

Classification
= unlimited resources:
= no constraints in terms of the available resources are defined.
= [imited resources:
= constrains are given in terms of the number and type of available resources.

Classes of synthesis algorithms
= jterative algorithms:
= an initial solution to the architecture synthesis is improved step by step.
= constructive algorithms:
= the synthesis problem is solved in one step.
= transformative algorithms:
= the initial problem formulation is converted into a (classical) optimization problem.

10-40

Synthesis/Scheduling Without Resource Constraints

The corresponding scheduling method can be used
» asa preparatory step for the general synthesis problem
= to determine bounds on feasible schedules in the general case
= if there is a dedicated resource for each operation.

Given is a sequence graph Gg(Vs, Es) and a resource graph Gi(Vg, Eg).
Then the latency minimization without resource constraints
with a(v;) — oo for all v; € Vi is defined as

L = min{7(vn) — 7(vo) : T(v;) — T(v:) > w(vs, B(vi)) Y(vs,v;) € Es}

10-41

ASAP Algorithm

ASAP = As Soon As Possible

ASAP (Gg(Vs, Eg), w) {
7(vg) = 1;
REPEAT {
Determine v; whose predec. are planed;
T(v;) = max{r(v;) + w(v;) Y(v;,v;) € Eg}
} UNTIL (v, is planned);
RETURN (7);

10-42

The ASAP Algorithm - Example

0P,
Example: e

w(v) =1

_anf TRENTRES
- ’
_- .
P 7
- ’
; 1 ; 2

oy

-
’ P
o

,

10-43

ALAP Algorithm

ALAP = As Late As Possible

ALAP(Gg(Vg, Eg), w, Lmaz) {
7(vn) = Lmaz + 1;
REPEAT {
Determine v; whose succ. are planed,
7(v;) = min{7(v;) ¥(v;,v;) € Eg} — w(v;)
} UNTIL (vg is planned);
RETURN (7);

10-44

ALAP Algorithm - Example

Example:

10-45

Scheduling with Timing Constraints

There are different classes of timing constraints:
= deadline (latest finishing times of operations), for example

7(v2) +w(vp) <5
= release times (earliest starting times of operations), for example

T(v3) = 4

= relative constraints (differences between starting times of a pair of operations), for
example

T(vg) — 7(v7) = 4
T(va) —7(v1) <2

10-46

10-47

Scheduling with Timing Constraints

We will model all timing constraints using relative constraints. Deadlines and
release times are defined relative to the start node v,

Minimum, maximum and equality constraints can be converted into each other:
= Minimum constraint:

T(v;) = 7(v;) + lij — 7(v;) — 7(v;) > 1
= Maximum constraint:
T(v;) < 7(v) + Ui — 7(vy) — 7(vj) > =l
» Fquality constraint:
T(v;) = 7(v;) + lij — 7(vj) — 7(v;) <l A
T(v;) — () = U

10-48

Weighted Constraint Graph

Timing constraints can be represented in form of a weighted constraint graph:

A weighted constraint graph G = (Vi Eg, d)
related to a sequence graph Gg = (Vg, Eg)
contains nodes Vi = Vg and a weighted edge
for each timing constraint. An edge (v;,v;) €
Ec with weight d(v;, v;) denotes the constraint
7(v;) — 7(vg) = d(w, v5).

10-49

Weighted Constraint Graph

= |n order to represent a feasible schedule, we have one edge corresponding to
each precedence constraint with

d(vy, v) = w(v;)
where w(v;) denotes the execution time of v,.

= A consistent assignment of starting times t(v,) to all operations can be done by
solving a single source longest path problem.

= A possible algorithm (Bellman-Ford) has complexity O(|V¢| |E¢|) (“iterative
ASAP”):

Iteratively set 7(v;) := max{r(v;), 7(v;)+d(wv;, v;) :
(vi,vj) € Eg} for all v; € Vi starting from
T(v;j) = —oo for v; € Ve\{vg} and 7(vg) = 1.

10-50

Weighted Constraint Graph - Example

Example:]—w(_vl_) = w(_v3_) =2| | w(v,) = w(v,) =1
m(vp) = 7(v1) = 7(v3) =1, 7(v2) =3,
T(U4) =5, T(“n) =6, L= T('Un) - T(“O) =5

: oP, 0
G S :N]

4 “)\
e \\
X &
max.
D ©

Y p -
Ko
N,

10-51

Architecture Synthesis with Resource Constraints

10-52

Scheduling With Resource Constraints

Given is a sequence graph Gg = (Vg, Eg), a re-
source graph G = (Vg, ER) and an associated

allocation a and binding .

dependencies are respected

there are not more than the available
resources in use at any moment in
time and for any resource type

Then the minimal latency is defined as

L = min{r(v,) :

(T(v;) — 7(v:) > wlvi, B(v:)) V(vi,v;) € Es) A

([{vs : B(vs) = v A T(vs) <t < 7(vs) +w(vs,)} < a(vy)
Voe € Vr,V1 <t < Lipaz) }

where Lpmar denotes an upper bound on the
latency.

10-53

List Scheduling

List scheduling is one of the most widely used algorithms for scheduling under
resource constraints.

Principles:

= To each operation there is a priority assigned which denotes the urgency of being
scheduled. This priority is static, i.e. determined before the List Scheduling.

= The algorithm schedules one time step after the other.

= U, denotes the set of operations that (a) are mapped onto resource v, and (b)
whose predecessors finished.

= T,denotes the currently running operations mapped to resource v, .

10-54

List Scheduling

LIST(Gg(Vg, Eg) Gr(Vg. ER),a,3,priorities){
&=l
REPEAT {

FORALL v{e Vi { v € Vg with B(v) = vy
determine candidates'to be scheduled Uy;
determine running operations 1j,;
choose Sj, C U, with maximal priority

and [Sg| + Tyl < a(vg);
T(v;) =1t Yo, € S}
t=t+1;
} UNTIL (v, planned)
RETURN (7); }

resource types

10-55

List Scheduling - Example

Example: g Ko o0 W G

1 2
LIST(Gg(Vs, Es) . Gr(Vy, Eg),a.3,priorities){ ®
t=1;
REPEAT {
FORALL v € Vp {
determine candidates to be scheduled Uy,
determine running operations Tj,;
choose §;. C U, with maximal priority
and |Sg| + |Tk| < aur);
T(v) =t Yo € S5}
t=t+1,
} UNTIL (v, planned)
RETURN (r); }

a(rp=1

o (ry)=1

w
e s e e e e g

O—D—@—@.

S
o
Sor,"
e

10- 56

List Scheduling - Example

Solution via list scheduling:

In the example, the solution is
independent of the chosen priority
function.

Because of the greedy selection principle,
all resource are occupied in the first
time step.

List scheduling is a heuristic algorithm:
In this example, it does not yield the minimal
latency!

10-57

fory o
~ ~

List Scheduling BN

Solution via an optimal method:

= Latency is smaller than with
list scheduling.

algorithm is the transformation
into an integer linear program as
described next.

= An example of an optimal v

10-58

Integer Linear Programming

Principle:

| Synthesis Problem |

transformation into ILP

| Integer Linear Program (ILP) |

optimization of ILP

| solution of ILP |

back interpretation

| Solution of Synthesis Problem |

10-59

Integer Linear Program

= Yields optimal solution to synthesis problems as it is based on an exact
mathematical description of the problem.

= Solves scheduling, binding and allocation simultaneously.

= Standard optimization approaches (and software) are available to solve integer
linear programs:

= in addition to linear programs (linear constraints, linear objective function) some
variables are forced to be integers.

= much higher computational complexity than solving linear program

= efficient methods are based on (a) branch and bound methods and (b)
determining additional hyperplanes (cuts).

10- 60

10-61

Integer Linear Program

= Many variants exist, depending on available information, constraints and
objectives, e.g. minimize latency, minimize resources, minimize memory. Just an
example is given here!!

= For the following example, we use the assumptions:
= The binding is determined already, i.e. every operation v; has a unique execution
time w(v).
= We have determined the earliest and latest starting times of operations v, as /;and
h,, respectively. To this end, we can use the ASAP and ALAP algorithms that have
been introduced earlier. The maximal latency L, is chosen such that a feasible
solution to the problem exists.

10-62

Integer Linear Program

minimize: 7(wn) — 7(vg)
subject to x;; €{0,1} VyeVg Vi <t<h

Yomp=1 Yy eVg

h;
Z bz — 7(v;) WVu; e Vg
g=I

T(v;) — 7(v;) > wlv;) V(v;,v5) € Eg

min{w(wv;)—1,t—1;}

> > z; 4 < alvg)

Vi(viup)eEER p'=max{0,i—h;}

(1)

(2)

(3)

(4)

Yo, € Vip Yt 11 <t < max{h;: v; € Vg} (5)

10-63

minimize: 7(vn) — 7(vg)
subject to ;¢ € {0,1} Vv, € Vg Vt:[; <t<h; (1)

i
YDomip=1 Vy€eVg (2)
t=l;

hy;

z t-xi = 7(v;) WYy € Vs (3)
=1;

7(v5) — 7(v;) 2 w(v) Y(v,v;) € Es (4)

min{w(v;)—1,t-4}
z;y < ofug)
Vii(vi,vp)EER p'=max{0,t—h;}
Wup € Vp Wi 1 <t <max{h; :v; € Vg} (5)

10-64

Vii(vjup)EER p'=max{0,t—h;}

7(vn) — 7(vg)
g €{0,1} VyeVg Vi <t<h; (1)

hi
Dwp=1 YyeVg (@)
=1,

hi

Sotemy=7(v;) Y €Vg (3)

=1

T(vj) —7(w) > w(v) Y(vi,v;) €EEs (4)

min{w(v;)—1,t—1;}

Ty < alvg)

Vo € Vip Wt 1 <t < max{h; :v; € Vg} (5)

10-65

Integer Linear Program

Explanations:
= (1) declares variables x to be binary .

= (2) makes sure that exactly one variable x;, for all t has the value 1, all others are 0.

= (3) determines the relation between variables x and starting times of operations t.
In particular, if x;, = 1 then the operation v; starts at time t, i.e. t(v)) = .

= (4) guarantees, that all precedence constraints are satisfied.

= (5) makes sure, that the resource constraints are not violated. For all resource
types v, € V;and for all time instances t it is guaranteed that the number of active
operations does not increase the number of available resource instances.

10-66

Integer Linear Program

Explanations:

= (5) The first sum selects all operations that are mapped onto resource type v,. The
second sum considers all time instances where operation v; is occupying resource

type v, :

wle) -1 ' 1o v () <t < 71(v) Fw(y) — 1
2 iy =10 : sonst
¥=0

> X2,tp° D Xit-p’
()

() (p)

10-67

Architecture Synthesis for Iterative Algorithms and
Marked Graphs

10-68

Remember ... : Marked Graph

Example (model of a digital filter with infinite impulse response IIR)
= Filter equation:

y(y=a-u(l)+b-y(I-D+c:y(I=2)+d - y(I-3)

* Possible mogie’l'as a marked grc‘rp{r_:i,_/"'

nodes 3-5:

w
©O—@ ()
output y Xewey
y
Owal

input u \E\ fork node 2: x=0

&

a ."" d~ c
(Y @

v T «--
)

10-69

Iterative Algorithms

= [terative algorithms consist of a set of indexed equations that are evaluated for
all values of an index variable /:

Here, x;denote a set of indexed variables, F; denote arbitrary functions and d;;
are constant index displacements.

= Examples of well known representations are signal flow graphs (as used in signal
and image processing and automatic control), marked graphs and special forms
of loops.

10-70

Iterative Algorithms

Several representations of the same iterative algorithm:
* Oneindexed equation with constant index dependencies:

y[l] = aull] + byl — 1] + ey[l — 2] + dy[l — 3]

* Equivalent set of indexed equations:
z1[l] = aull] Vi
zol] = z1[l] +dyll —3] Wl
x3[l] = @[l +eyll — 2] Wi
ylll = 3] + oyl — 1] Wi

)

10-71

Iterative Algorithms

Extended sequence graph Gg = (Vs, E, d): To each edge (v, v)) € E there is associated
the index displacement d;. An edge (v, v;) € E; denotes that the variable
corresponding to v; depends on variable corresponding to v; with displacement dj.

u X X X.
o2 20 2 0 R0 1
~ y
32
Equivalent marked graph:
u X4 Xo X3
O)))
S \—y y

10-72

Iterative Algorithms

= Fquivalent signal flow graph:

o—[E—{d] F
u
iy

{z
= FEquivalent loop program:

S

while (true) {
tl = read(u) ;

t5 = a*tl + d*t2 + c*t3 + b*t4;

t2 = t3;
t3 = t4;
t4 = t5;

write(y, t5):;}

10-73

Iterative Algorithms

An iteration is the set of all operations necessary to compute all variables x,[/]
for a fixed index /.

The iteration interval P is the time distance between two successive iterations of
an iterative algorithm. 1/P denotes the throughput of the implementation.

The latency L is the maximal time distance between the starting and the
finishing times of operations belonging to one iteration.

In a pipelined implementation (functional pipelining), there exist time instances
where the operations of different iterations / are executed simultaneously.

10-74

Iterative Algorithms

= /mplementation principles

* Asimple possibility, the edges with d;; > 0 are removed from the extended
sequence graph. The resulting simple sequence graph is implemented using
standard methods.

Example with unlimited resources:

oO—0O—0—@ @\
execution

times w(v;)
T
———————l A ——————l t
one iteration L=7
one physical iteration P=7
no pipelining

10-75

Iterative Algorithms

Implementation principles

one physical iteration one iteration
P=2 L=7

= Using functional pipelining: Successive iterations overlap and a higher throughput
(1/P) is obtained.

Example with unlimited resources (note data dependencies across iterations!)

* 4 resources
« functional pipelining
t

10-76

Iterative Algorithms

Solving the synthesis problem using integer linear programming:
= Starting point is the ILP formulation given for simple sequence graphs.

= Now, we use the extended sequence graph (including displacements d;).

= ASAP and ALAP scheduling for upper and lower bounds h; and /; use only edges
with d; = 0 (remove dependencies across iterations).

* We suppose, that a suitable iteration interval P is chosen beforehand. If it is too
small, no feasible solution to the ILP exists and P needs to be increased.

10-77

Integer Linear Program

minimize: 7(vn) — 7(vg)
subject to @iy €{0,1} Ve Vg Vi:l;<t<h; (1)

o
daip=1 VyeVg (2)
t=l
hi
Z bz — 7(v;) Vv € Vg (3)
t=ii

T(v;) — 7(v;) = w(v) V(v,v) € BEg (4)

min{w(w;)—1,t—1;}
x4y < o)
Vi:(vjup)€ER p'=max{0,i—h;}
Yo, € Vip Wt 1 <t < max{h; :v; € Vsg} (5)

10-78

Iterative Algorithms

Eqn.(4) is replaced by:
7(vj) — 7(v;) 2 wv)|—di; - P| Y(vi,v5) € Eg

Proof of correctness:
7(v) +w(v) < 7(v;) +dij - P
T(i.’i)\ /
O_dfi_.. L e || | 7] i
/ J . : [: ". j
7(v;) o t
d; P

10-79

Iterative Algorithms

Eqgn. (5) is replaced by

w(v;)—1

> ¥ > J*r;.t—p a(vg)

Yii(vjup)ely p'=0 | Vpli<t—p'+p-P<h;
Vi<t< P Yy, eVp

Sketch of Proof: An operation v;starting at t(v,) uses the corresponding resource at

time steps t with
t=7(v;))+p' —p-P
v p0<p <w() Al <t—p' +p-P<hy

Therefore, we obtain w(v)-1
Tt/ dpP
p'=0 Vpli<t—p'+p-P<h;

10-80

Dynamic Voltage Scaling

If we transform the DVS problem into an integer linear program optimization: we
can optimize the energy in case of dynamic voltage scaling.

Shows how one can consider binding in an ILP.

As an example, let us model a set of tasks with dependency constraints.

= We suppose that a task v, € V¢ can use one of the execution times w,(v;) ¥ k € Kand
corresponding energy e (v;). There are |K| different voltage levels.

= We suppose that there are deadlines d(v,) for each operation v,.

= We suppose that there are no resource constraints, i.e. all tasks can be executed in
parallel.

10-81

Dynamic Voltage Scaling

minimize: Yrex Yo;evs Yik - ek (i)
subject to: v € {0,1} Vu; € Vg, k€ K (1)
Y wik=1 VyeVg (2)

kEK
() — () 2 Y vk wi(v) V(v v;) € Eg
ke K
(3)
T(v;) + Y vk wp(v;) < d(v;)) Vv € Vg (4)
keK

10-82

Dynamic Voltage Scaling

minimize: Yier Xyevy Yik - ek(vi)

subject to: yir €{0,1} Vo€ Vg, ke K (1)
Yur=1 VYyeVyg (2)
kek
T(v5) —7(v:) = 3 wi we(vi) V(vi,v;) € Bg
kek
3)

() + Y vk wilv) < d(v;) Vo € Vg (4)
keK

10-83

Dynamic Voltage Scaling

Explanations:
* The objective functions just sums up all individual energies of operations.
= Eqn. (1) makes decision variables y, binary.

= Eqgn. (2) guarantees that exactly one implementation (voltage) k € K is
chosen for each operation v;.

= Egn. (3) implements the precedence constraints, where the actual
execution time is selected from the set of all available ones.

= Egn. (4) guarantees deadlines.

10-84

Chapter 8

= Not covered this semester.
= Not covered in exam.

= |finterested: Read

Embedded S_yslem
Design

Systems, and the Internet of Things

Autoren: Marwedel, Peter

» Zeige nachste Auflage

-rlélﬁbedded System Design

Embedded Systems Foundations of Cyber-Physical

10-85

Remember: What you got some time ago ...

10-86

What we told you: Be careful and please do not ...

10-87

Return the boards at the
embedded systems exam!

o

10-88

