
NETWORK CALCULUS

A Theory of Deterministic Queuing Systems for the Internet

JEAN-YVES LE BOUDEC

PATRICK THIRAN

Online Version of the Book Springer Verlag - LNCS 2050

Version May 10, 2004

2

A Annelies
A Joana, Maëlle, Audraine et Elias

A ma mère
—- JL

A mes parents
—- PT

Pour éviter les grumeaux
Qui encombrent les réseaux
Il fallait, c’est compliqué,
Maı̂triser les seaux percés

Branle-bas dans les campus
On pourra dorénavant

Calculer plus simplement
Grâce à l’algèbre Min-Plus

Foin des obscures astuces
Pour estimer les délais
Et la gigue des paquets

Place à “Network Calculus”

—- JL

vi

Summary of Changes

2002 Jan 14, JL Chapter 2: added a better coverage of GR nodes, in particular equivalence with service
curve. Fixed bug in Proposition 1.4.1

2002 Jan 16, JL Chapter 6: M. Andrews brought convincing proof that conjecture 6.3.1 is wrong. Re-
designed Chapter 6 to account for this. Removed redundancy between Section 2.4 and Chapter 6.
Added SETF to Section 2.4

2002 Feb 28, JL Bug fixes in Chapter 9
2002 July 5, JL Bug fixes in Chapter 6; changed format for a better printout on most usual printers.
2003 June 13, JL Added concatenation properties of non-FIFO GR nodes to Chapter 2. Major upgrade of

Chapter 7. Reorganized Chapter 7. Added new developments in Diff Serv. Added properties of PSRG
for non-FIFO nodes.

2003 June 25, PT Bug fixes in chapters 4 and 5.
2003 Sept 16, JL Fixed bug in proof of theorem 1.7.1, proposition 3. The bug was discovered and brought

to our attention by François Larochelle.
2004 Jan 7, JL Bug fix in Proposition 2.4.1 (ν > 1

h−1 instead of ν < 1
h−1)

2004, May 10, JL Typo fixed in Definition 1.2.4 (thanks to Richard Bradford)

Contents

Introduction xiii

I A First Course in Network Calculus 1

1 Network Calculus 3

1.1 Models for Data Flows . 3

1.1.1 Cumulative Functions, Discrete Time versus Continuous Time Models 3

1.1.2 Backlog and Virtual Delay . 5

1.1.3 Example: The Playout Buffer . 6

1.2 Arrival Curves . 7

1.2.1 Definition of an Arrival Curve . 7

1.2.2 Leaky Bucket and Generic Cell Rate Algorithm . 10

1.2.3 Sub-additivity and Arrival Curves . 14

1.2.4 Minimum Arrival Curve . 16

1.3 Service Curves . 18

1.3.1 Definition of Service Curve . 18

1.3.2 Classical Service Curve Examples . 20

1.4 Network Calculus Basics . 22

1.4.1 Three Bounds . 22

1.4.2 Are the Bounds Tight ? . 27

1.4.3 Concatenation . 28

1.4.4 Improvement of Backlog Bounds . 29

1.5 Greedy Shapers . 30

1.5.1 Definitions . 30

1.5.2 Input-Output Characterization of Greedy Shapers 31

1.5.3 Properties of Greedy Shapers . 33

1.6 Maximum Service Curve, Variable and Fixed Delay . 34

1.6.1 Maximum Service Curves . 34

1.6.2 Delay from Backlog . 38

1.6.3 Variable versus Fixed Delay . 39

vii

viii CONTENTS

1.7 Handling Variable Length Packets . 40

1.7.1 An Example of Irregularity Introduced by Variable Length Packets 40

1.7.2 The Packetizer . 41

1.7.3 A Relation between Greedy Shaper and Packetizer 45

1.7.4 Packetized Greedy Shaper . 48

1.8 Effective Bandwidth and Equivalent Capacity . 53

1.8.1 Effective Bandwidth of a Flow . 53

1.8.2 Equivalent Capacity . 54

1.8.3 Example: Acceptance Region for a FIFO Multiplexer 55

1.9 Proof of Theorem 1.4.5 . 56

1.10 Bibliographic Notes . 59

1.11 Exercises . 59

2 Application to the Internet 67

2.1 GPS and Guaranteed Rate Nodes . 67

2.1.1 Packet Scheduling . 67

2.1.2 GPS and a Practical Implementation (PGPS) . 68

2.1.3 Guaranteed Rate (GR) Nodes and the Max-Plus Approach 70

2.1.4 Concatenation of GR nodes . 72

2.1.5 Proofs . 73

2.2 The Integrated Services Model of the IETF . 75

2.2.1 The Guaranteed Service . 75

2.2.2 The Integrated Services Model for Internet Routers 75

2.2.3 Reservation Setup with RSVP . 76

2.2.4 A Flow Setup Algorithm . 78

2.2.5 Multicast Flows . 79

2.2.6 Flow Setup with ATM . 79

2.3 Schedulability . 79

2.3.1 EDF Schedulers . 80

2.3.2 SCED Schedulers [73] . 82

2.3.3 Buffer Requirements . 86

2.4 Application to Differentiated Services . 86

2.4.1 Differentiated Services . 86

2.4.2 An Explicit Delay Bound for EF . 87

2.4.3 Bounds for Aggregate Scheduling with Dampers 93

2.4.4 Static Earliest Time First (SETF) . 95

2.5 Bibliographic Notes . 97

2.6 Exercises . 97

CONTENTS ix

II Mathematical Background 101

3 Basic Min-plus and Max-plus Calculus 103

3.1 Min-plus Calculus . 103

3.1.1 Infimum and Minimum . 103

3.1.2 Dioid (R ∪ {+∞},∧,+) . 104

3.1.3 A Catalog of Wide-sense Increasing Functions . 105

3.1.4 Pseudo-inverse of Wide-sense Increasing Functions 108

3.1.5 Concave, Convex and Star-shaped Functions . 109

3.1.6 Min-plus Convolution . 110

3.1.7 Sub-additive Functions . 116

3.1.8 Sub-additive Closure . 118

3.1.9 Min-plus Deconvolution . 122

3.1.10 Representation of Min-plus Deconvolution by Time Inversion 125

3.1.11 Vertical and Horizontal Deviations . 128

3.2 Max-plus Calculus . 129

3.2.1 Max-plus Convolution and Deconvolution . 129

3.2.2 Linearity of Min-plus Deconvolution in Max-plus Algebra 129

3.3 Exercises . 130

4 Min-plus and Max-Plus System Theory 131

4.1 Min-Plus and Max-Plus Operators . 131

4.1.1 Vector Notations . 131

4.1.2 Operators . 133

4.1.3 A Catalog of Operators . 133

4.1.4 Upper and Lower Semi-Continuous Operators . 134

4.1.5 Isotone Operators . 135

4.1.6 Linear Operators . 136

4.1.7 Causal Operators . 139

4.1.8 Shift-Invariant Operators . 140

4.1.9 Idempotent Operators . 141

4.2 Closure of an Operator . 141

4.3 Fixed Point Equation (Space Method) . 144

4.3.1 Main Theorem . 144

4.3.2 Examples of Application . 146

4.4 Fixed Point Equation (Time Method) . 149

4.5 Conclusion . 150

x CONTENTS

III A Second Course in Network Calculus 153

5 Optimal Multimedia Smoothing 155

5.1 Problem Setting . 155

5.2 Constraints Imposed by Lossless Smoothing . 156

5.3 Minimal Requirements on Delays and Playback Buffer . 157

5.4 Optimal Smoothing Strategies . 158

5.4.1 Maximal Solution . 158

5.4.2 Minimal Solution . 158

5.4.3 Set of Optimal Solutions . 159

5.5 Optimal Constant Rate Smoothing . 159

5.6 Optimal Smoothing versus Greedy Shaping . 163

5.7 Comparison with Delay Equalization . 165

5.8 Lossless Smoothing over Two Networks . 168

5.8.1 Minimal Requirements on the Delays and Buffer Sizes for Two Networks 169

5.8.2 Optimal Constant Rate Smoothing over Two Networks 171

5.9 Bibliographic Notes . 172

6 Aggregate Scheduling 175

6.1 Introduction . 175

6.2 Transformation of Arrival Curve through Aggregate Scheduling 176

6.2.1 Aggregate Multiplexing in a Strict Service Curve Element 176

6.2.2 Aggregate Multiplexing in a FIFO Service Curve Element 177

6.2.3 Aggregate Multiplexing in a GR Node . 181

6.3 Stability and Bounds for a Network with Aggregate Scheduling 181

6.3.1 The Issue of Stability . 181

6.3.2 The Time Stopping Method . 182

6.4 Stability Results and Explicit Bounds . 185

6.4.1 The Ring is Stable . 186

6.4.2 Explicit Bounds for a Homogeneous ATM Network with Strong Source Rate Con-
ditions . 189

6.5 Bibliographic Notes . 194

6.6 Exercises . 195

7 Adaptive and Packet Scale Rate Guarantees 197

7.1 Introduction . 197

7.2 Limitations of the Service Curve and GR Node Abstractions 197

7.3 Packet Scale Rate Guarantee . 198

7.3.1 Definition of Packet Scale Rate Guarantee . 198

7.3.2 Practical Realization of Packet Scale Rate Guarantee 202

CONTENTS xi

7.3.3 Delay From Backlog . 202

7.4 Adaptive Guarantee . 203

7.4.1 Definition of Adaptive Guarantee . 203

7.4.2 Properties of Adaptive Guarantees . 204

7.4.3 PSRG and Adaptive Service Curve . 205

7.5 Concatenation of PSRG Nodes . 206

7.5.1 Concatenation of FIFO PSRG Nodes . 206

7.5.2 Concatenation of non FIFO PSRG Nodes . 207

7.6 Comparison of GR and PSRG . 209

7.7 Proofs . 210

7.7.1 Proof of Lemma 7.3.1 . 210

7.7.2 Proof of Theorem 7.3.2 . 211

7.7.3 Proof of Theorem 7.3.3 . 212

7.7.4 Proof of Theorem 7.3.4 . 212

7.7.5 Proof of Theorem 7.4.2 . 213

7.7.6 Proof of Theorem 7.4.3 . 214

7.7.7 Proof of Theorem 7.4.4 . 214

7.7.8 Proof of Theorem 7.4.5 . 215

7.7.9 Proof of Theorem 7.5.3 . 217

7.7.10 Proof of Proposition 7.5.2 . 221

7.8 Bibliographic Notes . 221

7.9 Exercises . 223

8 Time Varying Shapers 225

8.1 Introduction . 225

8.2 Time Varying Shapers . 225

8.3 Time Invariant Shaper with Initial Conditions . 227

8.3.1 Shaper with Non-empty Initial Buffer . 227

8.3.2 Leaky Bucket Shapers with Non-zero Initial Bucket Level 228

8.4 Time Varying Leaky-Bucket Shaper . 229

8.5 Bibliographic Notes . 230

9 Systems with Losses 231

9.1 A Representation Formula for Losses . 231

9.1.1 Losses in a Finite Storage Element . 231

9.1.2 Losses in a Bounded Delay Element . 233

9.2 Application 1: Bound on Loss Rate . 234

9.3 Application 2: Bound on Losses in Complex Systems . 235

9.3.1 Bound on Losses by Segregation between Buffer and Policer 235

xii CONTENTS

9.3.2 Bound on Losses in a VBR Shaper . 237

9.4 Skohorkhod’s Reflection Problem . 239

9.5 Bibliographic Notes . 242

INTRODUCTION

WHAT THIS BOOK IS ABOUT

Network Calculus is a set of recent developments that provide deep insights into flow problems encountered
in networking. The foundation of network calculus lies in the mathematical theory of dioids, and in partic-
ular, the Min-Plus dioid (also called Min-Plus algebra). With network calculus, we are able to understand
some fundamental properties of integrated services networks, window flow control, scheduling and buffer
or delay dimensioning.

This book is organized in three parts. Part I (Chapters 1 and 2) is a self contained, first course on network
calculus. It can be used at the undergraduate level or as an entry course at the graduate level. The prerequisite
is a first undergraduate course on linear algebra and one on calculus. Chapter 1 provides the main set of
results for a first course: arrival curves, service curves and the powerful concatenation results are introduced,
explained and illustrated. Practical definitions such as leaky bucket and generic cell rate algorithms are cast
in their appropriate framework, and their fundamental properties are derived. The physical properties of
shapers are derived. Chapter 2 shows how the fundamental results of Chapter 1 are applied to the Internet.
We explain, for example, why the Internet integrated services internet can abstract any router by a rate-
latency service curve. We also give a theoretical foundation to some bounds used for differentiated services.

Part II contains reference material that is used in various parts of the book. Chapter 3 contains all first level
mathematical background. Concepts such as min-plus convolution and sub-additive closure are exposed in
a simple way. Part I makes a number of references to Chapter 3, but is still self-contained. The role of
Chapter 3 is to serve as a convenient reference for future use. Chapter 4 gives advanced min-plus algebraic
results, which concern fixed point equations that are not used in Part I.

Part III contains advanced material; it is appropriate for a graduate course. Chapter 5 shows the application
of network calculus to the determination of optimal playback delays in guaranteed service networks; it ex-
plains how fundamental bounds for multimedia streaming can be determined. Chapter 6 considers systems
with aggregate scheduling. While the bulk of network calculus in this book applies to systems where sched-
ulers are used to separate flows, there are still some interesting results that can be derived for such systems.
Chapter 7 goes beyond the service curve definition of Chapter 1 and analyzes adaptive guarantees, as they
are used by the Internet differentiated services. Chapter 8 analyzes time varying shapers; it is an extension
of the fundamental results in Chapter 1 that considers the effect of changes in system parameters due to
adaptive methods. An application is to renegotiable reserved services. Lastly, Chapter 9 tackles systems
with losses. The fundamental result is a novel representation of losses in flow systems. This can be used to
bound loss or congestion probabilities in complex systems.

Network calculus belongs to what is sometimes called “exotic algebras” or “topical algebras”. This is a set
of mathematical results, often with high description complexity, that give insights into man-made systems

xiii

xiv INTRODUCTION

such as concurrent programs, digital circuits and, of course, communication networks. Petri nets fall into
this family as well. For a general discussion of this promising area, see the overview paper [35] and the
book [28].

We hope to convince many readers that there is a whole set of largely unexplored, fundamental relations that
can be obtained with the methods used in this book. Results such as “shapers keep arrival constraints” or
“pay bursts only once”, derived in Chapter 1 have physical interpretations and are of practical importance
to network engineers.

All results here are deterministic. Beyond this book, an advanced book on network calculus would explore
the many relations between stochastic systems and the deterministic relations derived in this book. The
interested reader will certainly enjoy the pioneering work in [28] and [11]. The appendix contains an index
of the terms defined in this book.

NETWORK CALCULUS, A SYSTEM THEORY FOR COMPUTER NETWORKS

In the rest of this introduction we highlight the analogy between network calculus and what is called “system
theory”. You may safely skip it if you are not familiar with system theory.

Network calculus is a theory of deterministic queuing systems found in computer networks. It can also
be viewed as the system theory that applies to computer networks. The main difference with traditional
system theory, as the one that was so successfully applied to design electronic circuits, is that here we
consider another algebra, where the operations are changed as follows: addition becomes computation of
the minimum, multiplication becomes addition.

Before entering the subject of the book itself, let us briefly illustrate some of the analogies and differences
between min-plus system theory, as applied in this book to communication networks, and traditional system
theory, applied to electronic circuits.

Let us begin with a very simple circuit, such as the RC cell represented in Figure 1. If the input signal is
the voltage x(t) ∈ R, then the output y(t) ∈ R of this simple circuit is the convolution of x by the impulse
response of this circuit, which is here h(t) = exp(−t/RC)/RC for t ≥ 0:

y(t) = (h⊗ x)(t) =
∫ t

0
h(t− s)x(s)ds.

Consider now a node of a communication network, which is idealized as a (greedy) shaper. A (greedy)
shaper is a device that forces an input flow x(t) to have an output y(t) that conforms to a given set of rates
according to a traffic envelope σ (the shaping curve), at the expense of possibly delaying bits in the buffer.
Here the input and output ‘signals’ are cumulative flow, defined as the number of bits seen on the data flow
in time interval [0, t]. These functions are non-decreasing with time t. Parameter t can be continuous or
discrete. We will see in this book that x and y are linked by the relation

y(t) = (σ ⊗ x)(t) = inf
s∈R such that 0≤s≤t

{σ(t− s) + x(s)} .

This relation defines the min-plus convolution between σ and x.

Convolution in traditional system theory is both commutative and associative, and this property allows to
easily extend the analysis from small to large scale circuits. For example, the impulse response of the circuit
of Figure 2(a) is the convolution of the impulse responses of each of the elementary cells:

h(t) = (h1 ⊗ h2)(t) =
∫ t

0
h1(t− s)h2(s)ds.

xv

���� ����

σ

� �

��

�

�

��������

(a)

(b)

Figure 1: An RC circuit (a) and a greedy shaper (b), which are two elementary linear systems in their respective
algebraic structures.

The same property applies to greedy shapers, as we will see in Chapter 1. The output of the second shaper
of Figure 2(b) is indeed equal to y(t) = (σ ⊗ x)(t), where

σ(t) = (σ1 ⊗ σ2)(t) = inf
s∈R such that 0≤s≤t

{σ1(t− s) + σ2(s)} .

This will lead us to understand the phenomenon known as “pay burst only once” already mentioned earlier
in this introduction.

���� ����

σ2

� �

��

��

��������

(a)

(b)

σ1

��

Figure 2: The impulse response of the concatenation of two linear circuit is the convolution of the individual impulse
responses (a), the shaping curve of the concatenation of two shapers is the convolution of the individual shaping curves
(b).

There are thus clear analogies between “conventional” circuit and system theory, and network calculus.
There are however important differences too.

A first one is the response of a linear system to the sum of the inputs. This is a very common situation, in
both electronic circuits (take the example of a linear low-pass filter used to clean a signal x(t) from additive

xvi INTRODUCTION

noise n(t), as shown in Figure 3(a)), and in computer networks (take the example a link of a buffered node
with output link capacity C, where one flow of interest x(t) is multiplexed with other background traffic
n(t), as shown in Figure 3(b)).

���� ����

	

�

�

�

����

(a)

(b)

���

�

�

�
���

�

�

�

�

���

�������

�

�

�������

Figure 3: The response ytot(t) of a linear circuit to the sum of two inputs x + n is the sum of the individual responses
(a), but the response ytot(t) of a greedy shaper to the aggregate of two input flows x+n is not the sum of the individual
responses (b).

Since the electronic circuit of Figure 3(a) is a linear system, the response to the sum of two inputs is the sum
of the individual responses to each signal. Call y(t) the response of the system to the pure signal x(t), yn(t)
the response to the noise n(t), and ytot(t) the response to the input signal corrupted by noise x(t) + n(t).
Then ytot(t) = y(t) + yn(t). This useful property is indeed exploited to design the optimal linear system
that will filter out noise as much as possible.

If traffic is served on the outgoing link as soon as possible in the FIFO order, the node of Figure 3(b) is
equivalent to a greedy shaper, with shaping curve σ(t) = Ct for t ≥ 0. It is therefore also a linear system,
but this time in min-plus algebra. This means that the response to the minimum of two inputs is the minimum
of the responses of the system to each input taken separately. However, this also mean that the response to
the sum of two inputs is no longer the sum of the responses of the system to each input taken separately,
because now x(t)+n(t) is a nonlinear operation between the two inputs x(t) and n(t): it plays the role of a
multiplication in conventional system theory. Therefore the linearity property does unfortunately not apply
to the aggregate x(t) + n(t). As a result, little is known on the aggregate of multiplexed flows. Chapter 6
will learn us some new results and problems that appear simple but are still open today.

In both electronics and computer networks, nonlinear systems are also frequently encountered. They are
however handled quite differently in circuit theory and in network calculus.

Consider an elementary nonlinear circuit, such as the BJT amplifier circuit with only one transistor, shown
in Figure 4(a). Electronics engineers will analyze this nonlinear circuit by first computing a static operating
point y� for the circuit, when the input x� is a fixed constant voltage (this is the DC analysis). Next they
will linearize the nonlinear element (i.e the transistor) around the operating point, to obtain a so-called small
signal model, which a linear model of impulse response h(t) (this is the AC analysis). Now xlin(t) =
x(t) − x� is a time varying function of time within a small range around x�, so that ylin(t) = y(t) − y�

is indeed approximately given by ylin(t) ≈ (h ⊗ xlin)(t). Such a model is shown on Figure 4(b). The
difficulty of a thorough nonlinear analysis is thus bypassed by restricting the input signal in a small range
around the operating point. This allows to use a linearized model whose accuracy is sufficient to evaluate
performance measures of interest, such as the gain of the amplifier.

xvii

����

(a)

�

���

�

����

(b)

�

�

���������������

β

���� ����

Network

Buffered
window flow
Controller

Π
���� �������

β

(d)(c)

Figure 4: An elementary nonlinear circuit (a) replaced by a (simplified) linear model for small signals (b), and a
nonlinear network with window flow control (c) replaced by a (worst-case) linear system (d).

In network calculus, we do not decompose inputs in a small range time-varying part and another large
constant part. We do however replace nonlinear elements by linear systems, but the latter ones are now a
lower bound of the nonlinear system. We will see such an example with the notion of service curve, in
Chapter 1: a nonlinear system y(t) = Π(x)(t) is replaced by a linear system ylin(t) = (β ⊗ x)(t), where β
denotes this service curve. This model is such that ylin(t) ≤ y(t) for all t ≥ 0, and all possible inputs x(t).
This will also allow us to compute performance measures, such as delays and backlogs in nonlinear systems.
An example is the window flow controller illustrated in Figure 4(c), which we will analyze in Chapter 4. A
flow x is fed via a window flow controller in a network that realizes some mapping y = Π(x). The window
flow controller limits the amount of data admitted in the network in such a way that the total amount of data
in transit in the network is always less than some positive number (the window size). We do not know the
exact mapping Π, we assume that we know one service curve β for this flow, so that we can replace the
nonlinear system of Figure 4(c) by the linear system of Figure 4(d), to obtain deterministic bounds on the
end-to-end delay or the amount of data in transit.

The reader familiar with traditional circuit and system theory will discover many other analogies and differ-
ences between the two system theories, while reading this book. We should insist however that no prerequi-
site in system theory is needed to discover network calculus as it is exposed in this book.

ACKNOWLEDGEMENT

We gratefully acknowledge the pioneering work of Cheng-Shang Chang and René Cruz; our discussions
with them have influenced this text. We thank Anna Charny, Silvia Giordano, Olivier Verscheure, Frédéric

xviii INTRODUCTION

Worm, Jon Bennett, Kent Benson, Vicente Cholvi, William Courtney, Juan Echaguë, Felix Farkas, Gérard
Hébuterne, Milan Vojnović and Zhi-Li Zhang for the fruitful collaboration. The interaction with Rajeev
Agrawal, Matthew Andrews, François Baccelli, Guillaume Urvoy and Lothar Thiele is acknowledged with
thanks. We are grateful to Holly Cogliati for helping with the preparation of the manuscript.

PART I

A FIRST COURSE IN NETWORK

CALCULUS

1

CHAPTER 1

NETWORK CALCULUS

In this chapter we introduce the basic network calculus concepts of arrival, service curves and shapers. The
application given in this chapter concerns primarily networks with reservation services such as ATM or the
Internet integrated services (“Intserv”). Applications to other settings are given in the following chapters.

We begin the chapter by defining cumulative functions, which can handle both continuous and discrete time
models. We show how their use can give a first insight into playout buffer issues, which will be revisited
with more detail in Chapter 5. Then the concepts of Leaky Buckets and Generic Cell Rate algorithms are
described in the appropriate framework, of arrival curves. We address in detail the most important arrival
curves: piecewise linear functions and stair functions. Using the stair functions, we clarify the relation
between spacing and arrival curve.

We introduce the concept of service curve as a common model for a variety of network nodes. We show that
all schedulers generally proposed for ATM or the Internet integrated services can be modeled by a family
of simple service curves called the rate-latency service curves. Then we discover physical properties of
networks, such as “pay bursts only once” or “greedy shapers keep arrival constraints”. We also discover that
greedy shapers are min-plus, time invariant systems. Then we introduce the concept of maximum service
curve, which can be used to account for constant delays or for maximum rates. We illustrate all along
the chapter how the results can be used for practical buffer dimensioning. We give practical guidelines for
handling fixed delays such as propagation delays. We also address the distortions due to variability in packet
size.

1.1 MODELS FOR DATA FLOWS

1.1.1 CUMULATIVE FUNCTIONS, DISCRETE TIME VERSUS CONTINUOUS TIME MOD-
ELS

It is convenient to describe data flows by means of the cumulative function R(t), defined as the number of
bits seen on the flow in time interval [0, t]. By convention, we take R(0) = 0, unless otherwise specified.
Function R is always wide-sense increasing, that is, it belongs to the space F defined in Section 3.1.3
on Page 105. We can use a discrete or continuous time model. In real systems, there is always a minimum
granularity (bit, word, cell or packet), therefore discrete time with a finite set of values forR(t) could always
be assumed. However, it is often computationally simpler to consider continuous time, with a functionR that
may be continuous or not. If R(t) is a continuous function, we say that we have a fluid model. Otherwise,

3

4 CHAPTER 1. NETWORK CALCULUS

we take the convention that the function is either right or left-continuous (this makes little difference in
practice).1 Figure 1.1.1 illustrates these definitions.

CONVENTION: A flow is described by a wide-sense increasing functionR(t); unless otherwise specified,
in this book, we consider the following types of models:

• discrete time: t ∈ N = {0, 1, 2, 3, ...}
• fluid model: t ∈ R+ = [0,+∞) and R is a continuous function
• general, continuous time model: t ∈ R+ and R is a left- or right-continuous function

� � � � � � � � 	 �
 � � � � � � � �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� � � � � � � � 	 �
 � � � � � � � �

� � �

� � �

� � � � � � � � 	 �
 � � � � � � � �

� �

� �

� �

� �

� �

� � � �

� �

� � � � � �

� � �

� � � �
� � � �

Figure 1.1: Examples of Input and Output functions, illustrating our terminology and convention. R1 and R∗
1 show

a continuous function of continuous time (fluid model); we assume that packets arrive bit by bit, for a duration of one
time unit per packet arrival. R2 and R∗

2 show continuous time with discontinuities at packet arrival times (times 1, 4, 8,
8.6 and 14); we assume here that packet arrivals are observed only when the packet has been fully received; the dots
represent the value at the point of discontinuity; by convention, we assume that the function is left- or right-continuous.
R3 and R∗

3 show a discrete time model; the system is observed only at times 0, 1, 2...

If we assume that R(t) has a derivative dR
dt = r(t) such that R(t) =

∫ t
0 r(s)ds (thus we have a fluid model),

then r is called the rate function. Here, however, we will see that it is much simpler to consider cumulative
functions such as R rather than rate functions. Contrary to standard algebra, with min-plus algebra we do
not need functions to have “nice” properties such as having a derivative.

It is always possible to map a continuous time modelR(t) to a discrete time model S(n), n ∈ N by choosing
a time slot δ and sampling by

1It would be nice to stick to either left- or right-continuous functions. However, depending on the model, there is no best choice:
see Section 1.2.1 and Section 1.7

1.1. MODELS FOR DATA FLOWS 5

S(n) = R(nδ) (1.1)

In general, this results in a loss of information. For the reverse mapping, we use the following convention.
A continuous time model can be derived from S(n), n ∈ N by letting2

R′(t) = S(t
δ

) (1.2)

The resulting function R′ is always left-continuous, as we already required. Figure 1.1.1 illustrates this
mapping with δ = 1, S = R3 and R′ = R2.

Thanks to the mapping in Equation (1.1), any result for a continuous time model also applies to discrete
time. Unless otherwise stated, all results in this book apply to both continuous and discrete time. Discrete
time models are generally used in the context of ATM; in contrast, handling variable size packets is usually
done with a continuous time model (not necessarily fluid). Note that handling variable size packets requires
some specific mechanisms, described in Section 1.7.

Consider now a system S, which we view as a blackbox; S receives input data, described by its cumulative
function R(t), and delivers the data after a variable delay. Call R∗(t) the output function, namely, the
cumulative function at the output of system S. System S might be, for example, a single buffer served at a
constant rate, a complex communication node, or even a complete network. Figure 1.1.1 shows input and
output functions for a single server queue, where every packet takes exactly 3 time units to be served. With
output function R∗

1 (fluid model) the assumption is that a packet can be served as soon as a first bit has
arrived (cut-through assumption), and that a packet departure can be observed bit by bit, at a constant rate.
For example, the first packet arrives between times 1 and 2, and leaves between times 1 and 4. With output
function R∗

2 the assumption is that a packet is served as soon as it has been fully received and is considered
out of the system only when it is fully transmitted (store and forward assumption). Here, the first packet
arrives immediately after time 1, and leaves immediately after time 4. With output function R∗

3 (discrete
time model), the first packet arrives at time 2 and leaves at time 5.

1.1.2 BACKLOG AND VIRTUAL DELAY

From the input and output functions, we derive the two following quantities of interest.

DEFINITION 1.1.1 (BACKLOG AND DELAY). For a lossless system:

• The backlog at time t is R(t) −R∗(t).
• The virtual delay at time t is

d(t) = inf {τ ≥ 0 : R(t) ≤ R∗(t+ τ)}

The backlog is the amount of bits that are held inside the system; if the system is a single buffer, it is the
queue length. In contrast, if the system is more complex, then the backlog is the number of bits “in transit”,
assuming that we can observe input and output simultaneously. The virtual delay at time t is the delay
that would be experienced by a bit arriving at time t if all bits received before it are served before it. In
Figure 1.1.1, the backlog, called x(t), is shown as the vertical deviation between input and output functions.
The virtual delay is the horizontal deviation. If the input and output function are continuous (fluid model),
then it is easy to see that R∗ (t+ d(t)) = R(t), and that d(t) is the smallest value satisfying this equation.

In Figure 1.1.1, we see that the values of backlog and virtual delay slightly differ for the three models. Thus
the delay experienced by the last bit of the first packet is d(2) = 2 time units for the first subfigure; in
contrast, it is equal to d(1) = 3 time units on the second subfigure. This is of course in accordance with the

2�x� (“ceiling of x”) is defined as the smallest integer ≥ x; for example �2.3� = 3 and �2� = 2

6 CHAPTER 1. NETWORK CALCULUS

different assumptions made for each of the models. Similarly, the delay for the fourth packet on subfigure
2 is d(8.6) = 5.4 time units, which corresponds to 2.4 units of waiting time and 3 units of service time. In
contrast, on the third subfigure, it is equal to d(9) = 6 units; the difference is the loss of accuracy resulting
from discretization.

1.1.3 EXAMPLE: THE PLAYOUT BUFFER

Cumulative functions are a powerful tool for studying delays and buffers. In order to illustrate this, consider
the simple playout buffer problem that we describe now. Consider a packet switched network that carries
bits of information from a source with a constant bit rate r (Figure 1.2) as is the case for example, with
circuit emulation. We take a fluid model, as illustrated in Figure 1.2. We have a first system S, the network,
with input function R(t) = rt. The network imposes some variable delay, because of queuing points,
therefore the output R∗ does not have a constant rate r. What can be done to recreate a constant bit stream
? A standard mechanism is to smooth the delay variation in a playout buffer. It operates as follows. When

� � � � � � � � � � � � �

� � � 	

 � � � � � � � � � � � � � � � �

� � � 	

 � � �

� � � �� � � � � � � � � � � � � �� �
� �
� � �
� �
� � �
� �
 �
� � �
� �
� �

� �
� �
� � �
� � �
� � �
� �
 �
� � �

� �
�� � � �

� � � � � � � � � � � � �

� � �

� �

� � � � �

� � � �

Figure 1.2: A Simple Playout Buffer Example

the first bit of data arrives, at time dr(0), where dr(0) = limt→0,t>0 d(t) is the limit to the right of function
d3, it is stored in the buffer until a fixed time ∆ has elapsed. Then the buffer is served at a constant rate r
whenever it is not empty. This gives us a second system S ′, with input R∗ and output S.

Let us assume that the network delay variation is bounded by ∆. This implies that for every time t, the
virtual delay (which is the real delay in that case) satisfies

−∆ ≤ d(t) − dr(0) ≤ ∆

Thus, since we have a fluid model, we have

r(t− dr(0) − ∆) ≤ R∗(t) ≤ r(t− dr(0) + ∆)

which is illustrated in the figure by the two lines (D1) and (D2) parallel to R(t). The figure suggests
that, for the playout buffer S ′ the input function R∗ is always above the straight line (D2), which means
that the playout buffer never underflows. This suggests in turn that the output function S(t) is given by
S(t) = r(t− dr(0) − ∆).

Formally, the proof is as follows. We proceed by contradiction. Assume the buffer starves at some time,
and let t1 be the first time at which this happens. Clearly the playout buffer is empty at time t1, thus
R∗(t1) = S(t1). There is a time interval [t1, t1 + ε] during which the number of bits arriving at the playout
buffer is less than rε (see Figure 1.2). Thus, d(t1 + ε) > dr(0) + ∆ which is not possible. Secondly, the

3It is the virtual delay for a hypothetical bit that would arrive just after time 0. Other authors often use the notation d(0+)

1.2. ARRIVAL CURVES 7

backlog in the buffer at time t is equal to R∗(t) − S(t), which is bounded by the vertical deviation between
(D1) and (D2), namely, 2r∆.

We have thus shown that the playout buffer is able to remove the delay variation imposed by the network.
We summarize this as follows.

PROPOSITION 1.1.1. Consider a constant bit rate stream of rate r, modified by a network that imposes
a variable delay variation and no loss. The resulting flow is put into a playout buffer, which operates by
delaying the first bit of the flow by ∆, and reading the flow at rate r. Assume that the delay variation
imposed by the network is bounded by ∆, then

1. the playout buffer never starves and produces a constant output at rate r;
2. a buffer size of 2∆r is sufficient to avoid overflow.

We study playout buffers in more details in Chapter 5, using the network calculus concepts further intro-
duced in this chapter.

1.2 ARRIVAL CURVES

1.2.1 DEFINITION OF AN ARRIVAL CURVE

Assume that we want to provide guarantees to data flows. This requires some specific support in the network,
as explained in Section 1.3; as a counterpart, we need to limit the traffic sent by sources. With integrated
services networks (ATM or the integrated services internet), this is done by using the concept of arrival
curve, defined below.

DEFINITION 1.2.1 (ARRIVAL CURVE). Given a wide-sense increasing function α defined for t ≥ 0 we say
that a flow R is constrained by α if and only if for all s ≤ t:

R(t) −R(s) ≤ α(t− s)

We say that R has α as an arrival curve, or also that R is α-smooth.

Note that the condition is over a set of overlapping intervals, as Figure 1.3 illustrates.

� � �

� � � � � �

� � � �

� � � �

� � �

� � �

�

� � � � �

Figure 1.3: Example of Constraint by arrival curve, showing a cumulative function R(t) constrained by the arrival curve
α(t).

8 CHAPTER 1. NETWORK CALCULUS

AFFINE ARRIVAL CURVES: For example, if α(t) = rt, then the constraint means that, on any time
window of width τ , the number of bits for the flow is limited by rτ . We say in that case that the flow is peak
rate limited. This occurs if we know that the flow is arriving on a link whose physical bit rate is limited by
r b/s. A flow where the only constraint is a limit on the peak rate is often (improperly) called a “constant bit
rate” (CBR) flow, or “deterministic bit rate” (DBR) flow.

Having α(t) = b, with b a constant, as an arrival curve means that the maximum number of bits that may
ever be sent on the flow is at most b.

More generally, because of their relationship with leaky buckets, we will often use affine arrival curves γr,b,
defined by: γr,b(t) = rt+b for t > 0 and 0 otherwise. Having γr,b as an arrival curve allows a source to send
b bits at once, but not more than r b/s over the long run. Parameters b and r are called the burst tolerance (in
units of data) and the rate (in units of data per time unit). Figure 1.3 illustrates such a constraint.

STAIR FUNCTIONS AS ARRIVAL CURVES: In the context of ATM, we also use arrival curves of the
form kvT,τ , where vT,τ is the stair functions defined by vT,τ (t) = 	 t+τ

T
 for t > 0 and 0 otherwise (see
Section 3.1.3 for an illustration). Note that vT,τ (t) = vT,0(t + τ), thus vT,τ results from vT,0 by a time
shift to the left. Parameter T (the “interval”) and τ (the “tolerance”) are expressed in time units. In order
to understand the use of vT,τ , consider a flow that sends packets of a fixed size, equal to k unit of data
(for example, an ATM flow). Assume that the packets are spaced by at least T time units. An example
is a constant bit rate voice encoder, which generates packets periodically during talk spurts, and is silent
otherwise. Such a flow has kvT,0 as an arrival curve.

Assume now that the flow is multiplexed with some others. A simple way to think of this scenario is to
assume that the packets are put into a queue, together with other flows. This is typically what occurs at a
workstation, in the operating system or at the ATM adapter. The queue imposes a variable delay; assume it
can be bounded by some value equal to τ time units. We will see in the rest of this chapter and in Chapter 2
how we can provide such bounds. Call R(t) the input function for the flow at the multiplexer, and R∗(t) the
output function. We have R∗(s) ≤ R(s− τ), from which we derive:

R∗(t) −R∗(s) ≤ R(t) −R(s− τ) ≤ kvT,0(t− s+ τ) = kvT,τ (t− s)

Thus R∗ has kvT,τ as an arrival curve. We have shown that a periodic flow, with period T , and packets of
constant size k, that suffers a variable delay ≤ τ , has kvT,τ as an arrival curve. The parameter τ is often
called the “one-point cell delay variation”, as it corresponds to a deviation from a periodic flow that can be
observed at one point.

In general, function vT,τ can be used to express minimum spacing between packets, as the following propo-
sition shows.

PROPOSITION 1.2.1 (SPACING AS AN ARRIVAL CONSTRAINT). Consider a flow, with cumulative function
R(t), that generates packets of constant size equal to k data units, with instantaneous packet arrivals.
Assume time is discrete or time is continuous and R is left-continuous. Call tn the arrival time for the nth
packet. The following two properties are equivalent:

1. for all m,n, tm+n − tm ≥ nT − τ
2. the flow has kvT,τ as an arrival curve

The conditions on packet size and packet generation mean that R(t) has the form nk, with n ∈ N. The
spacing condition implies that the time interval between two consecutive packets is ≥ T − τ , between a
packet and the next but one is ≥ 2T − τ , etc.

PROOF: Assume that property 1 holds. Consider an arbitrary interval]s, t], and call n the number of
packet arrivals in the interval. Say that these packets are numbered m+ 1, . . . ,m+ n, so that s < tm+1 ≤

1.2. ARRIVAL CURVES 9

. . . ≤ tm+n ≤ t, from which we have

t− s > tm+n − tm+1

Combining with property 1, we get
t− s > (n− 1)T − τ

From the definition of vT,τ it follows that vT,τ (t− s) ≥ n. Thus R(t)−R(s) ≤ kvT,τ (t− s), which shows
the first part of the proof.

Conversely, assume now that property 2 holds. If time is discrete, we convert the model to continuous time
using the mapping in Equation 1.2, thus we can consider that we are in the continuous time case. Consider
some arbitrary integers m,n; for all ε > 0, we have, under the assumption in the proposition:

R(tm+n + ε) −R(tm) ≥ (n+ 1)k

thus, from the definition of vT,τ ,
tm+n − tm + ε > nT − τ

This is true for all ε > 0, thus tm+n − tm ≥ nT − τ .

In the rest of this section we clarify the relationship between arrival curve constraints defined by affine and
by stair functions. First we need a technical lemma, which amounts to saying that we can always change an
arrival curve to be left-continuous.

LEMMA 1.2.1 (REDUCTION TO LEFT-CONTINUOUS ARRIVAL CURVES). Consider a flow R(t) and a wide
sense increasing function α(t), defined for t ≥ 0. Assume that R is either left-continuous, or right-
continuous. Denote with αl(t) the limit to the left of α at t (this limit exists at every point because α is
wide sense increasing); we have αl(t) = sups<t α(s). If α is an arrival curve for R, then so is αl.

PROOF: Assume first that R is left-continuous. For some s < t, let tn be a sequence of increasing
times converging towards t, with s < tn ≤ t. We have R(tn) − R(s) ≤ α(tn − s) ≤ αl(t − s). Now
limn→+∞R(tn) = R(t) since we assumed that R is left-continuous. Thus R(t) −R(s) ≤ αl(t− s).

If in contrast R is right-continuous, consider a sequence sn converging towards s from above. We have
similarlyR(t)−R(sn) ≤ α(t−sn) ≤ αl(t−s) and limn→+∞R(sn) = R(s), thusR(t)−R(s) ≤ αl(t−s)
as well.

Based on this lemma, we can always reduce an arrival curve to be left-continuous4. Note that γr,b and vT,τ

are left-continuous. Also remember that, in this book, we use the convention that cumulative functions such
as R(t) are left continuous; this is a pure convention, we might as well have chosen to consider only right-
continuous cumulative functions. In contrast, an arrival curve can always be assumed to be left-continuous,
but not right-continuous.

In some cases, there is equivalence between a constraint defined by γr,b and vT,τ . For example, for an ATM
flow (namely, a flow where every packet has a fixed size equal to one unit of data) a constraint γr,b with
r = 1

T and b = 1 is equivalent to sending one packet every T time units, thus is equivalent to a constraint
by the arrival curve vT,0. In general, we have the following result.

PROPOSITION 1.2.2. Consider either a left- or right- continuous flow R(t), t ∈ R+, or a discrete time flow
R(t), t ∈ N, that generates packets of constant size equal to k data units, with instantaneous packet arrivals.
For some T and τ , let r = k

T and b = k(τ
T + 1). It is equivalent to say that R is constrained by γr,b or by

kvT,τ .

4If we consider αr(t), the limit to the right of α at t, then α ≤ αr thus αr is always an arrival curve, however it is not better
than α.

10 CHAPTER 1. NETWORK CALCULUS

PROOF: Since we can map any discrete time flow to a left-continuous, continuous time flow, it is suffi-
cient to consider a left-continuous flow R(t), t ∈ R+. Also, by changing the unit of data to the size of one
packet, we can assume without loss of generality that k = 1. Note first, that with the parameter mapping in
the proposition, we have vT,τ ≤ γr,b, which shows that if vT,τ is an arrival curve for R, then so is γr,b.

Conversely, assume now thatR has γr,b as an arrival curve. Then for all s ≤ t, we haveR(t)−R(s) ≤ rt+b,
and since R(t)−R(s) ∈ N, this implies R(t)−R(s) ≤ �rt+ b�, Call α(t) the right handside in the above
equation and apply Lemma 1.2.1. We have αl(t) = 	rt+ b− 1
 = vT,τ (t).

Note that the equivalence holds if we can assume that the packet size is constant and equal to the step size
in the constraint kvT,τ . In general, the two families of arrival curve do not provide identical constraints. For
example, consider an ATM flow, with packets of size 1 data unit, that is constrained by an arrival curve of
the form kvT,τ , for some k > 1. This flow might result from the superposition of several ATM flows. You
can convince yourself that this constraint cannot be mapped to a constraint of the form γr,b. We will come
back to this example in Section 1.4.1.

1.2.2 LEAKY BUCKET AND GENERIC CELL RATE ALGORITHM

Arrival curve constraints find their origins in the concept of leaky bucket and generic cell rate algorithms,
which we describe now. We show that leaky buckets correspond to affine arrival curves γr,b, while the
generic cell rate algorithm corresponds to stair functions vT,τ . For flows of fixed size packets, such as ATM
cells, the two are thus equivalent.

DEFINITION 1.2.2 (LEAKY BUCKET CONTROLLER). A Leaky Bucket Controller is a device that analyzes
the data on a flow R(t) as follows. There is a pool (bucket) of fluid of size b. The bucket is initially empty.
The bucket has a hole and leaks at a rate of r units of fluid per second when it is not empty.

Data from the flowR(t) has to pour into the bucket an amount of fluid equal to the amount of data. Data that
would cause the bucket to overflow is declared non-conformant, otherwise the data is declared conformant.

Figure 1.2.2 illustrates the definition. Fluid in the leaky bucket does not represent data, however, it is counted
in the same unit as data.

Data that is not able to pour fluid into the bucket is said to be “non-conformant” data. In ATM systems,
non-conformant data is either discarded, tagged with a low priority for loss (“red” cells), or can be put in a
buffer (buffered leaky bucket controller). With the Integrated Services Internet, non-conformant data is in
principle not marked, but simply passed as best effort traffic (namely, normal IP traffic).

� � � �

� � � �

�

�

� � � �

� � � � � � � � 	 �
 � � � � � � � �

� �

� �

� �

� �

� �
� � � � �� � �

� � � �

Figure 1.4: A Leaky Bucket Controller. The second part of the figure shows (in grey) the level of the bucket x(t) for a
sample input, with r = 0.4 kbits per time unit and b = 1.5 kbits. The packet arriving at time t = 8.6 is not conformant,
and no fluid is added to the bucket. If b would be equal to 2 kbits, then all packets would be conformant.

1.2. ARRIVAL CURVES 11

We want now to show that a leaky bucket controller enforces an arrival curve constraint equal to γr,b. We
need the following lemma.

LEMMA 1.2.2. Consider a buffer served at a constant rate r. Assume that the buffer is empty at time 0. The
input is described by the cumulative function R(t). If there is no overflow during [0, t], the buffer content at
time t is given by

x(t) = sup
s:s≤t

{R(t) −R(s) − r(t− s)}

PROOF: The lemma can be obtained as a special case of Corollary 1.5.2 on page 32, however we give
here a direct proof. First note that for all s such that s ≤ t, (t− s)r is an upper bound on the number of bits
output in]s, t], therefore:

R(t) −R(s) − x(t) + x(s) ≤ (t− s)r

Thus
x(t) ≥ R(t) −R(s) + x(s) − (t− s)r ≥ R(t) −R(s) − (t− s)r

which proves that x(t) ≥ sups:s≤t{R(t) −R(s) − r(t− s)}.

Conversely, call t0 the latest time at which the buffer was empty before time t:

t0 = sup{s : s ≤ t, x(s) = 0}

(If x(t) > 0 then t0 is the beginning of the busy period at time t). During]t0, t], the queue is never empty,
therefore it outputs bit at rate r, and thus

x(t) = x(t0) +R(t) −R(t0) − (t− t0)r (1.3)

We assume that R is left-continuous (otherwise the proof is a little more complex); thus x(t0) = 0 and thus
x(t) ≤ sups:s≤t{R(t) −R(s) − r(t− s)}
Now the content of a leaky bucket behaves exactly like a buffer served at rate r, and with capacity b. Thus,
a flow R(t) is conformant if and only if the bucket content x(t) never exceeds b. From Lemma 1.2.2, this
means that

sup
s:s≤t

{R(t) −R(s) − r(t− s)} ≤ b

which is equivalent to
R(t) −R(s) ≤ r(t− s) + b

for all s ≤ t. We have thus shown the following.

PROPOSITION 1.2.3. A leaky bucket controller with leak rate r and bucket size b forces a flow to be con-
strained by the arrival curve γr,b, namely:

1. the flow of conformant data has γr,b as an arrival curve;
2. if the input already has γr,b as an arrival curve, then all data is conformant.

We will see in Section 1.4.1 a simple interpretation of the leaky bucket parameters, namely: r is the mini-
mum rate required to serve the flow, and b is the buffer required to serve the flow at a constant rate.

Parallel to the concept of leaky bucket is the Generic Cell Rate Algorithm (GCRA), used with ATM.

DEFINITION 1.2.3 (GCRA (T, τ)). The Generic Cell Rate Algorithm (GCRA) with parameters (T, τ) is
used with fixed size packets, called cells, and defines conformant cells as follows. It takes as input a cell
arrival time t and returns result. It has an internal (static) variable tat (theoretical arrival time).

12 CHAPTER 1. NETWORK CALCULUS

• initially, tat = 0
• when a cell arrives at time t, then

if (t < tat - tau)
result = NON-CONFORMANT;

else {
tat = max (t, tat) + T;
result = CONFORMANT;
}

Table 1.1 illustrate the definition of GCRA. It illustrates that 1
T is the long term rate that can be sustained

by the flow (in cells per time unit); while τ is a tolerance that quantifies how early cells may arrive with
respect to an ideal spacing of T between cells. We see on the first example that cells may be early by 2 time
units (cells arriving at times 18 to 48), however this may not be cumultated, otherwise the rate of 1

T would
be exceeded (cell arriving at time 57).

arrival time 0 10 18 28 38 48 57
tat before arrival 0 10 20 30 40 50 60

result c c c c c c non-c

arrival time 0 10 15 25 35
tat before arrival 0 10 20 20 30

result c c non-c c c

Table 1.1: Examples for GCRA(10,2). The table gives the cell arrival times, the value of the tat internal variable just
before the cell arrival, and the result for the cell (c = conformant, non-c = non-conformant).

In general, we have the following result, which establishes the relationship between GCRA and the stair
functions vT,τ .

PROPOSITION 1.2.4. Consider a flow, with cumulative function R(t), that generates packets of constant
size equal to k data units, with instantaneous packet arrivals. Assume time is discrete or time is continuous
and R is left-continuous. The following two properties are equivalent:

1. the flow is conformant to GCRA(T, τ)
2. the flow has (k vT,τ) as an arrival curve

PROOF: The proof uses max-plus algebra. Assume that property 1 holds. Denote with θn the value of
tat just after the arrival of the nth packet (or cell), and by convention θ0 = 0. Also call tn the arrival
time of the nth packet. From the definition of the GCRA we have θn = max(tn, θn−1) + T . We write this
equation for all m ≤ n, using the notation ∨ for max. The distributivity of addition with respect to ∨ gives:⎧⎪⎪⎨⎪⎪⎩

θn = (θn−1 + T) ∨ (tn + T)
θn−1 + T = (θn−2 + 2T) ∨ (tn−1 + 2T)
. . .
θ1 + (n− 1)T = (θ0 + nT) ∨ (t1 + nT)

Note that (θ0 + nT) ∨ (t1 + nT) = t1 + nT because θ0 = 0 and t1 ≥ 0, thus the last equation can be
simplified to θ1 +(n−1)T = t1 +nT . Now the iterative substitution of one equation into the previous one,
starting from the last one, gives

θn = (tn + T) ∨ (tn−1 + 2T) ∨ . . . ∨ (t1 + nT) (1.4)

1.2. ARRIVAL CURVES 13

Now consider the (m + n)th arrival, for some m,n ∈ N, with m ≥ 1. By property 1, the packet is
conformant, thus

tm+n ≥ θm+n−1 − τ (1.5)

Now from Equation (1.4), θm+n−1 ≥ tj + (m + n − j)T for all 1 ≤ j ≤ m + n − 1. For j = m, we
obtain θm+n−1 ≥ tm + nT . Combining this with Equation (1.5), we have tm+n ≥ tm + nT − τ . With
proposition 1.2.1, this shows property 2.

Conversely, assume now that property 2 holds. We show by induction on n that the nth packet is conformant.
This is always true for n = 1. Assume it is true for all m ≤ n. Then, with the same reasoning as above,
Equation (1.4) holds for n. We rewrite it as θn = max1≤j≤n{tj+(n−j+1)T}. Now from proposition 1.2.1,
tn+1 ≥ tj +(n−j+1)T −τ for all 1 ≤ j ≤ n, thus tn+1 ≥ max1≤j≤n{tj +(n−j+1)T}−τ . Combining
the two, we find that tn+1 ≥ θn − τ , thus the (n+ 1)th packet is conformant.

Note the analogy between Equation (1.4) and Lemma 1.2.2. Indeed, from proposition 1.2.2, for packets of
constant size, there is equivalence between arrival constraints by affine functions γr,b and by stair functions
vT,τ . This shows the following result.

COROLLARY 1.2.1. For a flow with packets of constant size, satisfying the GCRA(T, τ) is equivalent to
satisfying a leaky bucket controller, with rate r and burst tolerance b given by:

b = (
τ

T
+ 1)δ

r =
δ

T

In the formulas, δ is the packet size in units of data.

The corollary can also be shown by a direct equivalence of the GCRA algorithm to a leaky bucket controller.

Take the ATM cell as unit of data. The results above show that for an ATM cell flow, being conformant to
GCRA(T, τ) is equivalent to having vT,τ as an arrival curve. It is also equivalent to having γr,b as an arrival
curve, with r = 1

T and b = τ
T + 1.

Consider a family of I leaky bucket controllers (or GCRAs), with parameters ri, bi, for 1 ≤ i ≤ I . If we
apply all of them in parallel to the same flow, then the conformant data is data that is conformant for each
of the controllers in isolation. The flow of conformant data has as an arrival curve

α(t) = min
1≤i≤I

(γri,bi(t)) = min
1≤i≤I

(rit+ bi)

It can easily be shown that the family of arrival curves that can be obtained in this way is the set of concave,
piecewise linear functions, with a finite number of pieces. We will see in Section 1.5 some examples of
functions that do not belong to this family.

APPLICATION TO ATM AND THE INTERNET Leaky buckets and GCRA are used by standard bodies to
define conformant flows in Integrated Services Networks. With ATM, a constant bit rate connection (CBR)
is defined by one GCRA (or equivalently, one leaky bucket), with parameters (T, τ). T is called the ideal
cell interval, and τ is called the Cell Delay Variation Tolerance (CDVT). Still with ATM, a variable bit rate
(VBR) connection is defined as one connection with an arrival curve that corresponds to 2 leaky buckets
or GCRA controllers. The Integrated services framework of the Internet (Intserv) uses the same family of
arrival curves, such as

α(t) = min(M + pt, rt+ b) (1.6)

where M is interpreted as the maximum packet size, p as the peak rate, b as the burst tolearance, and r as
the sustainable rate (Figure 1.5). In Intserv jargon, the 4-uple (p,M, r, b) is also called a T-SPEC (traffic
specification).

14 CHAPTER 1. NETWORK CALCULUS

� � � � � �

� � � � � �

�

�

Figure 1.5: Arrival curve for ATM VBR and for Intserv flows

1.2.3 SUB-ADDITIVITY AND ARRIVAL CURVES

In this Section we discover the fundamental relationship between min-plus algebra and arrival curves. Let
us start with a motivating example.

Consider a flow R(t) ∈ N with t ∈ N; for example the flow is an ATM cell flow, counted in cells. Time is
discrete to simplify the discussion. Assume that we know that the flow is constrained by the arrival curve
3v10,0; for example, the flow is the superposition of 3 CBR connections of peak rate 0.1 cell per time unit
each. Assume in addition that we know that the flow arrives at the point of observation over a link with a
physical characteristic of 1 cell per time unit. We can conclude that the flow is also constrained by the arrival
curve v1,0. Thus, obviously, it is constrained by α1 = min(3v10,0, v1,0). Figure 1.6 shows the function α1.

� � � � �

� � � � � � � � �

�

�

�

� � � � �

� � � � � � � � �

�

�

�

Figure 1.6: The arrival curve α1 = min(3v10,0, v1,0) on the left, and its sub-additive closure (“good” function) ᾱ1 on the
right. Time is discrete, lines are put for ease of reading.

Now the arrival curve α1 tells us that R(10) ≤ 3 and R(11) ≤ 6. However, since there can arrive at most 1
cell per time unit , we can also conclude that R(11) ≤ R(10) + [R(11) − R(10)] ≤ α1(10) + α1(1) = 4.
In other words, the sheer knowledge that R is constrained by α1 allows us to derive a better bound than α1

itself. This is because α1 is not a “good” function, in a sense that we define now.

DEFINITION 1.2.4. Consider a function α in F . We say that α is a “good” function if any one of the
following equivalent properties is satisfied

1. α is sub-additive and α(0) = 0
2. α = α⊗ α
3. α� α = α
4. α = ᾱ (sub-additive closure of α).

The definition uses the concepts of sub-additivity, min-plus convolution, min-plus deconvolution and sub-
additive closure, which are defined in Chapter 3. The equivalence between the four items comes from
Corollaries 3.1.1 on page 120 and 3.1.13 on page 125. Sub-additivity (item 1) means that α(s + t) ≤

1.2. ARRIVAL CURVES 15

α(s) + α(t). If α is not sub-additive, then α(s) + α(t) may be a better bound than α(s + t), as is the
case with α1 in the example above. Item 2, 3 and 4 use the concepts of min-plus convolution, min-plus
deconvolution and sub-additive closure, defined in Chapter 3. We know in particular (Theorem 3.1.10) that
the sub-additive closure of a function α is the largest “good” function ᾱ such that ᾱ ≤ α. We also know
that ᾱ ∈ F if α ∈ F .

The main result about arrival curves is that any arrival curve can be replaced by its sub-additive closure,
which is a “good” arrival curve. Figure 1.6 shows ᾱ1 for our example above.

THEOREM 1.2.1 (REDUCTION OF ARRIVAL CURVE TO A SUB-ADDITIVE ONE). Saying that a flow is
constrained by a wide-sense increasing function α is equivalent to saying that it is constrained by the sub-
additive closure ᾱ.

The proof of the theorem leads us to the heart of the concept of arrival curve, namely, its correspondence
with a fundamental, linear relationships in min-plus algebra, which we will now derive.

LEMMA 1.2.3. A flow R is constrained by arrival curve α if and only if R ≤ R⊗ α

PROOF: Remember that an equation such as R ≤ R⊗ α means that for all times t, R(t) ≤ (R⊗ α)(t).
The min-plus convolution R⊗α is defined in Chapter 3, page 111; since R(s) and α(s) are defined only for
s ≥ 0, the definition of R⊗α is: (R⊗α)(t) = inf0≤s≤t(R(s) +α(t− s)). Thus R ≤ R⊗α is equivalent
to R(t) ≤ R(s) + α(t− s) for all 0 ≤ s ≤ t.

LEMMA 1.2.4. If α1 and α2 are arrival curves for a flow R, then so is α1 ⊗ α2

PROOF: We know from Chapter 3 that α1 ⊗α2 is wide-sense increasing if α1 and α2 are. The rest of the
proof follows immediately from Lemma 1.2.3 and the associativity of ⊗.

PROOF OF THEOREM Since α is an arrival curve, so is α⊗ α, and by iteration, so is α(n) for all n ≥ 1.
By the definition of δ0, it is also an arrival curve. Thus so is ᾱ = infn≥0 α

(n).

Conversely, ᾱ ≤ α; thus, if ᾱ is an arrival curve, then so is α.

EXAMPLES We should thus restrict our choice of arrival curves to sub-additive functions. As we can
expect, the functions γr,b and vT,τ introduced in Section 1.2.1 are sub-additive and since their value is 0
for t = 0, they are “good” functions, as we now show. Indeed, we know from Chapter 1 that any concave
function α such that α(0) = 0 is sub-additive. This explains why the functions γr,b are sub-additive.

Functions vT,τ are not concave, but they still are sub-additive. This is because, from its very definition, the
ceiling function is sub-additive, thus

vT,τ (s+ t) = 	s+ t+ τ

T

 ≤ 	s+ τ

T

 + 	 t

T

 ≤ 	s+ τ

T

 + 	 t+ τ

T

 = vT,τ (s) + vT,τ (t)

Let us return to our introductory example with α1 = min(3v10,0, v1,0). As we discussed, α1 is not sub-
additive. From Theorem 1.2.1, we should thus replace α1 by its sub-additive closure ᾱ1, which can be
computed by Equation (3.13). The computation is simplified by the following remark, which follows im-
mediately from Theorem 3.1.11:

LEMMA 1.2.5. Let γ1 and γ2 be two “good” functions. The sub-additive closure of min(γ1, γ2) is γ1 ⊗ γ2.

We can apply the lemma to α1 = 3v10,0 ∧ v1,0, since vT,τ is a “good” function. Thus ᾱ1 = 3v10,0 ⊗ v1,0,
which the alert reader will enjoy computing. The result is plotted in Figure 1.6.

Finally, let us mention the following equivalence, the proof of which is easy and left to the reader.

16 CHAPTER 1. NETWORK CALCULUS

PROPOSITION 1.2.5. For a given wide-sense increasing function α, with α(0) = 0, consider a source
defined by R(t) = α(t) (greedy source). The source has α as an arrival curve if and only if α is a “good”
function.

VBR ARRIVAL CURVE Now let us examine the family of arrival curves obtained by combinations of
leaky buckets or GCRAs (concave piecewise linear functions). We know from Chapter 3 that if γ1 and γ2

are concave, with γ1(0) = γ2(0) = 0, then γ1 ⊗ γ2 = γ1 ∧ γ2. Thus any concave piecewise linear function
α such that α(0) = 0 is a “good” function. In particular, if we define the arrival curve for VBR connections
or Intserv flows by {

α(t) = min(pt+M, rt+ b) if t > 0
α(0) = 0

(see Figure 1.5) then α is a “good” function.

We have seen in Lemma 1.2.1 that an arrival curve α can always be replaced by its limit to the left αl.
We might wonder how this combines with the sub-additive closure, and in particular, whether these two
operations commute (in other words, do we have (ᾱ)l = αl ?). In general, if α is left-continuous, then
we cannot guarantee that ᾱ is also left-continuous, thus we cannot guarantee that the operations commute.
However, it can be shown that (ᾱ)l is always a “good” function, thus (ᾱ)l = (ᾱ)l. Starting from an arrival
curve α we can therefore improve by taking the sub-additive closure first, then the limit to the left. The
resulting arrival curve (ᾱ)l is a “good” function that is also left-continuous (a “very good” function), and
the constraint by α is equivalent to the constraint by (ᾱ)l

Lastly, let us mention that it can easily be shown, using an argument of uniform continuity, that if α takes
only a finite set of values over any bounded time interval, and if α is left-continuous, then so is ᾱ and then
we do have (ᾱ)l = αl. This assumption is always true in discrete time, and in most cases in practice.

1.2.4 MINIMUM ARRIVAL CURVE

Consider now a given flow R(t), for which we would like to determine a minimal arrival curve. This
problem arises, for example, when R is known from measurements. The following theorem says that there
is indeed one minimal arrival curve.

THEOREM 1.2.2 (MINIMUM ARRIVAL CURVE). Consider a flow R(t)t≥0. Then

• function R�R is an arrival curve for the flow
• for any arrival curve α that constrains the flow, we have: (R�R) ≤ α
• R�R is a “good” function

Function R�R is called the minimum arrival curve for flow R.

The minimum arrival curve uses min-plus deconvolution, defined in Chapter 3. Figure 1.2.4 shows an
example of R�R for a measured function R.

PROOF: By definition of �, we have (R�R)(t) = supv≥0{R(t+ v) −R(v)}, it follows that (R�R)
is an arrival curve.

Now assume that some α is also an arrival curve for R. From Lemma 1.2.3, we have R ≤ R ⊗ α). From
Rule 14 in Theorem 3.1.12 in Chapter 3, it follows that R�R ≤ α, which shows that R�R is the minimal
arrival curve for R. Lastly, R�R is a “good” function from Rule 15 in Theorem 3.1.12.

Consider a greedy source, with R(t) = α(t), where α is a “good” function. What is the minimum arrival
curve ?5 Lastly, the curious reader might wonder whether R � R is left-continuous. The answer is as

5Answer: from the equivalence in Definition 1.2.4, the minimum arrival curve is α itself.

1.2. ARRIVAL CURVES 17

100 200 300 400

10

20

30

40

50

60

70

100 200 300 400

10

20

30

40

50

60

70

100 200 300 400

2000

4000

6000

8000

10000

Figure 1.7: Example of minimum arrival curve. Time is discrete, one time unit is 40 ms. The top figures shows, for
two similar traces, the number of packet arrivals at every time slot. Every packet is of constant size (416 bytes). The
bottom figure shows the minimum arrival curve for the first trace (top curve) and the second trace (bottom curve). The
large burst in the first trace comes earlier, therefore its minimum arrival curve is slightly larger.

18 CHAPTER 1. NETWORK CALCULUS

follows. Assume that R is either right or left-continuous. By lemma 1.2.1, the limit to the left (R � R)l is
also an arrival curve, and is bounded from above by R � R. Since R � R is the minimum arrival curve, it
follows that (R�R)l = R�R, thus R�R is left-continuous (and is thus a “very good” function).

In many cases, one is interested not in the absolute minimum arrival curve as presented here, but in a
minimum arrival curve within a family of arrival curves, for example, among all γr,b functions. For a
development along this line, see [61].

1.3 SERVICE CURVES

1.3.1 DEFINITION OF SERVICE CURVE

We have seen that one first principle in integrated services networks is to put arrival curve constraints on
flows. In order to provide reservations, network nodes in return need to offer some guarantees to flows.
This is done by packet schedulers [45]. The details of packet scheduling are abstracted using the concept
of service curve, which we introduce and study in this section. Since the concept of service curve is more
abstract than that of arrival curve, we introduce it on some examples.

A first, simple example of a scheduler is a Generalized Processor Sharing (GPS) node [63]. We define now
a simple view of GPS; more details are given in Chapter 2. A GPS node serves several flows in parallel, and
we can consider that every flow is allocated a given rate. The guarantee is that during a period of duration t,
for which a flow has some backlog in the node, it receives an amount of service at least equal to rt, where r
is its allocated rate. A GPS node is a theoretical concept, which is not really implementable, because it relies
on a fluid model, while real networks use packets. We will see in Section 2.1 on page 67 how to account
for the difference between a real implementation and GPS. Consider a input flow R, with output R∗, that is
served in a GPS node, with allocated rate r. Let us also assume that the node buffer is large enough so that
overflow is not possible. We will see in this section how to compute the buffer size required to satisfy this
assumption. Lossy systems are the object of Chapter 9. Under these assumptions, for all time t, call t0 the
beginning of the last busy period for the flow up to time t. From the GPS assumption, we have

R∗(t) −R∗(t0) ≥ r(t− t0)

Assume as usual that R is left-continuous; at time t0 the backlog for the flow is 0, which is expressed by
R(t0) −R∗(t0) = 0. Combining this with the previous equation, we obtain:

R∗(t) −R(t0) ≥ r(t− t0)

We have thus shown that, for all time t: R∗(t) ≥ inf0≤s≤t[R(s) + r(t− s)], which can be written as

R∗ ≥ R⊗ γr,0 (1.7)

Note that a limiting case of GPS node is the constant bit rate server with rate r, dedicated to serving a single
flow. We will study GPS in more details in Chapter 2.

Consider now a second example. Assume that the only information we have about a network node is that
the maximum delay for the bits of a given flow R is bounded by some fixed value T , and that the bits of
the flow are served in first in, first out order. We will see in Section 1.5 that this is used with a family of
schedulers called “earliest deadline first” (EDF). We can translate the assumption on the delay bound to
d(t) ≤ T for all t. Now since R∗ is always wide-sense increasing, it follows from the definition of d(t) that
R∗(t+ T) ≥ R(t). Conversely, if R∗(t+ T) ≥ R(t), then d(t) ≤ T . In other words, our condition that the
maximum delay is bounded by T is equivalent to R∗(t+ T) ≥ R(t) for all t. This in turn can be re-written
as

R∗(s) ≥ R(s− T)

1.3. SERVICE CURVES 19

for all s ≥ T . We have introduced in Chapter 3 the “impulse” function δT defined by δT (t) = 0 if 0 ≤ t ≤ T
and δT (t) = +∞ if t > T . It has the property that, for any wide-sense increasing function x(t), defined for
t ≤ 0, (x⊗ δT)(t) = x(t− T) if t ≥ T and (x⊗ δT)(t) = x(0) otherwise. Our condition on the maximum
delay can thus be written as

R∗ ≥ R⊗ δT (1.8)

For the two examples above, there is an input-output relationship of the same form (Equations (1.7) and
(1.8)). This suggests the definition of service curve, which, as we see in the rest of this section, is indeed
able to provide useful results.

� � � �

� � � �

� � �

� � � �

� � � � � � � � �

� � � � �

� � �

Figure 1.8: Definition of service curve. The output R∗ must be above R ⊗ β, which is the lower envelope of all curves
t �→ R(t0) + β(t − t0).

DEFINITION 1.3.1 (SERVICE CURVE). Consider a system S and a flow through S with input and output
functionR andR∗. We say that S offers to the flow a service curve β if and only if β is wide sense increasing,
β(0) = 0 and R∗ ≥ R⊗ β

Figure 1.8 illustrates the definition.

The definition means that β is a wide sense increasing function, with β(0) = 0, and that for all t ≥ 0,

R∗(t) ≥ inf
s≤t

(R(s) + β(t− s))

In practice, we can avoid the use of an infimum if β is continuous. The following proposition is an immediate
consequence of Theorem 3.1.8 on Page 115.

PROPOSITION 1.3.1. If β is continuous, the service curve property means that for all t we can find t0 ≤ t
such that

R∗(t) ≥ Rl(t0) + β(t− t0) (1.9)

whereRl(t0) = sup{s<t0}R(s) is the limit to the left ofR at t0. IfR is left-continuous, thenRl(t0) = R(t0).

For a constant rate server (and also for any strict service curve), the number t0 in Equation (1.9) is the
beginning of the busy period. For other cases, there is not such a simple definition. However, in some cases
we can make sure that t0 increases with t:

PROPOSITION 1.3.2. If the service curve β is convex, then we can find some wide sense increasing function
τ(t) such that we can choose t0 = τ(t) in Equation (1.9).

Note that since a service curve is assumed to be wide-sense increasing, β, being convex, is necessarily
continuous; thus we can apply Proposition 1.3.1.

20 CHAPTER 1. NETWORK CALCULUS

PROOF: We give the proof when R is left-continuous. The proof for the general case is essentially the
same but involves some ε cutting. Consider some t1 < t2 and call τ1 a value of t0 as in Equation (1.9)) at
t = t1. Also consider any t′ ≤ τ1. From the definition of τ1, we have

R∗(t′) + β(t1 − t′) ≥ R∗(τ1) + β(t1 − τ1)

and thus
R∗(t′) + β(t2 − t′) ≥ R∗(τ1) + β(t1 − τ1) − β(t1 − t′) + β(t2 − t′)

Now β is convex, thus for any four numbers a, b, c, d such that a ≤ c ≤ b, a ≤ d ≤ b and a+ b = c+ d, we
have

β(a) + β(b) ≥ β(c) + β(d)

(the interested reader will be convinced by drawing a small figure). Applying this to a = t1 − τ1, b =
t2 − t′, c = t1 − t′, d = t2 − τ1 gives

R∗(t′) + β(t2 − t′) ≥ R∗(τ1) + β(t2 − τ1)

and the above equation holds for all t′ ≤ τ1. Consider now the minimum, for a fixed t2, ofR∗(t′)+β(t2−t′)
over all t′ ≤ t2. The above equation shows that the minimum is reached for some t′ ≥ τ1.

We will see in Section 1.4 that the combination of a service curve guarantee with an arrival curve constraint
forms the basis for deterministic bounds used in integrated services networks. Before that, we give the
fundamental service curve examples that are used in practice.

1.3.2 CLASSICAL SERVICE CURVE EXAMPLES

GUARANTEED DELAY NODE The analysis of the second example in Section 1.3.1 can be rephrased as
follows.

PROPOSITION 1.3.3. For a lossless bit processing system, saying that the delay for any bit is bounded by
some fixed T is equivalent to saying that the system offers to the flow a service curve equal to δT .

NON PREMPTIVE PRIORITY NODE Consider a node that serves two flows, RH(t) and RL(t). The first
flow has non-preemptive priority over the second one (Figure 1.9). This example explains the general frame-
work used when some traffic classes have priority over some others, such as with the Internet differentiated
services [7]. The rate of the server is constant, equal to C. Call R∗

H(t) and R∗
L(t) the outputs for the two

flows. Consider first the high priority flow. Fix some time t and call s the beginning of the backlog period

� � � � �

� � ! � � �

! " # � � � � � � $

 � % � � � � � � $

� � � � � �

� ! � � �

� � � �

Figure 1.9: Two priority flows (H and L) served with a preemptive head of the line (HOL) service discipline. The high
priority flow is constrained by arrival curve α.

for high priority traffic. The service for high priority can be delayed by a low priority packet that arrived

1.3. SERVICE CURVES 21

shortly before s′, but as soon as this packet is served, the server is dedicated to high priority as long as there
is some high priority traffic to serve. Over the interval (s, t], the output is C(t− s)Thus

R∗
H(t) −R∗

H(s) ≥ C(t− s) − lHmax

where lLmax is the maximum size of a low priority packet. Now by definition of s: R∗
H(s) = RH(s) thus

R∗
H(t) ≥ RH(s) + C(t− s) − lLmax

Now we have also
R∗

H(t) −RH(s) = R∗
H(t) −R∗

H(s) ≥ 0

from which we derive
R∗

H(t) ≥ RH(s) + [C(t− s) − lLmax]
+

The function u → [Cu − lLmax]
+ is called the rate-latency function with rate C and latency lLmax

C [75] (in
this book we note it β

C,
lLmax

C

, see also Figure 3.1 on page 107). Thus the high priority traffic receives this

function as a service curve.

Now let us examine low priority traffic. In order to assure that it does not starve, we assume in such situations
that the high priority flow is constrained by an arrival curve αH . Consider again some arbitrary time t. Call
s′ the beginning of the server busy period (note that s′ ≤ s). At time s′, the backlogs for both flows are
empty, namely, R∗

H(s′) = RH(s′) and R∗
L(s′) = RL(s′). Over the interval (s′, t], the output is C(t − s′).

Thus
R∗

L(t) −R∗
L(s′) = C(t− s′) − [

R∗
H(t) −R∗

H(s′)
]

Now
R∗

H(t) −R∗
H(s′) = R∗

H(t) −RH(s′) ≤ RH(t) −RH(s′) ≤ αH(t− s′)

and obviously R∗
H(t) −R∗

H(s′) ≥ 0 thus

R∗
L(t) −RL(s′) = R∗

L(t) −R∗
L(s′) ≥ S(t− s′)

with S(u) = (Cu− αH(u))+. Thus, if S is wide-sense increasing, the low-priority flow receives a service
curve equal to function S. Assume further that αH = γr,b, namely, the high priority flow is constrained
by one single leaky bucket or GCRA. In that case, the service curve S(t) offered to the low-priority flow is
equal to the rate-latency function βR,T (t), with R = C − r and T = b

C−r .

We have thus shown the following.

PROPOSITION 1.3.4. Consider a constant bit rate server, with rate C, serving two flows, H and L, with
non-preemptive priority given to flow H . Then the high priority flow is guaranteed a rate-latency service

curve with rate C and latency lLmax
C where lLmax is the maximum packet size for the low priority flow.

If in addition the high priority flow is γr,b-smooth, with r < C, then the low priority flow is guaranteed a
rate-latency service curve with rate C − r and latency b

C−r .

This example justifies the importance of the rate-latency service curve. We will also see in Chapter 2
(Theorem 2.1.2 on page 71) that all practical implementations of GPS offer a service curve of the rate-
latency type.

STRICT SERVICE CURVE An important class of network nodes fits in the following framework.

DEFINITION 1.3.2 (STRICT SERVICE CURVE). We say that system S offers a strict service curve β to a
flow if, during any backlogged period of duration u, the output of the flow is at least equal to β(u).

22 CHAPTER 1. NETWORK CALCULUS

A GPS node is an example of node that offers a strict service curve of the form β(t) = rt. Using the same
busy-period analysis as with the GPS example in the previous section, we can easily prove the following.

PROPOSITION 1.3.5. If a node offers β as a strict service curve to a flow, then it also offers β as a service
curve to the flow.

The strict service curve property offers a convenient way of visualizing the service curve concept: in that
case, β(u) is the minimum amount of service guaranteed during a busy period. Note however that the
concept of service curve, as defined in Definition 1.3.1 is more general. A greedy shaper (Section 1.5.2) is
an example of system that offers its shaping curve as a service curve, without satisfying the strict service
curve property. In contrast, we will find later in the book some properties that hold only if a strict service
curve applies. The framework for a general discussion of strict service curves is given in Chapter 7.

VARIABLE CAPACITY NODE Consider a network node that offers a variable service capacity to a flow.
In some cases, it is possible to model the capacity by a cumulative function M(t), where M(t) is the total
service capacity available to the flow between times 0 and t. For example, for an ATM system, think ofM(t)
as the number of time slots between times 0 and t that are available for sending cells of the flow. Let us also
assume that the node buffer is large enough so that overflow is not possible. The following proposition is
obvious but important in practice

PROPOSITION 1.3.6. If the variable capacity satisfies a minimum guarantee of the form

M(t) −M(s) ≥ β(t− s) (1.10)

for some fixed function β and for all 0 ≤ s ≤ t, then β is a strict service curve,

Thus β is also a service curve for that particular flow. The concept of variable capacity node is also a
convenient way to establish service curve properties. For an application to real time systems (rather than
communication networks) see [78].

We will show in Chapter 4 that the output of the variable capacity node is given by

R∗(t) = inf
0≤s≤t

{M(t) −M(s) +R(s)}

Lastly, coming back to the priority node, we have:

PROPOSITION 1.3.7. The service curve properties in Proposition 1.3.4 are strict.

The proof is left to the reader. It relies on the fact that constant rate server is a shaper.

1.4 NETWORK CALCULUS BASICS

In this section we see the main simple network calculus results. They are all bounds for lossless systems
with service guarantees.

1.4.1 THREE BOUNDS

The first theorem says that the backlog is bounded by the vertical deviation between the arrival and service
curves:

THEOREM 1.4.1 (BACKLOG BOUND). Assume a flow, constrained by arrival curve α, traverses a system
that offers a service curve β. The backlog R(t) −R∗(t) for all t satisfies:

R(t) −R∗(t) ≤ sup
s≥0

{α(s) − β(s)}

1.4. NETWORK CALCULUS BASICS 23

PROOF: The proof is a straightforward application of the definitions of service and arrival curves:

R(t) −R∗(t) ≤ R(t) − inf
0≤s≤t

[R(t− s) + β(s)]

Thus
R(t) −R∗(t) ≤ sup

0≤s≤t
[R(t) −R(t− s) + β(s)] ≤ sup

0≤s≤t
[α(s) + β(t− s)]

We now use the concept of horizontal deviation, defined in Chapter 3, Equation (3.21). The definition is a
little complex, but is supported by the following intuition. Call

δ(s) = inf {τ ≥ 0 : α(s) ≤ β(s+ τ)}
From Definition 1.1.1, δ(s) is the virtual delay for a hypothetical system that would have α as input and β
as output, assuming that such a system exists (in other words, assuming that (α ≤ β). Then, h(α, β) is the
supremum of all values of δ(s). The second theorem gives a bound on delay for the general case.

THEOREM 1.4.2 (DELAY BOUND). Assume a flow, constrained by arrival curve α, traverses a system that
offers a service curve of β. The virtual delay d(t) for all t satisfies: d(t) ≤ h(α, β).

PROOF: Consider some fixed t ≥ 0; for all τ < d(t), we have, from the definition of virtual delay,
R(t) > R∗(t+ τ). Now the service curve property at time t+ τ implies that there is some s0 such that

R(t) > R(t+ τ − s0) + β(s0)

It follows from this latter equation that t+ τ − s0 < t. Thus

α(τ − s0) ≥ [R(t) −R(t+ τ − s0)] > β(s0)

Thus τ ≤ δ(τ − s0) ≤ h(α, β). This is true for all τ < d(t) thus d(t) ≤ h(α, β).

THEOREM 1.4.3 (OUTPUT FLOW). Assume a flow, constrained by arrival curve α, traverses a system that
offers a service curve of β. The output flow is constrained by the arrival curve α∗ = α� β.

The theorem uses min-plus deconvolution, introduced in Chapter 3, which we have already used in Theo-
rem 1.2.2.

PROOF: With the same notation as above, consider R∗(t) −R∗(t− s), for 0 ≤ t− s ≤ t. Consider the
definition of the service curve, applied at time t − s. Assume for a second that the inf in the definition of
R⊗ β is a min, that is to say, there is some u ≥ 0 such that 0 ≤ t− s− u and

(R⊗ β)(t− s) = R(t− s− u) + β(u)

Thus
R∗(t− s) −R(t− s− u) ≥ β(u)

and thus
R∗(t) −R∗(t− s) ≤ R∗(t) − β(u) −R(t− s− u)

Now R∗(t) ≤ R(t), therefore

R∗(t) −R∗(t− s) ≤ R(t) −R(t− s− u) − β(u) ≤ α(s+ u) − β(u)

and the latter term is bounded by (α� β)(s) by definition of the � operator.

24 CHAPTER 1. NETWORK CALCULUS

Now relax the assumption that the the inf in the definition of R ⊗ β is a min. In this case, the proof is
essentially the same with a minor complication. For all ε > 0 there is some u ≥ 0 such that 0 ≤ t− s− u
and

(R⊗ β)(t− s) ≥ R(t− s− u) + β(u) − ε

and the proof continues along the same line, leading to:

R∗(t) −R∗(t− s) ≤ (α� β)(s) + ε

This is true for all ε > 0, which proves the result.

� & � '

'

� � �

�

� �

�

�

� � � �

� �
� �
� �
�� � � �

� � �

� � (� ' � & � �) �

� � (� � � & � � '

Figure 1.10: Computation of buffer, delay and output bounds for an input flow constrained by one leaky bucket, served
in one node offered a rate-latency service curve. If r ≤ R, then the buffer bound is x = b + rT , the delay bound is
d = T + b

R
and the burstiness of the flow is increased by rT . If r > R, the bounds are infinite.

A SIMPLE EXAMPLE AND INTERPRETATION OF LEAKY BUCKET Consider a flow constrained by
one leaky bucket, thus with an arrival curve of the form α = γr,b, served in a node with the service curve
guarantee βR,T . The alert reader will enjoy applying the three bounds and finding the results shown in
Figure 1.10.

Consider in particular the case T = 0, thus a flow constrained by one leaky bucket served at a constant rate
R. If R ≥ r then the buffer required to serve the flow is b, otherwise, it is infinite. This gives us a common
interpretation of the leaky bucket parameters r and b: r is the minimum rate required to serve the flow, and
b is the buffer required to serve the flow at any constant rate ≥ r.

EXAMPLE: VBR FLOW WITH RATE-LATENCY SERVICE CURVE Consider a VBR flow, defined by T-
SPEC (M,p, r, b). This means that the flow has α(t) = min(M+pt, rt+b) as an arrival curve (Section 1.2).
Assume that the flow is served in one node that guarantees a service curve equal to the rate-latency function
β = βR,T . This example is the standard model used in Intserv. Let us apply Theorems 1.4.1 and 1.4.2.
Assume that R ≥ r, that is, the reserved rate is as large as the sustainable rate of the flow.

From the convexity of the region between α and β (Figure 1.4.1), we see that the vertical deviation v =
sups≥0[α(s) − β(s)] is reached for at an angular point of either α or β. Thus

v = max[α(T), α(θ) − β(θ)]

with θ = b−M
p−r . Similarly, the horizontal distance is reached an angular point. In the figure, it is either the

distance marked as AA′ or BB′. Thus, the bound on delay d is given by

d = max
(
α(θ)
R

+ T − θ,
M

R
+ T

)
After some max-plus algebra, we can re-arrange these results as follows.

1.4. NETWORK CALCULUS BASICS 25

PROPOSITION 1.4.1 (INTSERV MODEL, BUFFER AND DELAY BOUNDS). Consider a VBR flow, with TSPEC
(M,p, r, b), served in a node that guarantees to the flow a service curve equal to the rate-latency function
β = βR,T . The buffer required for the flow is bounded by

v = b+ rT +
(
b−M

p− r
− T

)+

[(p−R)+ − p+ r]

The maximum delay for the flow is bounded by

d =
M + b−M

p−r (p−R)+

R
+ T

'

� � �

�

�

�

� 	 �

�

*
* +

, , +

� � � �

Figure 1.11: Computation of buffer and delay bound for one VBR flow served in one Intserv node.

We can also apply Theorem 1.4.3 and find an arrival curve α∗ for the output flow. We have α∗ = α� (λR ⊗
δT) = (α� λR) � δT from the properties of � (Chapter 3). Note that

(f � δT)(t) = f(t+ T)

for all f (shift to the left).

The computation of α � λR is explained in Theorem 3.1.14 on Page 126: it consists in inverting time, and
smoothing. Here, we give however a direct derivation, which is possible since α is concave. Indeed, for a
concave α, define t0 as

t0 = inf{t ≥ 0 : α′(t) ≤ R}
where α′ is the left-derivative, and assume that t0 < +∞. A concave function always has a left-derivative,
except maybe at the ends of the interval where it is defined. Then by studying the variations of the function
u → α(t+ u) − Ru we find that (α � λR)(s) = α(s) if s ≥ t0, and (α � λR)(s) = α(t0) + (s− t0)R if
s < t0.

Putting the pieces all together we see that the output function α∗ is obtained from α by

• replacing α on [0, t0] by the linear function with slope R that has the same value as α for t = t0,
keeping the same values as α on [t0,+∞[,

• and shifting by T to the left.

Figure 1.12 illustrates the operation. Note that the two operations can be performed in any order since ⊗ is
commutative. Check that the operation is equivalent to the construction in Theorem 3.1.14 on Page 126.

If we apply this to a VBR connection, we obtain the following result.

PROPOSITION 1.4.2 (INTSERV MODEL, OUTPUT BOUND). With the same assumption as in Proposition 1.4.1,
the output flow has an arrival curve α∗ given by:{

if b−M
p−r ≤ T then α∗(t) = b+ r(T + t)

else α∗(t) = min
{

(t+ T)(p ∧R) +M + b−M
p−r (p−R)+, b+ r(T + t)

}

26 CHAPTER 1. NETWORK CALCULUS

bits slope = R

arrival
curve

time

t0-T-T

departure curve

Figure 1.12: Derivation of arrival curve for the output of a flow served in a node with rate-latency service curve βR,T .

AN ATM EXAMPLE Consider the example illustrated in Figure 1.13. The aggregate flow has as an
arrival curve equal to the stair function 10v25,4. The figure illustrates that the required buffer is 18 ATM
cells and the maximum delay is 10 time slots. We know from Corollary 1.2.1 that a GCRA constraint is

�

� +
� +

�
 � - � � � . � �

� � . �

� � . � �

�
 �

 �
 �
 �

� � � � �

� � � � � � � � �

�

Figure 1.13: Computation of bounds for buffer x and delay d for an ATM example. An ATM node serves 10 ATM
connections, each constrained with GCRA(25, 4) (counted in time slots). The node offers to the aggregate flow a
service curve βR,T with rate R = 1 cell per time slot and latency T = 8 time slots. The figure shows that approximating
the stair function 10v25,4 by an affine function γr,b results into an overestimation of the bounds.

equivalent to a leaky bucket. Thus, each of the 10 connections is constrained by an affine arrival curve γr,b

with r = 1
25 = 0.04 and b = 1 + 4

25 = 1.16. However, if we take as an arrival curve for the aggregate flow
the resulting affine function 10γr,b, then we obtain a buffer bound of 11.6 and a delay bound of 19.6. The
affine function overestimates the buffer and delay bounds. Remember that the equivalence between stair
function and affine function is only for a flow where the packet size is equal to the value of the step, which
is clearly not the case for an aggregate of several ATM connections.

A direct application of Theorem 1.4.3 shows that an arrival curve for the output flow is given by α∗
0(t) =

α(t+ T) = v25,12(t).

In Chapter 2, we give a slight improvement to the bounds if we know that the service curve is a strict service

1.4. NETWORK CALCULUS BASICS 27

curve.

1.4.2 ARE THE BOUNDS TIGHT ?

We now examine how good the three bounds are. For the backlog and delay bounds, the answer is simple:

THEOREM 1.4.4. Consider the backlog and delay bounds in Theorems 1.4.1 and 1.4.2. Assume that

• α is a “good” function (that is, namely, is wide-sense increasing, sub-additive and α(0) = 0)
• β is wide-sense increasing and β(0) = 0

Then the bounds are tight. More precisely, there is one causal system with input flow R(t) and output flow
R∗(t), such that the input is constrained by α, offering to the flow a service curve β, and which achieves
both bounds.

A causal system means that R(t) ≤ R∗(t). The theorem means that the backlog bound in Theorem 1.4.1 is
equal to supt≥0[R(t)−R∗(t)], and the delay bound in Theorem 1.4.1 is equal to supt≥0 d(t). In the above,
d(t) is the virtual delay defined in Definition 1.1.1.

PROOF: We build one such system R,R∗ by defining R = α,R∗ = min(α, β). The system is causal
because R∗ ≤ α = R. Now consider some arbitrary time t. If α(t) < β(t) then

R∗(t) = R(t) = R(t) + β(0)

Otherwise,
R∗(t) = β(t) = R(0) + β(t)

In all cases, for all t there is some s ≤ t such that R∗(t) ≥ R(t− s) + β(s), which shows the service curve
property.

Of course, the bounds are as tight as the arrival and service curves are. We have seen that a source such that
R(t) = α(t) is called greedy. Thus, the backlog and delay bounds are worst-case bounds that are achieved
for greedy sources.

In practice, the output bound is also a worst-case bound, even though the detailed result is somehow less
elegant.

THEOREM 1.4.5. Assume that

1. α is a “good” function (that is, is wide-sense increasing, sub-additive and α(0) = 0)
2. α is left-continuous
3. β is wide-sense increasing and β(0) = 0
4. α�α is not bounded from above.

Then the output bound in Theorem 1.4.3 is tight. More precisely, there is one causal system with input flow
R(t) and output flow R∗(t), such that the input is constrained by α, offering to the flow a service curve β,
and α∗ (given by Theorem 1.4.3) is the minimum arrival curve for R∗.

We know in particular from Section 1.2 that the first three conditions are not restrictive. Let us first discuss
the meaning of the last condition. By definition of max-plus deconvolution:

(α�α)(t) = inf
s≥0

{α(t+ s) − α(s)}

28 CHAPTER 1. NETWORK CALCULUS

One interpretation of α�α is as follows. Consider a greedy source, with R(t) = α(t); then (α�α)(t) is
the minimum number of bits arriving over an interval of duration t. Given that the function is wide-sense
increasing, the last condition means that limt→+∞(α�α)(t) = +∞. For example, for a VBR source with
T-SPEC (p,M, r, b) (Figure 1.5), we have (α�α)(t) = rt and the condition is satisfied. The alert reader
will easily be convinced that the condition is also true if the arrival curve is a stair function.

The proof of Theorem 1.4.5 is a little technical and is left at the end of this chapter.

We might wonder whether the output bound α∗ is a “good” function. The answer is no, since α∗(0) is the
backlog bound and is positive in reasonable cases. However, α∗ is sub-additive (the proof is easy and left
to the reader) thus the modified function δ0 ∧ α∗ defined as α∗(t) for t > 0 and 0 otherwise is a “good”
function. If α is left-continuous, δ0 ∧ α∗ is even a “very good” function since we know from the proof of
Theorem 1.4.5 that it is left-continuous.

1.4.3 CONCATENATION

So far we have considered elementary network parts. We now come to the main result used in the concate-
nation of network elements.

THEOREM 1.4.6 (CONCATENATION OF NODES). Assume a flow traverses systems S1 and S2 in sequence.
Assume that Si offers a service curve of βi, i = 1, 2 to the flow. Then the concatenation of the two systems
offers a service curve of β1 ⊗ β2 to the flow.

PROOF: Call R1 the output of node 1, which is also the input to node 2. The service curve property at
node 1 gives

R1 ≥ R⊗ β1

and at node 2
R∗ ≥ R1 ⊗ β2 ≥ (R⊗ β1) ⊗ β2 = R⊗ (β1 ⊗ β2)

EXAMPLES: Consider two nodes offering each a rate-latency service curve βRi,Ti , i = 1, 2, as is com-
monly assumed with Intserv. A simple computation gives

βR1,T1 ⊗ βR1,T1 = βmin(R1,R2),T1+T2

Thus concatenating Intserv nodes amounts to adding the latency components and taking the minimum of
the rates.

We are now also able to give another interpretation of the rate-latency service curve model. We know that
βR,T = (δT ⊗ λR)(t); thus we can view a node offering a rate-latency service curve as the concatenation of
a guaranteed delay node, with delay T and a constant bit rate or GPS node with rate R.

PAY BURSTS ONLY ONCE The concatenation theorem allows us to understand a phenomenon known
as “Pay Bursts Only Once”. Consider the concatenation of two nodes offering each a rate-latency service
curve βRi,Ti , i = 1, 2, as is commonly assumed with Intserv. Assume the fresh input is constrained by γr,b.
Assume that r < R1 and r < R2. We are interested in the delay bound, which we know is a worst case. Let
us compare the results obtained as follows.

1. by applying the network service curve;
2. by iterative application of the individual bounds on every node

1.4. NETWORK CALCULUS BASICS 29

The delay bound D0 can be computed by applying Theorem 1.4.2:

D0 =
b

R
+ T0

with R = mini(Ri) and T0 =
∑

i Ti as seen above.

Now apply the second method. A bound on the delay at node 1 is (Theorem 1.4.2):

D1 =
b

R1
+ T1

The output of the first node is constrained by α∗, given by :

α∗(t) = b+ r × (t+ T1)

A bound on the delay at the second buffer is:

D2 =
b+ rT1

R2
+ T2

And thus

D1 +D2 =
b

R1
+
b+ rT1

R2
+ T0

It is easy to see that D0 < D1 +D2. In other words, the bounds obtained by considering the global service
curve are better than the bounds obtained by considering every buffer in isolation.

Let us continue the comparison more closely. The delay through one node has the form b
R1

+ T1 (for the

first node). The element b
R1

is interpreted as the part of the delay due to the burstiness of the input flow,
whereas T1 is due to the delay component of the node. We see that D1 +D2 contains twice an element of
the form b

Ri
, whereas D0 contains it only once. We sometimes say that “we pay bursts only once”. Another

difference between D0 and D1 +D2 is the element rT1
R2

: it is due to the increase of burstiness imposed by
node 1. We see that this increase of burstiness does not result into an increase of the overall delay.

A corollary of Theorem 1.4.6 is also that the end-to-end delay bound does not depend on the order in which
nodes are concatenated.

1.4.4 IMPROVEMENT OF BACKLOG BOUNDS

We give two cases where we can slightly improve the backlog bounds.

THEOREM 1.4.7. Assume that a lossless node offers a strict service curve β to a flow with arrival curve α.
Assume that α(u0) ≤ β(u0) for some u0 > 0. Then the duration of the busy period is ≤ u0. Furthermore,
for any time t, the backlog R(t) −R∗(t) satisfies

R(t) −R∗(t) ≤ sup
u:0≤u<u0

[R(t) −R(t− u) − β(u)] ≤ sup
u:0≤u<u0

[α(u) − β(u)]

The theorem says that, for the computation of a buffer bound, it is sufficient to consider time intervals less
than u0. The idea is that the busy period duration is less than u0.

PROOF: Consider a given time t at which the buffer is not empty, and call s the last time instant before t
at which the buffer was empty. Then, from the strict service curve property, we have

R∗(t) ≥ R∗(s) + β(t− s) = x(s) + β(t− s)

30 CHAPTER 1. NETWORK CALCULUS

Thus the buffer size b(t) = R(t) −R∗(t) at time t satisfies

b(t) ≤ R(t) −R(s) − β(t− s) ≤ α(t− s) − β(t− s)

Now if t− s ≥ u0, then there is a time t′ = s+u0, with s+1 ≤ t′ ≤ t such that b(t′) = 0. This contradicts
the definition of s. Thus we can assume that t− s < u0.

THEOREM 1.4.8. Assume that a lossless node offers a service curve β to a flow with sub-additive arrival
curve α. Assume that β is super-additive, and that α(u0) ≤ β(u0) for some u0 > 0. Then for any time t,
the backlog R(t) −R∗(t) satisfies

R(t) −R∗(t) ≤ sup
u:0≤u<u0

[R(t) −R(t− u) − β(u)] ≤ sup
u:0≤u<u0

[α(u) − β(u)]

Note that the condition that α is super-additive is not a restriction. In contrast, the condition that β is super-
additive is a restriction. It applies in particular to rate-latency service curves. The theorem does not say
anything about the duration of the busy period, which is consistent with the fact we do not assume here that
the service curve is strict.

PROOF: For an arbitrary time t the backlog at time t satisfies

b(t) ≤ sup
u≥0

[R(t) −R(t− u) − β(u)]

For s ≤ t define k = 	 t−s
u0

 and s′ = ku0 + s. We have s ≤ s′ ≤ t and

t− u0 < s′ (1.11)

Now from the super-additivity of β:

R(t) −R(s) ≤ [
R(t) −R(s′) − β(t− s′)

]
+
[
R(s′) −R(s) − β(s′ − s)

]
Note that for the second part we have

R(s′) −R(s) − β(s′ − s) ≤ k [α(u0) − β(u0)] ≤ 0

thus
R(t) −R(s) ≤ [

R(t) −R(s′) − β(t− s′)
]

which shows the theorem.

1.5 GREEDY SHAPERS

1.5.1 DEFINITIONS

We have seen with the definition of the leaky bucket and of the GCRA two examples of devices that enforce
a general arrival curve. We call policerwith curve σ a device that counts the bits arriving on an input flow
and decides which bits conform with an arrival curve of σ. We call shaper, with shaping curveσ, a bit
processing device that forces its output to have σ as an arrival curve. We call greedy shaper a shaper that
delays the input bits in a buffer, whenever sending a bit would violate the constraint σ, but outputs them as
soon as possible.

With ATM and sometimes with Intserv, traffic sent over one connection, or flow, is policed at the network
boundary. Policing is performed in order to guarantee that users do not send more than specified by the

1.5. GREEDY SHAPERS 31

contract of the connection. Traffic in excess is either discarded, or marked with a low priority for loss in
the case of ATM, or passed as best effort traffic in the case of Intserv. In the latter case, with IPv4, there is
no marking mechanism, so it is necessary for each router along the path of the flow to perform the policing
function again.

Policing devices inside the network are normally buffered, they are thus shapers. Shaping is also often
needed because the output of a buffer normally does not conform any more with the traffic contract specified
at the input.

1.5.2 INPUT-OUTPUT CHARACTERIZATION OF GREEDY SHAPERS

The main result with greedy shapers is the following.

THEOREM 1.5.1 (INPUT-OUTPUT CHARACTERIZATION OF GREEDY SHAPERS). Consider a greedy shaper
with shaping curve σ. Assume that the shaper buffer is empty at time 0, and that it is is large enough so that
there is no data loss. For an input flow R, the output R∗ is given by

R∗ = R⊗ σ̄ (1.12)

where σ̄ is the sub-additive closure of σ.

PROOF: Remember first that if σ is sub-additive and σ(0) = 0, then σ̄ = σ. In general, we know that we
can replace σ by σ̄ without changing the definition of the shaper. We thus assume without loss of generality
that σ̄ = σ.

The proof of the theorem is an application of min-plus algebra. First, let us consider a virtual system that
would take R as input and have an output S satisfying the constraints:{

S ≤ R
S ≤ S ⊗ σ

(1.13)

Such a system would behave as a buffer (the first equation says that the output is derived from the input) and
its output would satisfy the arrival curve constraint σ. However, such a system is not necessarily a greedy
shaper; we could have for example a lazy shaper with S(t) = 0 for all t ≥ 0 ! For this system to be a greedy
shaper, it has to output the bits as soon as possible. Now there is a general result about systems satisfying
conditions 1.13.

LEMMA 1.5.1 (A MIN-PLUS LINEAR SYSTEM). Assume that σ is a “good” function (that is, is sub-additive
and σ(0) = 0). Among all functions S(t) satisfying conditions 1.13 for some fixed function R, there is one
that is an upper bound for all. It is equal to R⊗ σ

PROOF OF THE LEMMA: The lemma is a special case of a general result in Chapter 4. However, it is
also possible to give a very simple proof, as follows.

Define S∗ = R ⊗ σ. Since σ is a “good” function, it follows immediately that S∗ is a solution to Sys-
tem (1.13). Now, let S′ be some other solution. We have S′ ≤ R and thus

S′ ≤ S0 ⊗ σ = S∗

Therefore S∗ is the maximal solution.

Note that the lemma proves the existence of a maximal solution to System (1.13). Note also that, in the
lemma, function R need not be wide-sense increasing.

32 CHAPTER 1. NETWORK CALCULUS

Now we can use the lemma by showing that R∗ = S∗. Function R is wide-sense increasing, thus so is S∗.
Obviously, R∗ is a solution of System (1.13), thus R∗(t) ≤ S∗(t) for all t. Now if there would be some t
such that R∗(t) �= S∗(t), then this would contradict the condition that the greedy shaper attempts to send
the bits out as early as possible.

The following corollary derives immediately.

COROLLARY 1.5.1 (SERVICE CURVE OFFERED BY A GREEDY SHAPER). Consider a greedy shaper with
shaping curve σ. Assume that σ is sub-additive and σ(0) = 0. This system offers to the flow a service curve
equal to σ.

� � 	 � � � � � � � � � �
� � � � � � � �

� � � � 	 �
�� � �

� � �

Figure 1.14: Reshaping example.

EXAMPLE: BUFFER SIZING AT A RE-SHAPER Re-shaping is often introduced because the output of
a buffer normally does not conform any more with the traffic contract specified at the input. For example,
consider a flow with the arrival curve σ(t) = min(pt+M, rt+ b) that traverses a sequence of nodes, which
offer a service curve β1 = βR,T . A greedy shaper, with shaping curve σ, is placed after the sequence of
nodes (Figure 1.14). The input to the shaper (R in the figure) has an arrival curve α∗, given by Proposi-
tion 1.4.2. Corollary 1.5.1 gives a service curve property for the greedy shaper, thus the buffer B required
at the greedy shaper is the vertical distance v(α∗, σ). After some algebra, we obtain:

B =

⎧⎪⎨⎪⎩
if b−M

p−r < T then b+ Tr

if b−M
p−r ≥ T and p > R then M + (b−M)(p−R)

p−r + TR

else M + Tp

(1.14)

COROLLARY 1.5.2 (BUFFER OCCUPANCY AT A GREEDY SHAPER). Consider a greedy shaper with shap-
ing curve σ. Assume that σ is sub-additive and σ(0) = 0. CallR(t) the input function. The buffer occupancy
x(t) at time t is given by

x(t) = sup
0≤s≤t

{R(t) −R(s) − σ(t− s)}

PROOF: The backlog is defined by x(t) = R(t)−R∗(t), whereR∗ is the output. We apply Theorem 1.5.1
and get:

x(t) = R(t) − inf
0≤s≤t

{R(s) + σ(t− s)} = R(t) + sup
0≤s≤t

{−R(s) − σ(t− s)}

Note that Lemma 1.2.2 is a special case of this corollary.

In min-plus algebraic terms, we say that a system is linear and time invariant if its input-output character-
ization has the form R∗ = R ⊗ β (where β is not necessarily sub-additive). We can thus say from the
theorem that greedy shapers are min-plus linear and time invariant systems. There are min-plus linear and

1.5. GREEDY SHAPERS 33

time invariant system that are not greedy shapers. For example, a node imposing a constant delay T is
characterized by the input-output relationship

R∗ = R⊗ δT

Compare to the guaranteed delay node (namely, a node imposing a variable delay bounded by T), for which
the input-output relationship is a service curve property :

R∗ ≥ R⊗ δT

The rest of this Section illustrates similarly that the input-output characterization of greedy shapers R∗ =
R⊗ σ is much stronger than the service curve property described in Corollary 1.5.1.

1.5.3 PROPERTIES OF GREEDY SHAPERS

Consider again Figure 1.14. We have seen in the previous section how we can compute the buffer size
required at the greedy shaper. Now if greedy shapers are introduced along a path, then some bits may be
delayed at the shaper, thus the end-to-end delay might increase. However, this is not true, as the following
results state that, from a global viewpoint, “greedy shapers come for free”.

THEOREM 1.5.2 (RE-SHAPING DOES NOT INCREASE DELAY OR BUFFER REQUIREMENTS). Assume a
flow, constrained by arrival curve α, is input to networks S1 and S2 in sequence. Assume a greedy shaper,
with curve σ ≥ α is inserted between S1 and S2. Then the backlog and delay bounds given by Theorem
1.4.2 for the system without shaper are also valid for the system with shaper.

The condition σ ≥ α means that re-shaping maybe only partial.

PROOF: Call βi the service curve of Si. The backlog bound in Theorem 1.4.1 is given by

v(α, β1 ⊗ σ ⊗ β2) = v(α, σ ⊗ β1 ⊗ β2) (1.15)

Now the last expression is the backlog bound obtained if we put the shaper immediately at the entrance of
the network. Clearly, this introduces no backlog, which shows that the overall backlog is not influenced by
the shaper. The same reasoning applies to the delay bound.

If you read carefully, you should not agree with the last paragraph. Indeed, there is a subtlety. The bounds in
Section 1.4 are tight, but since we are using several bounds together, there is no guarantee that the resulting
bound is tight. All we can say at this point is that the bound computed for the system with shaper is the
same if we put the shaper in front; we still need to show that the bound for such a system is the same bound
as if there would be no shaper. This can be proven in a number of ways. We give here a computational one.
The proof relies on Lemma 1.5.2, given below.

LEMMA 1.5.2. Let α and σ be “good” functions. Assume α ≤ σ. Then for any function β, v(α, σ ⊗ β) =
v(α, β) and h(α, σ ⊗ β) = h(α, β).

PROOF: We use the reduction to min-plus deconvolution explained in Section 3.1.11. We have:

v(α, σ ⊗ β) = [α� (σ ⊗ β)](0)

Now from Theorem 3.1.12 on Page 123: α � (σ ⊗ β) = (α � σ) � β. Also, since σ ≥ α, we have
α� σ ≤ α� α. Now α� α = α because α is a “good” function, thus

α� (σ ⊗ β) = α� β (1.16)

34 CHAPTER 1. NETWORK CALCULUS

and finally v(α, σ ⊗ β) = v(α, β).

Similarly h(α, β) = inf{d such that (α�β)(−d) ≤ 0} which, combined with Equation (1.16) proves that
h(α, σ ⊗ β) = h(α, β).

Consider again Figure 1.14. Assume that the first network element and the greedy shaper are placed in the
same node. Theorem 1.5.2 says that the total buffer required for this combined node is the same as if there
would be no greedy shaper at the output. Thus, if you can dynamically allocate buffer space from a common
pool to the first network element and the greedy shaper, then the greedy shaper costs no memory. However,
the greedy shaper does need some buffer space, as given in Equation (1.14). Similarly, the theorem says that
there is no penalty for the worst-case delay.

In contrast, placing a greedy shaper has an obvious benefit. The burstiness of the flow admitted in the next
network element is reduced, which also reduces the buffer required in that element. To be more concrete,
consider the example “Pay Bursts Only Once” in Section 1.4.3. Assume that a re-shaper is introduced at
the output of the first node. Then the input to the second node has the same arrival curve as the fresh
input, namely, γr,b instead of γr,b+rT1 . The buffer required for the flow at node 2 is then b+ rT2 instead of
b+ r(T1 + T2).

The following result is another “physical” property of greedy shapers. It says that shaping cannot be undone
by shaping.

THEOREM 1.5.3 (SHAPING CONSERVES ARRIVAL CONSTRAINTS). Assume a flow with arrival curve α
is input to a greedy shaper with shaping curve σ. Assume σ is a “good” function. Then the output flow is
still constrained by the original arrival curve α.

PROOF:
R∗ = R⊗ σ ≤ (R⊗ α) ⊗ σ

since the condition R ≤ R⊗ α expresses that α is an arrival curve. Thus

R∗ ≤ R⊗ σ ⊗ α = R∗ ⊗ α

The output of the greedy shaper has thus min(α, σ) as an arrival curve. If α is also a “good” function, we
know (Lemma 1.2.5) that the sub-additive closure of min(α, σ) is α⊗ σ.

EXAMPLE (ATM MULTIPLEXER): Consider an ATM switch that receives 3 ATM connections, each
constrained by GCRA(10, 0) (periodic connections). The switch serves the connection in any work con-
serving manner and outputs them on a link with rate 1 cell per time slot. What is a good arrival curve for the
aggregate output ?

The aggregate input has an arrival curve α = 3v10,0. Now the server is a greedy shaper with shaping curve
σ = v1,0, thus it keeps arrival constraints. Thus the output is constrained by 3v10,0 ⊗ v1,0, which is a “good”
function. We have already met this example in Figure 1.6.

1.6 MAXIMUM SERVICE CURVE, VARIABLE AND FIXED DELAY

1.6.1 MAXIMUM SERVICE CURVES

If we modify the sense of the inequation in the definition of service curve in Section 1.3, then we obtain a
new concept, called maximum service curve, which is useful to (1) account for constant delays and (2) in
some cases to establish a relationship between delay and backlog.

1.6. MAXIMUM SERVICE CURVE, VARIABLE AND FIXED DELAY 35

DEFINITION 1.6.1 (MAXIMUM SERVICE CURVE). Consider a system S and a flow through S with input
and output function R and R∗. We say that S offers to the flow a maximum service curve γ if and only if
γ ∈ F and R∗ ≤ R⊗ γ

Note that the definition is equivalent to saying that γ is wide-sense increasing and that

R∗(t) ≤ R(s) + γ(t− s)

for all t and all s ≤ t, or equivalently

R∗(t) −R∗(s) ≤ B(s) + γ(t− s)

where B(s) is the backlog at time s. A greedy shaper with shaping curve σ offers σ both as a service curve
and a maximum service curve.

In general, the concept of maximum service curve is not as powerful as the concept of service curve. How-
ever, as we see below, it can be useful to account for maximum rates and for constant propagation delays.
We also see in Chapter 6 that it allows us to find good bounds for aggregate multiplexing.

The following propositions give two special cases of interest. Their proof is easy and left to the reader.

PROPOSITION 1.6.1 (MINIMUM DELAY). A lossless node offers a maximum service curve equal to δT if
and only if it imposes a minimum virtual delay equal to T .

PROPOSITION 1.6.2 (ARRIVAL CONSTRAINT ON OUTPUT). Assume the output of a lossless node is con-
strained by some arrival curve σ. Then the node offers σ as a maximum service curve.

Like minimum service curves, maximum service curves can be concatenated:

THEOREM 1.6.1 (CONCATENATION OF NODES). Assume a flow traverses systems S1 and S2 in sequence.
Assume that Si offers a maximum service curve of γi, i = 1, 2 to the flow. Then the concatenation of the two
systems offers a service curve of γ1 ⊗ γ2 to the flow.

PROOF: The proof mimics the proof of Theorem 1.4.6

APPLICATION: Consider a node with a maximum output rate equal to c and with internal propagation
delay equal to T . It follows from Theorem 1.6.1 and the two previous propositions that this node offers to
any flow a maximum service curve equal to the rate-latency function βc,T (t) = [c(t− T)]+.

Maximum service curves do not allow us to derive as strong results as (ordinary) service curves. However,
they can be used to reduce the output bound and, in some cases, to obtain a minimum delay bound. Indeed,
we have the following two results.

THEOREM 1.6.2 (OUTPUT FLOW, GENERALIZATION OF THEOREM 1.4.3). Assume a flow, constrained
by arrival curve α, traverses a system that offers a service curve β and a maximum service curve γ. The
output flow is constrained by the arrival curve α∗ = (α⊗ γ) � β.

PROOF: Instead of a computational proof as with Theorem 1.4.3, it is simpler at this stage to use min-
plus algebra. Call R and R∗ the input and output functions, and consider R∗ � R∗, the minimum arrival
curve for R∗. We have R∗ ≤ R⊗ γ and R∗ ≥ R⊗ β, thus

R∗ �R∗ ≤ (R⊗ γ) � (R⊗ β)

36 CHAPTER 1. NETWORK CALCULUS

From Rule 12 in Chapter 3, Theorem 3.1.12, applied to f = R⊗ γ, g = R and h = β, we derive

R∗ �R∗ ≤ {(R⊗ γ) �R} � β

Now from the commutativity of ⊗ and from Rule 13 in Theorem 3.1.12:

{(R⊗ γ) �R} = {(γ ⊗R) �R} ≤ {γ ⊗ (R�R)}
Thus

R∗ �R∗ ≤ {γ ⊗ (R�R)} � β ≤ (γ ⊗ α) � β

THEOREM 1.6.3 (MINIMUM DELAY BOUND). Assume a flow, constrained by arrival curve α, traverses a
system that offers a maximum service curve of γ. Assume that γ(D) = 0. The virtual delay d(t) satisfies
d(t) ≥ D for all t.

PROOF: We have R∗(t) ≤ R(t−D) + γ(D) thus R∗(t) ≤ R(t−D)

Note that the output bound is improved by the knowledge of the maximum service curve since in general we
expect α ⊗ γ to be less than α. In contrast, the minimum delay bound gives some new information only in
the cases where there is a latency part in the maximum service curve, which is the case for the first example
(Minimum Delay), but not in general for the second example (Arrival Constraint on Output).

NUMERICAL EXAMPLE: Consider again the example illustrated in Figure 1.13. Let us first apply
Theorem 1.4.3 and compute an arrival curve α∗

0 for the output. The details are as follows. We have

α∗
0 = 10v25,4 � β1,8 = 10v25,4 � (λ1 ⊗ δ8)

Now from Rule 15 in Chapter 3, we have

α∗
0 = (10v25,4 � δ8) � λ1

Now (10v25,4 � δ8)(t) = 10v25,4(t + 8) = 10v25,12(t), and a straightforward application of the definition
of � shows that finally α∗

0 = v25,12.

Assume now that we have more information about the node, and that we can model is as node S1 defined as
the concatenation of two schedulers and a fixed delay element (Figure 1.15). Each scheduler offers to the
aggregate flow a service curve βR0,T0 with rate R0 = 1 cell per time slot and latency T0 = 2 time slots.
The delay element is a link with maximum rate equal to 1 cell per time slot, and a fixed propagation and
transmission delay equal to 4 time slots. The delay element is thus the combination of a greedy shaper with
shaping curve λ1(t) = t and a fixed delay element δ4. We can verify that the concatenation of the three
elements in node 1 offers a service curve equal to β1,2⊗λ1⊗δ4⊗β1,2 = β1,8. Now, from the delay element
allows us to say that, in addition, the node also offers to the aggregate flow a maximum service curve equal
to β1,4. We can apply Theorem 1.6.2 and derive from that the output is constrained by the arrival curve α∗

1

given by
α∗

1 = (α⊗ β1,4) � β1,8

The computation is similar to that of α∗
0 and involves the computation of 10v25,4 ⊗ λ1, which is similar to

the example illustrated in Figure 1.6. Finally, we have:

α∗
1(t) = (10v25,4 ⊗ λ1)(t+ 4)

Figure 1.15 shows that α∗
1 is a better bound than the arrival curve α∗

0 that we would obtain if we did not
know the maximum service curve property.

1.6. MAXIMUM SERVICE CURVE, VARIABLE AND FIXED DELAY 37

� � � . � � � � . �

� � � � $ � (� �

� � � � - � � � � � � � (� �

� � � . � � � � . �

� � � � $ � (� �

� � � � - � � � � � � � (� �

/ � � � � � �

/ � � � � � �

�
� � �

�
� � �

� � � . �
�

� �

�
 �

 �
 �
 �

� � � � �

� � � � � � � � �

� � (� �
 � - � � � . � �

� � . � �

�
 �

 �
 �
 �

� � � � �

� � � � � � � � �

� � � � (� �
 � - � � � . � � � � � � �

� � 	 �
 � � (� � �
 � - � � � . � � � � � � � � � � & � �

� � � 	 �
 � � (� � �
 � - � � � . � � � � � � � � � � �

Figure 1.15: Use of maximum service curve to improve output bound. The figure is for the same example as Fig-
ure 1.15. Top: nodes S1 and S2, two possible implementations of a system offering the overall service curve β1,8.
Middle: arrival curve α and overall service curve β1,8. Bottom: constraint for the output. α∗

0 (top curve, thick, plain line)
is obtained with the only knowledge that the service curve is β1,8. α∗

1 (middle curve, thick, dashed line) is obtained
assuming the system is S1. α∗

2 (bottom curve, thin, plain line) is obtained assuming the system is S2.

38 CHAPTER 1. NETWORK CALCULUS

Assume next that we change the order of the delay element in node S1 and place it as the last element of
the node. Call S2 the resulting node. Then the conclusion of the previous paragraph remains, since the
bounds are insensitive to the order, due to the commutativity of min-plus convolution. Thus the output of
system S2 also has α∗

1 as an arrival curve. However, in that case, we can also model the delay element as
the combination of a shaper, with shaping curve λ1 (corresponding to a fixed rate of 1 cell per time slot),
followed by a fixed delay element, with constant delay equal to 4 time slots. The input to the shaper has an
arrival curve equal to α � β1,4, where α = 10v25,4 is the fresh arrival curve. Thus, from the properties of
shapers, the output of the shaper is constrained by

α∗
2 = (α� β1,4) ⊗ λ1 = 10v25,8 ⊗ λ1

Since the fixed delay component does not alter the flow, the output of system S2 has α∗
2 as an arrival curve.

Figure 1.15 shows that α∗
2 is a better bound than α∗

1.

This fact is true in general: whenever a network element can be modeled as a shaper, then this model
provides stronger bounds than the maximum service.

1.6.2 DELAY FROM BACKLOG

In general it is not possible to bound delay from backlog with the framework of service curves, except in
one particular but important case.

THEOREM 1.6.4. Assume a lossless node offers to a flow a minimum service curve β and a maximum service
curve γ, such that β(t) = γ(t− v). Let f be the max-plus deconvolution γ�γ, that is,

f(t) = inf
s≥0

[γ(s+ t) − γ(s)]

Then the backlog B(t) and the virtual delay d(t) satisfy

f(d(t) − v) ≤ B(t)

If in addition γ is super-additive, then
β(d(t)) ≤ B(t)

PROOF: Fix some t ≥ 0; we haved(t) = inf Et where the set Et is defined by

Et = {s ≥ 0 : R∗(t+ s) ≥ R(t)}
Since R∗ and R are wide-sense increasing, Et is an interval. Thus

d(t) = sup{s ≥ 0 : R∗(t+ s) < R(t)}
We assume that R and R∗ are left-continuous. It follows that

R∗(t+ d(t)) ≤ R(t)

For some arbitrary ε, we can find some s such that

R∗(t+ d(t)) ≥ R(s) + β(t− s+ d(t)) − ε

Now from the maximum service curve property

R∗(t) −R(s) ≤ γ(t− s)

1.6. MAXIMUM SERVICE CURVE, VARIABLE AND FIXED DELAY 39

Combining the three gives

B(t) = R(t) −R∗(t) ≥ β(t− s+ d(t)) − γ(t− s) − ε = γ(t− s+ d(t) − v) − γ(t− s) − ε

and thus
B(t) ≥ inf

u≥0
[γ(d(t) − v + u) − γ(u)] (1.17)

From the definition of f , the latter term is f(d(t) − v). Finally, if γ is super-additive, then γ�γ = γ

We can apply the theorem to a practical case:

COROLLARY 1.6.1. Assume a lossless node offers to a flow a minimum service curve β = βr,v and a
maximum service curve γ = βr,v′ , with v′ ≤ v. The backlog B(t) and the virtual delay d(t) satisfy

d(t) ≤ B(t)
r

+ v

PROOF: We apply the theorem and note that γ is super-additive, because it is convex.

1.6.3 VARIABLE VERSUS FIXED DELAY

Some network elements impose fixed delays (propagation and transmission), whereas some other network
elements impose variable delays (queueing). In a number of cases, it is important to evaluate separately the
total delay and the variable part of the delay. The total delay is important, for example, for determining
throughput and response time; the variable part is important for dimensioning playout buffers (see Sec-
tion 1.1.3 for a simple example, and chapter 5 for a more general discussion). We have seen at the end of
end of Section 1.5.2 that a node imposing a constant delay can be modeled as a min-plus linear system. Be-
yond this, the concept of maximum service curve is a tool for telling apart variable delay from fixed delay,
as follows.

Consider a network, made of a series of network elements 1, ..., I , each element being the combination of a
fixed delay di and a variable delay. Assume the variable delay component offers a service curve βi. A fixed
delay component offers δdi both as a service curve and as a maximum service curve. Define β = β1⊗...⊗βI ;
the network offers as end-to-end service curve β ⊗ δd1+...+dI

, and as end-to-end maximum service curve
δd1+...+dI

. Assume the input flow is constrained by some arrival curve α; from Theorems 1.4.2 and 1.6.3,
the end-to-delay d(t) satisfies

d1 + ...+ dI ≤ d(t) ≤ h(α, β ⊗ δd1+...+dI
)

By simple inspection, h(α, β ⊗ δd1+...+dI
) = d1 + ...+ dI + h(α, β), thus the end-to-end delay satisfies

0 ≤ d(t) − [d1 + ...+ dI] ≤ h(α, β)

In the formula, d1 + ... + dI is the fixed part of the delay, and h(α, β) is the variable part. Thus, for the
computation of the variable part of the delay, we can simply ignore fixed delay components.

Similarly, an arrival curve constraint for the output is

α∗ = (α⊗ δd1+...+dI
) � (β ⊗ δd1+...+dI

) = α� β

thus the fixed delay can be ignored for the computation of the output bound.

For the determination of backlog, the alert reader can easily be convinced that fixed delays cannot be ignored.
In summary:

40 CHAPTER 1. NETWORK CALCULUS

PROPOSITION 1.6.3. 1. For the computation of backlog and fixed delay bounds, fixed or variable delay
are modeled by introducing δT functions in the service curves. As a consequence of the commutativity
of ⊗, such delays can be inserted in any order along a sequence of buffers, without altering the delay
bounds.

2. For the computation of variable delay bounds, or for an arrival constraint on the output, fixed delays
can be ignored.

1.7 HANDLING VARIABLE LENGTH PACKETS

All results in this chapter apply directly to ATM systems, using discrete time models. In contrast, for variable
length packets (as is usually the case with IP services), there are additional subtleties, which we now study
in detail. The main parts in this section is the definition of a packetizer, and a study of its effect on delay,
burstiness and backlog bounds. We also revisit the notion of shaper in a variable length context. For the rest
of this section, time is continuous.

Throughout the section, we will consider some wide sense increasing sequences of packet arrival times
Ti ≥ 0. We assume that for all t the set {i : Ti ≤ t} is finite.

1.7.1 AN EXAMPLE OF IRREGULARITY INTRODUCED BY VARIABLE LENGTH PACKETS

The problem comes from the fact that real packet switching systems normally output entire packets, rather
than a continuous data flow. Consider the example illustrated in Figure 1.16. It shows the output of a
constant bit rate trunk, with rate c, that receives as input a sequence of packets, of different sizes. Call li, Ti

the size (in bits) and the arrival epoch for the ith packet, i = 1, 2, The input function is

R(t) =
∑

i

li1{Ti≤t} (1.18)

In the formula, we used the indicator function 1{expr}which is equal to 1 if expr is true, and 0 otherwise.

We assume, as is usual in most systems, that we observe only entire packets delivered by the trunk. This is
shown as R′(t) in the figure, which results from the bit-by-bit output R∗ by a packetization operation. The
bit-by-bit output R∗ is well understood; we know from Section 1.5 that R∗ = R⊗λr. However, what is the
effect of packetization ? Do the results in Sections 1.4 and 1.5 still hold ?

� � � �

� � � � �

� � � � �

� � � � � �

� � � & � � � � & � � �

� � � & � � �
� �

�

� �� �� � � �� �� �

� � � �

Figure 1.16: A real, variable length packet trunk of constant bit rate, viewed as the concatenation of a greedy shaper
and a packetizer. The input is R(t), the output of the greedy shaper is R∗(t), the final output is the output of the
packetizer is R′(t).

1.7. HANDLING VARIABLE LENGTH PACKETS 41

Certainly, we should expect some modifications. For example, the bit-by-bit output R∗ in the figure is the
output of a greedy shaper with curve λc, thus it has λc as an arrival curve, but this is certainly not true
for R′. Worse, we know that a greedy shaper keeps arrival constraints, thus if R is σ-smooth for some σ,
then so is R∗. However, this is not true for R′. Consider the following example (which is originally from
[34]). Assume that σ(t) = lmax + rt with r < c. Assume that the input flow R(t) sends a first packet
of size l1 = lmax at time T1 = 0, and a second packet of size l2 at time T2 = l2

r . Thus the flow R is
indeed σ-smooth. The departure time for the first packet is T ′

1 = lmax
c . Assume that the second packet l2 is

small, specifically, l2 < r
c lmax; then the two packets are sent back-to-back and thus the departure time for

the second packet is T ′
2 = T ′

1 + l2
c . Now the spacing T ′

2 − T ′
1 is less than l2

r , thus the second packet is not
conformant, in other words, R′ is not σ-smooth. Note that this example is not possible if all packets are the
same size.

We will see in this section that this example is quite general: packetizing variable length packets does
introduce some additional irregularities. However, we are able to quantify them, and we will see that the
irregularities are small (but may be larger than the order of a packet length). Most results are extracted from
[51]

1.7.2 THE PACKETIZER

We first need a few definitions.

DEFINITION 1.7.1 (CUMULATIVE PACKET LENGTHS). A sequence L of cumulative packet lengths is a wide
sense increasing sequence (L(0) = 0, L(1), L(2), ...) such that

lmax = sup
n
{L(n+ 1) − L(n)}

is finite

In this chapter, we interpret L(n) − L(n − 1) as the length of the nth packet. We now introduce a new
building block, which was introduced in [11].

DEFINITION 1.7.2 (FUNCTION PL [11]). Consider a sequence of cumulative packet lengthsL withL(0) =
0. For any real number x, define

PL(x) = sup
n∈N

{L(n)1{L(n)≤x}} (1.19)

Figure 1.17 illustrates the definition. Intuitively, PL(x) is the largest cumulative packet length that is entirely
contained in x. Function PL is right-continuous; ifR is right-continuous, then so is PL(R(t)). For example,
if all packets have unit length, then L(n) = n and for x > 0: PL(x) = �x�. An equivalent characterization
of PL is

PL(x) = L(n) ⇐⇒ L(n) ≤ x < L(n+ 1) (1.20)

DEFINITION 1.7.3 (PACKETIZER [31, 67, 19, 11]). Consider a sequence L of cumulative packet lengths.
An L-packetizer is the system that transforms the input R(t) into PL(R(t)).

For the example in Figure 1.16, we have R′(t) = PL(R∗(t)) and the system can thus be interpreted as the
concatenation of a greedy shaper and a packetizer.

The following equation follows immediately:

x− lmax < PL(x) ≤ x (1.21)

DEFINITION 1.7.4. We say that a flow R(t) is L-packetized if PL(R(t)) = R(t) for all t.

42 CHAPTER 1. NETWORK CALCULUS

 � � �
 � � �

 � � �
 � � �

 � � �

 � � � � � � � � � � � � � � �
�

0 � � �

Figure 1.17: Definition of function P L.

The following properties are easily proven and left to the reader.

• (The packetizer is isotone) If x ≤ y then PL(x) ≤ PL(y) for all x, y ∈ R.
• (PL is idempotent) PL(PL(x)) = PL(x) for all x ∈ R

• (Optimality of Packetizer) We can characterize a packetizer in a similar way as we did for a greedy
shaper in Section 1.5. Among all flows x(t) such that{

x is L-packetized
x ≤ R

(1.22)

there is one that upper-bounds all, and it is PL(R(t)).
The proof for this last item mimics that of Lemma 1.5.1; it relies on the property thatPL is idempotent.

We now study the effect of packetizers on the three bounds found in Section 1.4. We first introduce a
definition.

DEFINITION 1.7.5 (PER-PACKET DELAY). Consider a system with L- packetized input and output. Call
Ti, T

′
i the arrival and departure time for the ith packet. Assume there is no packet loss. The per-packet delay

is supi(T ′
i − Ti)

Our main result in this section is the following theorem, illustrated in Figure 1.18.

THEOREM 1.7.1 (IMPACT OF PACKETIZER). Consider a system (bit-by-bit system) with L-packetized input
R and bit-by-bit output R∗, which is then L-packetized to produce a final packetized output R′. We call
combined system the system that maps R into R′. Assume both systems are first-in-first-out and lossless.

1. The per-packet delay for the combined system is the maximum virtual delay for the bit-by-bit system.
2. CallB∗ the maximum backlog for the bit-by-bit system andB′ the maximum backlog for the combined

system. We have
B∗ ≤ B′ ≤ B∗ + lmax

3. Assume that the bit-by-bit system offers to the flow a maximum service curve γ and a minimum service
curve β. The combined system offers to the flow a maximum service curve γ and a minimum service
curve β′ given by

β′(t) = [β(t) − lmax]+

1.7. HANDLING VARIABLE LENGTH PACKETS 43

4. If some flow S(t) has α(t) as an arrival curve, then PL(S(t)) has α(t) + lmax1{t>0} as an arrival
curve.

The proof of the theorem is given later in this section. Before, we discuss the implications. Item 1 says that

� � � � �
� � �

! � � �
 " �
 � � � � " � � 	 �

� �
 � $ 	 � � � " � � 	 �

� � � � � � � � �
� � � �

Figure 1.18: The scenario and notation in Theorem 1.7.1.

appending a packetizer to a node does not increase the packet delay at this node. However, as we see later,
packetization does increase the end-to-end delay.

Consider again the example in Section 1.7.1. A simple look at the figure shows that the backlog (or required
buffer) is increased by the packetization, as indicated by item 2. Item 4 tells us that the final output R′ has
σ′(t) = σ(t) + lmax1t>0 as an arrival curve, which is consistent with our observation in Section 1.7.1 that
R′ is not σ-smooth, even though R∗ is. We will see in Section 1.7.4 that there is a stronger result, in relation
with the concept of “packetized greedy shaper”.

Item 3 is the most important practical result in this section. It shows that packetizing weakens the service
curve guarantee by one maximum packet length. For example, if a system offers a rate-latency service curve
with rate R, then appending a packetizer to the system has the effect of increasing the latency by lmax

R .

Consider also the example in Figure 1.16. The combination of the trunk and the packetizer can be modeled
as a system offering

• a minimum service curve βc, lmax
c• a maximum service curve λc

PROOF OF THEOREM 1.7.1

1. For some t such that Ti ≤ t < Ti+1 we have R(t) = L(i) and thus

sup
t∈[Ti,Ti+1)

d(t) = d(Ti)

now
d(Ti) = T ′

i − Ti

Combining the two shows that
sup

t
d(t) = sup

i
(T ′

i − Ti)

44 CHAPTER 1. NETWORK CALCULUS

2. The proof is a direct consequence of Equation (1.21).
3. The result on maximum service curve γ follows immediately from Equation (1.21). Consider now the

minimum service curve property.
Fix some time t and define i0 by Ti0 ≤ t < Ti0+1. For 1 ≤ i ≤ i0 and for Ti−1 ≤ s < T1 we have
R(s) = R(Ti−1) and β is wide-sense increasing, thus

inf
Ti−1≤s<Ti

(R(s) + β(t− s)) = R(Ti−1) + βr(t− Ti) = Rl(Ti) + βr(t− Ti)

where βr [resp. Rl] is the limit of β to the right [resp. of R to the left]. Similarly

inf
s∈[Ti0

,t]
(R(s) + β(t− s)) = R(t)

since β(0) = 0. Thus (case 1) either there is some i ≤ i0 such that (R⊗β)(t) = Rl(Ti) +βr(t−Ti)
or (case 2) (R⊗ β)(t) = R(t).
Consider case 1. By hypothesis, R∗(t) ≥ (R⊗ β)(t), thus

R′(t) ≥ R∗(t) − lmax ≥ Rl(Ti) + βr(t− Ti) − lmax

On the other hand, R∗(t) ≥ Rl(Ti) = R(Ti−1) and R is L-packetized, thus

R′(t) ≥ Rl(Ti)

Combining the two shows that

R′(t) ≥ max [Rl(Ti), Rl(Ti) + βr(t− Ti) − lmax]
= Rl(Ti) + max [βr(t− Ti) − lmax, 0]
= Rl(Ti) + β′r(t− Tj)

Now fix some arbitrary ε > 0. By definition of the limit to the right, we can find some s ∈ (Ti−1, Ti)
such that β(t− s) ≤ βr(t− Ti) + ε. Now R(s) = Rl(Ti) thus

R′(t) ≥ R(s) + β(t− s) − ε ≥ (R⊗ β′)(t) − ε

This is true for all ε > 0 thus R′(t) ≥ (R⊗β′)(t), which proves that the service curve property holds
for case 1. The proof for case 2 is immediate.

4. The proof is a direct consequence of Equation (1.21).

EXAMPLE: CONCATENATION OF GPS NODES Consider the concatenation of the theoretical GPS node,
with guaranteed rate R (see Section 1.3.1 on Page 18) and an L-packetizer. Assume this system receives
a flow of variable length packets. This models a theoretical node that would work as a GPS node but is
constrained to deliver entire packets. This is not very realistic, and we will see in Chapter 2 more realistic
implementations of GPS, but this example is sufficient to explain one important effect of packetizers.

By applying Theorem 1.7.1, we find that this node offers a rate-latency service curve βR, lmax
R

. Now con-

catenate m such identical nodes, as illustrated in Figure 1.19. The end-to-end service curve is the rate
latency-function βR,T with

T = m
lmax

R

We see on this example that the additional latency introduced by one packetizer is indeed of the order of one
packet length; however, this effect is multiplied by the number of hops.

1.7. HANDLING VARIABLE LENGTH PACKETS 45

% � �
� � � �

� � � 	 � � & � ' � � 	 $ � " � � � � (� � � ' � �) * �

% � �
�

% � �
�

Figure 1.19: The concatenation of several GPS fluid nodes with packetized outputs

For the computation of the end-to-end delay bound, we need to take into account Theorem 1.7.1, which tells
us that we can forget the last packetizer. Thus, a bound on end-to-end delay is obtained by considering that
the end-to-end path offers a service curve equal to the latency-function βR,T0 with

T0 = (m− 1)
lmax

R

For example, if the original input flow is constrained by one leaky bucket of rate r and bucket pool of size
b, then an end-to-end delay bound is

b+ (m− 1)lmax

R
(1.23)

The alert reader will easily show that this bound is a worst case bound. This illustrates that we should be
careful in interpreting Theorem 1.7.1. It is only at the last hop that the packetizer implies no delay increase.
The interpretation is as follows. Packetization delays the first bits in a packet, which delays the processing
at downstream nodes. This effect is captured in Equation (1.23). In summary:

REMARK 1.7.1. Packetizers do not increase the maximum delay at the node where they are appended.
However, they generally increase the end-to-end delay.

We will see in Chapter 2 that many practical schedulers can be modeled as the concatenation of a node
offering a service curve guarantee and a packetizer, and we will give a practical generalization of Equa-
tion (1.23).

1.7.3 A RELATION BETWEEN GREEDY SHAPER AND PACKETIZER

We have seen previously that appending a packetizer to a greedy shaper weakens the arrival curve property
of the output. There is however a case where this is not true. This case is important for the results in
Section 1.7.4, but also has practical applications of its own. Figure 1.20 illustrates the theorem.

� � � � � � � � � � � � � � � �� � � �

� � � �� � � � � � �

Figure 1.20: Theorem 1.7.2 says that R(1) is σ-smooth.

46 CHAPTER 1. NETWORK CALCULUS

THEOREM 1.7.2. Consider a sequence L of cumulative packet lengths and call PL the L-packetizer. Con-
sider a “good” function σ and assume that{

There is a sub-additive function σ0 and a number l ≥ lmax such that
σ(t) = σ0(t) + l1t>0

(1.24)

Call Cσ the greedy shaper with shaping curve σ. For any input, the output of the composition6PL ◦ Cσ ◦ PL

is σ-smooth.

In practical terms, the theorem is used as follows. Consider an L-packetized flow, pass it through a greedy
shaper with shaping curve σ; and packetize the output; then the result is σ-smooth (assuming that σ satisfies
condition in Equation (1.24) in the theorem).

Note that in general the output of Cσ ◦PL is not L-packetized, even if σ satisfies the condition in the theorem
(finding a counter-example is simple and is left to the reader for her enjoyment). Similarly, if the input to
PL ◦ Cσ is not L-packetized, then the output is not σ-smooth, in general.

The theorem could also be rephrased by saying that, under condition in Equation (1.24)

PL ◦ Cσ ◦ PL = Cσ ◦ PL ◦ Cσ ◦ PL

since the two above operators always produce the same output.

DISCUSSION OF CONDITION IN EQUATION (1.24) Condition Equation (1.24) is satisfied in practice if
σ is concave and σr(0) ≥ lmax, where σr(0) = inft>0 σ(t) is the limit to the right of σ at 0. This occurs for
example if the shaping curve is defined by the conjunction of leaky buckets, all with bucket size at least as
large as the maximum packet size.

This also sheds some light on the example in Figure 1.16: the problem occurs because the shaping curve λC

does not satisfy the condition.

The alert reader will ask herself whether a sufficient condition for Equation (1.24) to hold is that σ is
sub-additive and σr(0) ≥ lmax. Unfortunately, the answer is no. Consider for example the stair function
σ = lmaxvT . We have σr(0) = lmax but if we try to rewrite σ into σ(t) = σ0(t) + l1t>0 we must have
l = lmax and σ0(t) = 0 for t ∈ (0, T]; if we impose that σ0 is sub-additive, the latter implies σ0 = 0 which
is not compatible with Equation (1.24).7

PROOF OF THEOREM 1.7.2: We use the notation in Figure 1.20. We want to show that R(1) is σ-
smooth. We have R∗ = R ⊗ σ. Consider now some arbitrary s and t with s < t. From the definition of
min-plus convolution, for all ε > 0, there is some u ≤ s such that

(R⊗ σ)(s) ≥ R(u) + σ(s− u) − ε (1.25)

Now consider the set E of ε > 0 such that we can find one u < s satisfying the above equation. Two cases
are possible: either 0 is an accumulation point for E8 (case 1) , or not (case 2).

Consider case 1; there is a sequence (εn, sn), with sn < s,

lim
n→+∞ εn = 0

and
(R⊗ σ)(s) ≥ R(sn) + σ(s− sn) − εn

6We use the notation PL ◦ Cσ to denote the composition of the two operators, with Cσ applied first; see Section 4.1.3.
7The same conclusion unfortunately also holds if we replace sub-additive by “star-shaped” (Section 3.1).
8namely, there is a sequence of elements in E which converges to 0

1.7. HANDLING VARIABLE LENGTH PACKETS 47

Now since sn ≤ t:
(R⊗ σ)(t) ≤ R(sn) + σ(t− sn)

Combining the two:

(R⊗ σ)(t) − (R⊗ σ)(s) ≤ σ(t− sn) − σ(s− sn) + εn

Now t− sn > 0 and s− sn > 0 thus

σ(t− sn) − σ(s− sn) = σ0(t− sn) − σ0(s− sn)

We have assumed that σ0 is sub-additive. Now t ≥ s thus

σ0(t− sn) − σ0(s− sn) ≤ σ0(t− s)

we have thus shown that, for all n

(R⊗ σ)(t) − (R⊗ σ)(s) ≤ σ0(t− s) + εn

and thus
(R⊗ σ)(t) − (R⊗ σ)(s) ≤ σ0(t− s)

Now from Equation (1.21), it follows that

R(1)(t) −R(1)(s) ≤ σ0(t− s) + lmax ≤ σ(t− s)

which ends the proof for case 1.

Now consider case 2. There is some ε0 such that for 0 < ε < ε0, we have to take u = s in Equation (1.25).
This implies that

(R⊗ σ)(s) = R(s)

Now R is L-packetized by hypothesis. Thus

R(1)(s) = PL((R⊗ σ)(s)) = PL(R(s)) = R(s) = (R⊗ σ)(s)

thus
R(1)(t) −R(1)(s) = PL((R⊗ σ)(t) − (R⊗ σ)(s)

≤ (R⊗ σ)(t) − (R⊗ σ)(s)

now R⊗ σ has σ as an arrival curve thus

R(1)(t) −R(1)(s) ≤ σ(t− s)

which ends the proof for case 2.

EXAMPLE: BUFFERED LEAKY BUCKET CONTROLLER BASED ON VIRTUAL FINISH TIMES The-
orem 1.7.2 gives us a practical implementation for a packet based shaper. Consider that we want to build a
device that ensures that a packet flow satisfies some concave, piecewise linear arrival curve (and is of course
L- packetized). We can realize such a device as the concatenation of a buffered leaky bucket controller
operating bit-by-bit and a packetizer. We compute the output time for the last bit of a packet (= finish time)
under the bit-by-bit leaky bucket controller, and release the entire packet instantly at this finish time. If each
bucket pool is at least as large as the maximum packet size then Theorem 1.7.2 tells us that the final output
satisfies the leaky bucket constraints.

48 CHAPTER 1. NETWORK CALCULUS

��� � � �

� �

�

� �

�

� � �

� � � �

Figure 1.21: A counter example for Theorem 1.7.2. A burst of 10 packets of size equal to 10 data units arrive at time
t = 0, and σ = 25v1. The greedy shaper emits 25 data units at times 0 and 1, which forces the packetizer to create a
burst of 3 packets at time 1, and thus R(1) is not σ-smooth.

COUNTER-EXAMPLE If we consider non-concave arrival curves, then we can find an arrival curve σ that
does satisfy σ(t) ≥ lmax for t > 0 but that does not satisfy Equation (1.24). In such a case, the conclusion
of Theorem 1.7.2 may not hold in general. Figure 1.21 shows an example where the output R(1) is not
σ-smooth, when σ is a stair function.

1.7.4 PACKETIZED GREEDY SHAPER

We can come back to the questions raised by the example in Figure 1.16 and give a more fundamental
look at the issue of packetized shaping. Instead of synthesizing the concatenation of a greedy shaper and a
packetizer as we did earlier, we define the following, consistent with Section 1.5.

DEFINITION 1.7.6. [Packetized Greedy Shaper] Consider an input sequence of packets, represented by the
function R(t) as in Equation (1.18). Call L the cumulative packet lengths. We call packetized shaper, with
shaping curve σ, a system that forces its output to have σ as an arrival curve and be L-packetized. We call
packetized greedy shaper a packetized shaper that delays the input packets in a buffer, whenever sending a
packet would violate the constraint σ, but outputs them as soon as possible.

EXAMPLE: BUFFERED LEAKY BUCKET CONTROLLER BASED ON BUCKET REPLENISHMENT The
case σ(t) = minm=1,...,M (γrm,bm(t) can be implemented by a controller that observes a set ofM fluid buck-
ets, where the mth bucket is of size bm and leaks at a constant rate rm. Every bucket receives li units of
fluid when packet i is released (li is the size of packet i). A packet is released as soon as the level of fluid
in bucket m allows it, that is, has gone down below bm − li, for all m. We say that now we have defined
a buffered leaky bucket controller based on “bucket replenishment”. It is clear that the output has σ as an
arrival curve, is L-packetized and sends the packets as early as possible. Thus it implements the packetized
greedy shaper. Note that this implementation differs from the buffered leaky bucket controller based on vir-
tual finish times introduced in Section 1.7.3. In the latter, during a period where, say, bucket m only is full,
fragments of a packet are virtually released at rate rm, bucketm remains full, and the (virtual) fragments are

1.7. HANDLING VARIABLE LENGTH PACKETS 49

then re-assembled in the packetizer; in the former, if a bucket becomes full, the controller waits until it emp-
ties by at least the size of the current packet. Thus we expect that the level of fluid in both systems is not the
same, the former being an upper bound. We will see however in Corollary 1.7.1 that both implementations
are equivalent.

In this example, if a bucket size is less than the maximum packet size, then it is never possible to output a
packet: all packets remain stuck in the packet buffer, and the output is R(t) = 0. In general, we can say that

PROPOSITION 1.7.1. If σr(0) < lmax then the the packetized greedy shaper blocks all packets for ever
(namely, R(t) = 0). Thus in this section, we assume that σ(t) ≥ lmax for t > 0.

Thus, for practical cases, we have to assume that the arrival curve σ has a discontinuity at the origin at least
as large as one maximum packet size.

How does the packetized greedy shaper compare with the concatenation of a greedy shaper with shap-
ing curve σ and a packetizer ? We know from the example in Figure 1.16 that the output has σ′(t) =
σ(t) + lmax1t>0 as an arrival curve, but not σ. Now, does the concatenation implement a packetized greedy
shaper with shaping curve σ′ ? Before giving a general answer, we study a fairly general consequence of
Theorem 1.7.2.

THEOREM 1.7.3 (REALIZATION OF PACKETIZED GREEDY SHAPER). Consider a sequence L of cumu-
lative packet lengths and a “good” function σ. Assume that σ satisfies the condition in Equation (1.24).
Consider only inputs that are L packetized. Then the packetized greedy shaper for σ and L can be realized
as the concatenation of the greedy shaper with shaping curve σ and the L-packetizer.

� � � + 	 � � , 	 � �
% � 	 	 � " � � � � � 	 �

� � � � $ � �

� � � �	 �

Figure 1.22: The packetized greedy shaper can be realized as a (bit-by-bit fluid shaper followed by a packetizer,
assuming Equation (1.24) holds. In practice, this means that we can realize packetized greedy shaping by computing
finish times in the virtual fluid system and release packets at their finish times.

PROOF: Call R(t) the packetized input; the output of the bit-by-bit greedy shaper followed by a packe-
tizer is R(1)(t) = PL(R ⊗ σ)(t)). Call R(t) the output of the packetized greedy shaper. We have R ≤ R
thus R⊗ σ ≤ R⊗ σ and thus

PL(R⊗ σ) ≤ PL(R⊗ σ)

But R is σ-smooth, thus R⊗σ = R, and is L-packetized, thus PL(R⊗σ) = R. Thus the former inequality
can be rewritten as R ≤ R(1). Conversely, from Theorem 1.7.2, R(1) is also σ-smooth and L-packetized.
The definition of the packetized greedy shaper implies that R ≥ R(1) (for a formal proof, see Lemma 1.7.1)
thus finally R = R(1).

50 CHAPTER 1. NETWORK CALCULUS

We have seen that the condition in the theorem is satisfied in particular if σ is concave and σr(0) ≥ lmax,
for example if the shaping curve is defined by the conjunction of leaky buckets, all with bucket size at least
as large as the maximum packet size. This shows the following.

COROLLARY 1.7.1. For L-packetized inputs, the implementations of buffered leaky bucket controllers based
on bucket replenishment and virtual finish times are equivalent.

If we relax Equation (1.24) then the construction of the packetized greedy shaper is more complex:

THEOREM 1.7.4 (I/O CHARACTERISATION OF PACKETIZED GREEDY SHAPERS). Consider a packetized
greedy shaper with shaping curve σ and cumulative packet length L. Assume that σ is a “good” function.
The output R(t) of the packetized greedy shaper is given by

R = inf
{
R(1), R(2), R(3), ...

}
(1.26)

with R(1)(t) = PL((σ ⊗R)(t)) and R(i)(t) = PL((σ ⊗R(i−1))(t)) for i ≥ 2.

Figure 1.23 illustrates the theorem, and shows the iterative construction of the output on one example. Note
that this example is for a shaping function that does not satisfy Equation (1.24). Indeed, otherwise, we know
from Theorem 1.7.3 that the iteration stops at the first step, namely, R = R(1) in that case. We can also
check for example that if σ = λr (thus the condition in Proposition 1.7.1 is satisfied) then the result of
Equation (1.26) is 0.

� �

� $ �
�

� � - � � � . �

 � � � � �

� � � �

� � � �

� � � �

Figure 1.23: Representation of the output of the packetized greedy shaper (left) and example of output (right). The
data are the same as with Figure 1.21.

PROOF: The proof is a direct application of Lemma 1.7.1 (which itself is an application of the general
method in Section 4.3 on Page 144).

1.7. HANDLING VARIABLE LENGTH PACKETS 51

LEMMA 1.7.1. Consider a sequence L of cumulative packet lengths and a “good” function σ. Among all
flows x(t) such that ⎧⎨⎩

x ≤ R
x is L-packetized
x has σ as an arrival curve

(1.27)

there is one flow R(t) that upper-bounds all. It is given by Equation (1.26).

PROOF: The lemma is a direct application of Theorem 4.3.1, as explained in Section 4.3.2. However, in
order to make this chapter self-contained, we give an alternative, direct proof, which is quite short.

If x is a solution, then it is straightforward to show by induction on i that x(t) ≤ R(i)(t) and thus x ≤ R.
The difficult part is now to show that R is indeed a solution. We need to show that the three conditions in
Equation (1.27) hold. Firstly, R(1) ≤ R(t) and by induction on i, R(i) ≤ R for all i; thus R ≤ R.

Secondly, consider some fixed t; R(i)(t) is L-packetized for all i ≥ 1. Let L(n0) := R(1)(t). Since
R(i)(t) ≤ R(1)(t), R(i)(t) is in the set

{L(0), L(1), L(2), ..., L(n0)}.
This set is finite, thus, R(t), which is the infimum of elements in this set, has to be one of the L(k) for
k ≤ n0. This shows that R(t) is L-packetized, and this is true for any time t.

Thirdly, we have, for all i

R(t) ≤ R(i+1)(t) = PL((σ ⊗R(i))(t)) ≤ (σ ⊗R(i))(t)

thus
R ≤ inf

i
(σ ⊗R(i))

Now convolution by a fixed function is upper-semi-continuous, which means that

inf
i

(σ ⊗R(i)) = σ ⊗R

This is a general result in Chapter 4 for any min-plus operator. An elementary proof is as follows.

infi(σ ⊗R(i))(t) = infs∈[0,t],i∈N

[
σ(s) +R(i)(t− s)

]
= infs∈[0,t]

{
infi∈N

[
(σ(s) +R(i)(t− s)

]}
= infs∈[0,t]

{
σ(s) + infi∈N

[
R(i)(t− s)

]}
= infs∈[0,t]

[
σ(s) +R(t− s)

]
= (σ ⊗R)(t)

Thus
R ≤ σ ⊗R,

which shows the third condition. Note that R is wide-sense increasing.

DOES A PACKETIZED GREEDY SHAPER KEEP ARRIVAL CONSTRAINTS ? Figure 1.24 shows a counter-
example, namely, a variable length packet flow that has lost its initial arrival curve constraint after traversing
a packetized greedy shaper.

However, if arrival curves are defined by leaky buckets, we have a positive result.

THEOREM 1.7.5 (CONSERVATION OF CONCAVE ARRIVAL CONSTRAINTS). Assume an L-packetized flow
with arrival curve α is input to a packetized greedy shaper with cumulative packet length L and shaping
curve σ. Assume that α and σ are concave with αr(0) ≥ lmax and σr(0) ≥ lmax. Then the output flow is
still constrained by the original arrival curve α.

52 CHAPTER 1. NETWORK CALCULUS

 � � � � �

�

�

Figure 1.24: The input flow is shown above; it consists of 3 packets of size 10 data units and one of size 5 data units,
spaced by one time unit. It is α-smooth with α = 10v1,0. The bottom flow is the output of the packetized greedy shaper
with σ = 25v3,0. The output has a burst of 15 data units packets at time 3. It is σ-smooth but not α-smooth.

PROOF: Since σ satisfies Equation (1.24), it follows from Theorem 1.7.3 that R = PL(σ ⊗R). Now R
is α-smooth thus it is not modified by a bit-by-bit greedy shaper with shaping curve α, thus R = α ⊗ R.
Combining the two and using the associativity of ⊗ gives R = PL[(σ ⊗ α) ⊗ R]. From our hypothesis,
σ ⊗ α = min(σ, α) (see Theorem 3.1.6 on Page 112) and thus σ ⊗ α satisfies Equation (1.24). Thus, by
Theorem 1.7.2, R is σ ⊗ α-smooth, and thus α-smooth.

SERIES DECOMPOSITION OF SHAPERS

THEOREM 1.7.6. Consider a tandem of M packetized greedy shapers in series; assume that the shaping
curve σm of the mth shaper is concave with σm

r (0) ≥ lmax. For L-packetized inputs, the tandem is equiva-
lent to the packetized greedy shaper with shaping curve σ = minm σm.

PROOF: We do the proof for M = 2 as it extends without difficulty to larger values of M . Call R(t) the
packetized input, R′(t) the output of the tandem of shapers, and R(t) the output of the packetized greedy
shaper with input R(t).

Firstly, by Theorem 1.7.3
R′ = PL[σ2 ⊗ PL(σ1 ⊗R)]

Now σm ≥ σ for all m thus
R′ ≥ PL[σ ⊗ PL(σ ⊗R)]

Again by Theorem 1.7.3, we have R = PL(σ ⊗ R). Moreover R is L-packetized and σ-smooth, thus
R = PL(R) and R = σ ⊗R. Thus finally

R′ ≥ R (1.28)

Secondly, R′ is L-packetized and by Theorem 1.7.5, it is σ-smooth. Thus the tandem is a packetized
(possibly non greedy) shaper. Since R(t) is the output of the packetized greedy shaper, we must have
R′ ≤ R. Combining with Equation (1.28) ends the proof.

It follows that a shaper with shaping curve σ(t) = minm=1,...,M (rmt + bm), where bm ≥ lmax for all
m, can be implemented by a tandem of M individual leaky buckets, in any order. Furthermore, by Corol-
lary 1.7.1, every individual leaky bucket may independently be based either on virtual finish times or on
bucket replenishment.

If the condition in the theorem is not satisfied, then the conclusion may not hold. Indeed, for the example
in Figure 1.24, the tandem of packetized greedy shapers with curves α and σ does not have an α-smooth
output, therefore it cannot be equivalent to the packetized greedy shaper with curve min(α, σ).

1.8. EFFECTIVE BANDWIDTH AND EQUIVALENT CAPACITY 53

Unfortunately, the other shaper properties seen in Section 1.5 do not generally hold. For shaping curves
that satisfy Equation (1.24), and when a packetized greedy shaper is introduced, we need to compute the
end-to-end service curve by applying Theorem 1.7.1.

1.8 LOSSLESS EFFECTIVE BANDWIDTH AND EQUIVALENT CAPACITY

1.8.1 EFFECTIVE BANDWIDTH OF A FLOW

We can apply the results in this chapter to define a function of a flow called the effective bandwidth. This
function characterizes the bit rate required for a given flow. More precisely, consider a flow with cumulative
function R; for a fixed, but arbitrary delay D, we define the effective bandwidth eD(R) of the flow as the bit
rate required to serve the flow in a work conserving manner, with a virtual delay ≤ D.

PROPOSITION 1.8.1. The effective bandwidth of a flow is given by

eD(R) = sup
0≤s≤t

R(t) −R(s)
t− s+D

(1.29)

For an arrival curve α we define the effective bandwidth eD(α) as the effective bandwidth of the greedy
flow R = α. By a simple manipulation of Equation 1.29, the following comes.

PROPOSITION 1.8.2. The effective bandwidth of a “good” arrival curve is given by

eD(α) = sup
0≤s

α(s)
s+D

(1.30)

The alert reader will check that the effective bandwidth of a flow R is also the effective bandwidth of its
minimum arrival curve R�R. For example, for a flow with T-SPEC (p,M, r, b), the effective bandwidth is
the maximum of r and the slopes of lines (QA0) and (QA1) in Figure 1.25; it is thus equal to:

eD = max

{
M

D
, r, p

(
1 −

D − M
p

b−M
p−r +D

)}
(1.31)

Assume α is sub-additive. We define the sustainable rate m as m = lim infs→+∞
α(s)

s and the peak rate by

/

0

0 �

1

� ' � � 	 � �

� ' � � 	 � �

� � � � 2 � ' � � 3 � 2 	

 4 5 4 � 4 � 4 5 � �
�

5

�

�

Figure 1.25: Computation of Effective Bandwidth for a VBR flow (left); example for r = 20 packets/second, M = 10
packets, p = 200 packets per second and b = 26 packets (right).

p = sups>0
α(s)

s . Thenm ≤ eD(α) ≤ p for allD. Moreover, if α is concave, then limD→+∞ eD(α) = m.If
α is differentiable, e(D) is the slope of the tangent to the arrival curve, drawn from the time axis at t = −D
(Figure 1.26). It follows also directly from the definition in (1.29) that

54 CHAPTER 1. NETWORK CALCULUS

bits

-D

slope = effective
 bandwidth

arrival
curve

bits

B

slope = equivalent
capacity

arrival
curve

time

Figure 1.26: Effective Bandwidth for a delay constraint D and Equivalent Capacity for a buffer size B

eD(
∑

i

αi) ≤
∑

i

eD(αi) (1.32)

In other words, the effective bandwidth for an aggregate flow is less than or equal to the sum of effective
bandwidths. If the flows have all identical arrival curves, then the aggregate effective bandwidth is simply
I × eD(α1). It is this latter relation that is the origin of the term “effective bandwidth”. The difference∑

i eD(αi) − eD(
∑

i αi) is a buffering gain; it tells us how much capacity is saved by sharing a buffer
between the flows.

1.8.2 EQUIVALENT CAPACITY

Similar results hold if we replace delay constraints by the requirement that a fixed buffer size is not exceeded.
Indeed, the queue with constant rate C, guarantees a maximum backlog of B (in bits) for a flow R if
C ≥ fB(R), with

fB(R) = sup
0≤s<t

R(t) −R(s) −B

t− s
(1.33)

Similarly, for a “good” function α, we have:

fB(α) = sup
s>0

α(s) −B

s
(1.34)

We call fB(α) the equivalent capacity, by analogy to [48]. Similar to effective bandwidth, the equivalent
capacity of a heterogeneous mix of flows is less than or equal to the sum of equivalent capacities of the
flows, provided that the buffers are also added up; in other words, fB(α) ≤ ∑

i fBi(αi), with α =
∑

i αi

and B =
∑

iBi. Figure 1.26 gives a graphical interpretation.

For example, for a flow with T-SPEC (p,M, r, b), using the same method as above, we find the following
equivalent capacity:

fB =

{
if B < M then + ∞
else r + (p−r)(b−B)+

b−M

(1.35)

An immediate computation shows that fb(γr,b) = r. In other words, if we allocate to a flow, constrained by
an affine function γr,b, a capacity equal to its sustainable rate r, then a buffer equal to its burst tolerance b is
sufficient to ensure loss-free operation.

Consider now a mixture of Intserv flows (or VBR connections), with T-SPECs (Mi, pi, ri, bi). If we allocate
to this aggregate of flows the sum of their sustainable rates

∑
i ri, then the buffer requirement is the sum of

1.8. EFFECTIVE BANDWIDTH AND EQUIVALENT CAPACITY 55

the burst tolerances
∑

i bi, regardless of other parameters such as peak rate. Conversely, Equation 1.35 also
illustrates that there is no point allocating more buffer than the burst tolerance: if B > b, then the equivalent
capacity is still r.

The above has illustrated that it is possible to reduce the required buffer or delay by allocating a rate larger
than the sustainable rate. In Section 2.2, we described how this may be done with a protocol such as RSVP.

Note that formulas (1.29) or (1.33), or both, can be used to estimate the capacity required for a flow, based
on a measured arrival curve. We can view them as low-pass filters on the flow function R.

1.8.3 EXAMPLE: ACCEPTANCE REGION FOR A FIFO MULTIPLEXER

Consider a node multiplexing n1 flows of type 1 and n2 flows of type 2, where every flow is defined by a
T-SPEC (pi,Mi, ri, bi). The node has a constant output rate C. We wonder how many flows the node can
accept.

If the only condition for flow acceptance is that the delay for all flows is bounded by some value D, then the
set of acceptable values of (n1, n2) is defined by

eD(n1α1 + n2α2) ≤ C

We can use the same convexity arguments as for the derivation of formula (1.31), applied to the function
n1α1 + n2α2. Define θi = bi−M

pi−ri
and assume θ1 ≤ θ2. The result is:

eD(n1α1 + n2α2) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n1M1+n2M2

D ,
n1M1+n2M2+(n1p1+n2p2)θ1

θ1+D ,
n1b1+n2M2+(n1r1+n2p2)θ2

θ2+D ,

n1r1 + n2r2

The set of feasible (n1, n2) derives directly from the previous equation; it is the convex part shown in
Figure 1.27. The alert reader will enjoy performing the computation of the equivalent capacity for the case
where the acceptance condition bears on a buffer size B.

i pi Mi ri bi θi

1 20’000 packets/s 1 packet 500 packets/s 26 packets 1.3 ms
2 5’000 packets/s 1 packet 500 packets/s 251 packets 55.5 ms

Figure 1.27: Acceptance region for a mix of type 1 and type 2 flows. Maximum delay D = xx. The parameters for
types 1 and 2 are shown in the table, together with the resulting values of θi.

Coming back to equation 1.32, we can state in more general terms that the effective bandwidth is a convex
function of function α, namely:

eD(aα1 + (1 − a)α2) ≤ aeD(α1) + (1 − a)eD(α2)

for all a ∈ [0, 1]. The same is true for the equivalent capacity function.

Consider now a call acceptance criterion based solely on a delay bound, or based on a maximum buffer
constraint, or both. Consider further that there are I types of connections, and define the acceptance region
A as the set of values (n1, . . . , nI) that satisfy the call acceptance criterion, where ni is the number of
connections of class i. From the convexity of the effective bandwidth and equivalent capacity functions,
it follows that the acceptance region A is convex. In chapter 9 we compare this to acceptance regions for
systems with some positive loss probability.

56 CHAPTER 1. NETWORK CALCULUS

SUSTAINABLE RATE ALLOCATION If we are interested only in course results, then we can reconsider
the previous solution and take into account only the sustainable rate of the connection mix. The aggregate
flow is constrained (among others) by α(s) = b + rs, with b =

∑
i nibi and r =

∑
i niri. Theorem 1.4.1

shows that the maximum aggregate buffer occupancy is bounded by b as long as C ≥ r. In other words,
allocating the sustainable rate guarantees a loss-free operation, as long as the total buffer is equal to the
burstiness.

In a more general setting, assume an aggregate flow has α as minimum arrival curve, and assume that some
parameters r and b are such that

lim
s→+∞α(s) − rs− b = 0

so that the sustainable rate r with burstiness b is a tight bound. It can easily be shown that if we allocate a
rate C = r, then the maximum buffer occupancy is b.

Consider now multiplexing a number of VBR connections. If no buffer is available, then it is necessary
for a loss-free operation to allocate the sum of the peak rates. In contrast, using a buffer of size b makes it
possible to allocate only the sustainable rate. This is what we call the buffering gain, namely, the gain on
the peak rate obtained by adding some buffer. The buffering gain comes at the expense of increased delay,
as can easily be seen from Theorem 1.4.2.

1.9 PROOF OF THEOREM 1.4.5

STEP 1: Consider a fixed time t0 and assume, in this step, that there is some time u0 that achieves the
supremum in the definition of α � β. We construct some input and output functions R and R∗ such that
R is constrained by α, the system (R,R∗) is causal, and α∗(t0) = (R∗ � R∗)(t0). R and R∗ are given by
(Figure 1.28)

� � �

� � � �

�

�

� �

�

-
 -
 � & � �

Figure 1.28: Step 1 of the proof of Theorem 1.4.5: a system that attains the output bound at one value t0.⎧⎪⎪⎨⎪⎪⎩
R(t) = α(t) if t < u0 + t0
R(t) = α(u0 + t0) if t ≥ u0 + t0
R∗(t) = inf[α(t), β(t)] if t < u0 + t0
R∗(t) = R(t) if t ≥ u0 + t0

It is easy to see, as in the proof of Theorem 1.4.4 that R and R∗ are wide-sense increasing, that R∗ ≤ R and
that β is a service curve for the flow. Now

R∗(u0 + t0) −R∗(u0) = α(u0 + t0) −R∗(u0) ≥ α(u0 + t0) − β(u0) = α∗(t0)

STEP 2: Consider now a sequence of times t0, t1, ..., tn, ... (not necessarily increasing). Assume, in this
step, that for all n there is a value un that achieves the supremum in the definition of (α�β)(tn). We prove
that there are some functions R and R∗ such that R is constrained by α, the system (R,R∗) is causal, has β
as a service curve, and α∗(tn) = (R∗ �R∗)(tn) for all n ≥ 0.

1.9. PROOF OF THEOREM 1.4.5 57

We build R and R∗ by induction on a set of increasing intervals [0, s0], [0, s1],..., [0, sn].... The induction
property is that the system restricted to time interval [0, sn] is causal, has α as an arrival curve for the input,
has β as a service curve, and satisfies α∗(ti) = (R∗ �R∗)(ti) for i ≤ n.

The first interval is defined by s0 = u0 + t0; R and R∗ are built on [0, s0] as in step 1 above. Clearly,
the induction property is true for n = 0. Assume we have built the system on interval [0, sn]. Define now
sn+1 = sn + un + tn + δn+1. We chose δn+1 such that

α(s+ δn+1) − α(s) ≥ R(sn) for all s ≥ 0 (1.36)

This is possible from the last condition in the Theorem. The system is defined on]sn, sn+1] by (Figure 1.29)⎧⎪⎪⎨⎪⎪⎩
R(t) = R∗(t) = R(sn) for sn < t ≤ sn + δn+1

R(t) = R(sn) + α(t− sn − δn+1) for sn + δn+1 < t ≤ sn+1

R∗(t) = R(sn) + (α ∧ β)(t− sn − δn+1) for sn + δn+1 < t < sn+1

R∗(sn+1) = R(sn+1)

We show now that the arrival curve constraint is satisfied for the system defined on [0, sn+1]. Consider

� � �

� � � �

�

�

-
 �
 (� -
 � & � �

�

�

� �

� �

- � � �

� �

�

�

�

� � - � � �

� �

Figure 1.29: Step 2 of the proof of Theorem 1.4.5: a system that attains the output bound for all values tn, n ∈ N.

R(t)−R(v) for t and v in [0, sn+1]. If both t ≤ sn and v ≤ sn, or if both t > sn and v > sn then the arrival
curve property holds from our construction and the induction property. We can thus assume that t > sn and
v ≤ sn. Clearly, we can even assume that t ≥ sn + δn+1, otherwise the property is trivially true. Let us
rewrite t = sn + δn+1 + s. We have, from our construction:

R(t) −R(v) = R(sn + δn+1 + s) −R(v) = R(sn) + α(s) −R(v) ≤ R(sn) + α(s)

Now from Equation (1.36), we have:

R(sn) + α(s) ≤ α(s+ δn+1) ≤ α(s+ δn+1 + sn − v) = α(t− v)

which shows the arrival curve property.

Using the same arguments as in step 1, it is simple to show that the system is causal, has β as a service
curve, and that

R∗(un+1 + tn+1) −R∗(un+1) = α∗(tn+1)

which ends the proof that the induction property is also true for n+ 1.

58 CHAPTER 1. NETWORK CALCULUS

STEP 3: Consider, as in step 2, a sequence of times t0, t1, ..., tn, ... (not necessarily increasing). We now
extend the result in step 2 to the case where the supremum in the definition of α∗ = (α � β)(tn) is not
necessarily attained. Assume first that α∗(tn) is finite for all n. For all n and all m ∈ N∗ there is some um,n

such that

α(tn + um,n) − β(um,n) ≥ α∗(tn) − 1
m

(1.37)

Now the set of all couples (m,n) is enumerable. Consider some numbering (M(i), N(i)), i ∈ N for that
set. Using the same construction as in step 2, we can build by induction on i a sequence of increasing
intervals [0, si] and a system (R,R∗) that is causal, has α as an arrival curve for the input, has β as a service
curve, and such that

R∗(si) −R∗(si − tN(i)) ≥ α∗(tN(i)) −
1

M(i)
Now consider an arbitrary, but fixed n. By applying the previous equations to all i such that N(i) = n, we
obtain

(R∗ �R∗)(tn) ≥ supi such that N(i)=n

{
α∗(tN(i)) − 1

M(i)

}
= α∗(tn) − infi such that N(i)=n

{
1

M(i)

}
Now the set of all 1

M(i) for i such that N(i) = n is N∗, thus

inf
i such that N(i)=n

{
1

M(i)

}
= 0

and thus (R∗ � R∗)(tn) = α∗(tn), which ends the proof of step 3 in the case where α∗(tn) is finite for all
n.

A similar reasoning can be used if α∗(tn) is infinite for some tn. In that case replace Equation (1.37) by
α(tn + um,n) − β(um,n) ≥ m.

STEP 4: Now we conclude the proof. If time is discrete, then step 3 proves the theorem. Otherwise we
use a density argument. The set of nonnegative rational numbers Q+ is enumerable; we can thus apply step
3 to the sequence of all elements of Q+, and obtain system (R,R∗), with

(R∗ �R∗)(q) = α∗(q) for all q ∈ Q+

Function R∗ is right-continuous, thus, from the discussion at the end of Theorem 1.2.2, it follows that
R∗ �R∗ is left-continuous. We now show that α∗ is also left-continuous. For all t ≥ 0 we have:

sup
s<t

α∗(s) = sup
(s,v) such that s<t and v≥0

{α(s+ v) − β(v)} = sup
v≥0

{sup
s<t

[α(s+ v) − β(v)]}

Now
sup
s<t

α(s+ v) = α(t+ v)

because α is left-continuous. Thus

sup
s<t

α∗(s) = sup
v≥0

{α(t+ v) − β(v)]} = α∗(t)

which shows that α is left-continuous.

Back to the main argument of step 4, consider some arbitrary t ≥ 0. The set Q+ is dense in the set of
nonnegative real numbers, thus there is a sequence of rational numbers qn ∈ Q+, with n ∈ N, such that
qn ≤ t and limn→+∞ qn = t. From the left-continuity of R∗ �R∗ and α∗ we have:

(R∗ �R∗)(t) = lim
n→+∞(R∗ �R∗)(qn) = lim

n→+∞α∗(qn) = α∗(t)

1.10. BIBLIOGRAPHIC NOTES 59

1.10 BIBLIOGRAPHIC NOTES

Network calculus as has been applied to dimensioning ATM switches in [60]. A practical algorithm for
the determination of the minimum arrival curve for ATM system is described in [61]. It uses the burstiness
function of a flow, defined in [57] as follows. For any r, B(r) is the minimum b such that the flow is
γr,b-smooth, and is thus the required buffer if the flow is served at a constant rate r. Note that B(r) is the
Legendre transform of the minimum arrival curve σ of the flow, namely, B(r) = supt≥0(σ(t) − rt) [61]
gives a fast algorithm for computing B(r). Interestingly, the concept is applied also to the distribution of
symbols in a text.

In [78], the concepts of arrival and service curve are used to analyze real time processing systems. It is
shown that the service curve for a variable capacity node must be super-additive, and conversely, any super-
additive function is a service curve for a variable capacity node. Compare to greedy shapers, which have a
sub-additive service curve. This shows that, except for constant bit rate trunks, a greedy shaper cannot be
modeled as a variable capacity node, and conversely.

In [9], the authors consider a crossbar switch, and call ri,j the rate assigned to the traffic from input port i
to output port j. Assume that

∑
i ri,j ≤ 1 for all j and

∑
j ri,j ≤ 1 for all i. Using properties of doubly-

stochastic matrices (such as (ri,j) is), they give a simple scheduling algorithm that guarantees that the flow
from port i to port j is allocated a variable capacity C satisfying Ci,j(t) − Ci,j(s) ≥ ri,j(t − s) − si,j for
some si,j defined by the algorithm. Thus, the node offers a service curve equal to the rate-latency function
βri,j ,si,j .

A dual approach to account for variable length packets is introduced in [11]. It consists in replacing the
definition of arrival curve (or σ-smoothness) by the concept of g-regularity. Consider a flow of variable
length packets, with cumulative packet length L and call Ti the arrival epoch for the ith packet. The flow
is said to be g-regular if T (j) − T (i) ≥ g(L(j) − L(i)) for all packet numbers i ≤ j. A theory is then
developed with concepts similar to the greedy shaper. The theory uses max-plus convolution instead of min-
plus convolution. The (b, r) regulator originally introduced by Cruz [21] is a shaper in this theory, whose

output is g-regular, with g(x) = (x−b)
r

+
. This theory does not exactly correspond to the usual concept of

leaky bucket controllers. More specifically, there is not an exact correspondence between the set of flows
that are g-regular on one hand, and that are σ-smooth on the other. We explain why with an example.
Consider the set of flows that are g-regular, with g(x) = x

r . The minimum arrival curve we can put on this
set of flows is σ(t) = rt + lmax [11]. But conversely, if a flow is σ-smooth, we cannot guarantee that it is
g-regular. Indeed, the following sequence of packets is a flow that is σ-smooth but not g-regular: the flow
has a short packet (length l1 < lmax) at time T1 = 0, followed by a packet of maximum size lmax at time

T2 = l1
r . In fact, if a flow is σ-smooth, then it is g′-regular, with g′(x) = (x−lmax)

r

+
.

The strict service curve in Definition 1.3.2 is called “strong” service curve in [47].

1.11 EXERCISES

EXERCISE 1.1. Compute the maximum buffer sizeX for a system that is initially empty, and where the input
function is R(t) =

∫ t
0 r(s)ds, for the following cases.

1. if r(t) = a (constant)
2. one on-off connection with peak rate 1 Mb/s, on period 1 sec, off period τ seconds, and trunk bit rate
c = 0.5 Mb/s.

3. if r(t) = c+ c sinωt, with trunk bit rate c > 0.

EXERCISE 1.2. You have a fixed buffer of size X , that receives a data input r(t). Determine the output rate
c that is required to avoid buffer overflow given that the buffer is initially empty.

60 CHAPTER 1. NETWORK CALCULUS

EXERCISE 1.3. 1. For a flow with constant bit rate c, give some possible arrival curves.
2. Consider a flow with an arrival curve given by: α(t) = B, where B is constant. What does this mean

for the flow ?

EXERCISE 1.4. We say that a flow is (P,B) constrained if it has γP,B as an arrival curve.

A trunk system has a buffer size of B and a trunk bitrate of P . Fill in the dots: (1) there is no loss if
the input is (., .) constrained (2) the output is (., .) constrained.

1.2. A (P,B) constrained flow is fed into an infinite buffer served at a rate of c. What is the maximum
delay ?

EXERCISE 1.5 (ON-OFF FLOWS). 1. Assume a data flow is periodical, with period T , and satisfies the
following: r(t) = p for 0 ≤ t < T0, and r(t) = 0 for T0 ≤ t < T .

(a) Draw R(t) =
∫ t
0 r(s)ds

(b) Find an arrival curve for the flow. Find the minimum arrival curve for the flow.
(c) Find the minimum (r, b) such that the flow is (r, b) constrained.

2. A traffic flow uses a link with bitrate P (bits/s). Data is sent as packets of variable length. The flow
is controlled by a leaky bucket (r, b). What is the maximum packet size ? What is the minimum time
interval between packets of maximum size ?
Application: P = 2 Mb/s, r = 0.2 Mb/s; what is the required burst tolerance b if the packet length is 2
Kbytes ? What is then the minimum spacing between packets ?

EXERCISE 1.6. Consider the following alternative definition of the GCRA:

DEFINITION 1.11.1. The GCRA (T, τ) is a controller that takes as input a cell arrival time t and returns
result. It has internal (static) variables X (bucket level) and LCT (last conformance time).

• initially, X = 0 and LCT = 0
• when a cell arrives at time t, then

if (X - t + LCT > tau)
result = NON-CONFORMANT;

else {
X = max (X - t + LCT, 0) + T;
LCT = t;
result = CONFORMANT;
}

Show that the two definitions of GCRA are equivalent.

EXERCISE 1.7. 1. For the following flows and a GCRA(10, 2), give the conformant and non-conformant
cells. Times are in cell slots at the link rate. Draw the leaky bucket behaviour assuming instantaneous
cell arrivals.

(a) 0, 10, 18, 28, 38
(b) 0, 10, 15, 25, 35
(c) 0, 10, 18, 26, 36
(d) 0, 10, 11, 18, 28

2. What is the maximum number of cells that can flow back to back with GCRA(T, CDVT) (maximum
“clump” size) ?

1.11. EXERCISES 61

EXERCISE 1.8. 1. For the following flows and a GCRA(100, 500), give the conformant and non-conformant
cells. Times are in cell slots at the link rate.

(a) 0, 100, 110, 12, 130, 140, 150, 160, 170, 180, 1000, 1010
(b) 0, 100, 130, 160, 190, 220, 250, 280, 310, 1000, 1030
(c) 0, 10, 20, 300, 310, 320, 600, 610, 620, 800, 810, 820, 1000, 1010, 1020, 1200, 1210, 1220,

1400, 1410, 1420, 1600, 1610, 1620

2. Assume that a cell flow has a minimum spacing of γ time units between cell emission times (γ is the
minimum time between the beginnings of two cell transmissions). What is the maximum burst size for
GCRA(T, τ) ? What is the minimum time between bursts of maximum size ?

3. Assume that a cell flow has a minimum spacing between cells of γ time units, and a minimum spacing
between bursts of TI . What is the maximum burst size ?

EXERCISE 1.9. For a CBR connection, here are some values from an ATM operator:

peak cell rate (cells/s) 100 1000 10000 100000
CDVT (microseconds) 2900 1200 400 135

1. What are the (P,B) parameters in b/s and bits for each case ? How does T compare to τ ?
2. If a connection requires a peak cell rate of 1000 cells per second and a cell delay variation of 1400

microseconds, what can be done ?
3. Assume the operator allocates the peak rate to every connection at one buffer. What is the amount

of buffer required to assure absence of loss ? Numerical Application for each of the following cases,
where a number N of identical connections with peak cell rate P is multiplexed.
case 1 2 3 4
nb of connnections 3000 300 30 3
peak cell rate (c/s) 100 1000 10000 100000

EXERCISE 1.10. The two questions in this problem are independent.

1. An ATM source is constrained by GCRA(T = 30 slots, τ = 60 slots), where time is counted in slots.
One slot is the time it takes to transmit one cell on the link. The source sends cells according to the
following algorithm.

• In a first phase, cells are sent at times t(1) = 0, t(2) = 15, t(3) = 30, . . . , t(n) = 15(n − 1)
as long as all cells are conformant. In other words, the number n is the largest integer such that
all cells sent at times t(i) = 15(i− 1), i ≤ n are conformant. The sending of cell n at time t(n)
ends the first phase.

• Then the source enters the second phase. The subsequent cell n + 1 is sent at the earliest time
after t(n) at which a conformant cell can be sent, and the same is repeated for ever. In other
words, call t(k) the sending time for cell k, with k > n; we have then: t(k) is the earliest time
after t(k − 1) at which a conformant cell can be sent.

How many cells were sent by the source in time interval [0, 151] ?
2. A network node can be modeled as a single buffer with a constant output rate c (in cells per second).

It receives I ATM connections labeled 1, . . . , I . Each ATM connection has a peak cell rate pi (in cells
per second) and a cell delay variation tolerance τi (in seconds) for 1 ≤ i ≤ I . The total input rate
into the buffer is at least as large as

∑I
i=1 pi (which is equivalent to saying that it is unlimited). What

is the buffer size (in cells) required for a loss-free operation ?

EXERCISE 1.11. In this problem, time is counted in slots. One slot is the duration to transmit one ATM cell
on the link.

62 CHAPTER 1. NETWORK CALCULUS

1. An ATM source S1 is constrained by GCRA(T = 50 slots, τ = 500 slots), The source sends cells
according to the following algorithm.

• In a first phase, cells are sent at times t(1) = 0, t(2) = 10, t(3) = 20, . . . , t(n) = 10(n − 1)
as long as all cells are conformant. In other words, the number n is the largest integer such that
all cells sent at times t(i) = 10(i− 1), i ≤ n are conformant. The sending of cell n at time t(n)
ends the first phase.

• Then the source enters the second phase. The subsequent cell n + 1 is sent at the earliest time
after t(n) at which a conformant cell can be sent, and the same is repeated for ever. In other
words, call t(k) the sending time for cell k, with k > n; we have then: t(k) is the earliest time
after t(k − 1) at which a conformant cell can be sent.

How many cells were sent by the source in time interval [0, 401] ?
2. An ATM source S2 is constrained by both GCRA(T = 10 slots, τ = 2 slots) and GCRA(T = 50 slots,
τ = 500 slots). The source starts at time 0, and has an infinite supply of cells to send. The source
sends its cells as soon as it is permitted by the combination of the GCRAs. We call t(n) the time at
which the source sends the nth cell, with t(1) = 0. What is the value of t(15) ?

EXERCISE 1.12. Consider a flow R(t) receiving a minimum service curve guarantee β. Assume that

• β is concave and wide-sense increasing
• the inf in R⊗ β is a min

For all t, call τ(t) a number such that

(R⊗ β)(t) = R(τ(t)) + β(t− τ(t))

Show that it is possible to choose τ such that if t1 ≤ t2 then τ(t1) ≤ τ(t2).

EXERCISE 1.13. 1. Find the maximum backlog and maximum delay for an ATM CBR connection with
peak rate P and cell delay variation τ , assuming the service curve is c(t) = r(t− T0)+

2. Find the maximum backlog and maximum delay for an ATM VBR connection with peak rate P , cell
delay variation τ , sustainable cell rate M and burst tolerance τB (in seconds), assuming the service
curve is c(t) = r(t− T0)+

EXERCISE 1.14. Show the following statements:

1. Consider a (P,B) constrained flow, served at a rate c ≥ P . The output is also (P,B) constrained.
2. Assume a() has a bounded right-handside derivative. Then the output for a flow constrained by a(),

served in a buffer at a constant rate c ≥ supt≥0 a
′(t), is also constrained by a().

EXERCISE 1.15. 1. Find the the arrival curve constraining the output for an ATM CBR connection with
peak rate P and cell delay variation τ , assuming the service curve is c(t) = r(t− T0)+

2. Find the arrival curve constraining the output for an ATM VBR connection with peak rate P , cell
delay variation τ , sustainable cell rate M and burst tolerance τB (in seconds), assuming the service
curve is c(t) = r(t− T0)+

EXERCISE 1.16. Consider the figure “Derivation of arrival curve for the output of a flow served in a node
with rate-latency service curve βR,T ”. What can be said if t0 in the Figure is infinite, namely, if a′(t) > r
for all t ?

EXERCISE 1.17. Consider a series of guaranteed service nodes with service curves ci(t) = ri(t − Ti)+.
What is the maximum delay through this system for a flow constrained by (m, b) ?

1.11. EXERCISES 63

EXERCISE 1.18. A flow with T-SPEC (p,M, r, b) traverses nodes 1 and 2. Node i offers a service curve
ci(t) = Ri(t− Ti)+. What buffer size is required for the flow at node 2 ?

EXERCISE 1.19. A flow with T-SPEC (p,M, r, b) traverses nodes 1 and 2. Node i offers a service curve
ci(t) = Ri(t − Ti)+. A shaper is placed between nodes 1 and 2. The shaper forces the flow to the arrival
curve z(t) = min(R2t, bt+m).

1. What buffer size is required for the flow at the shaper ?
2. What buffer size is required at node 2 ? What value do you find if T1 = T2 ?
3. Compare the sum of the preceding buffer sizes to the size that would be required if no re-shaping is

performed.
4. Give an arrival curve for the output of node 2.

EXERCISE 1.20. Prove the formula giving of paragraph “Buffer Sizing at a Re-shaper”

EXERCISE 1.21. Is Theorem “Input-Output Characterization of Greedy Shapers” a stronger result than
Corollary “Service Curve offered by a Greedy Shaper” ?

EXERCISE 1.22. 1. Explain what is meant by “we pay bursts only once”.
2. Give a summary in at most 15 lines of the main properties of shapers
3. Define the following concepts by using the ⊗ operator: Service Curve, Arrival Curve, Shaper
4. What is a greedy source ?

EXERCISE 1.23. 1. Show that for a constant bit rate trunk with rate c, the backlog at time t is given by

W (t) = sup
s≤t

{R(t) −R∗(s) − c(t− s)}

2. What does the formula become if we assume only that, instead a constant bit rate trunk, the node is a
scheduler offering β as a service curve ?

EXERCISE 1.24. Is it true that offering a service curve β implies that, during any busy period of length t,
the amount of service received rate is at least β(t) ?

EXERCISE 1.25. A flow S(t) is constrained by an arrival curve α. The flow is fed into a shaper, with
shaping curve σ. We assume that

α(s) = min(m+ ps, b+ rs)

and
σ(s) = min(Ps,B +Rs)

We assume that p > r, m ≤ b and P ≥ R.

The shaper has a fixed buffer size equal to X ≥ m. We require that the buffer never overflows.

1. Assume that B = +∞. Find the smallest of P which guarantees that there is no buffer overflow. Let
P0 be this value.

2. We do not assume that B = +∞ any more, but we assume that P is set to the value P0 computed
in the previous question. Find the value (B0, R0) of (B,R) which guarantees that there is no buffer
overflow and minimizes the cost function c(B,R) = aB +R, where a is a positive constant.
What is the maximum virtual delay if (P,B,R) = (P0, B0, R0) ?

EXERCISE 1.26. We consider a buffer of size X cells, served at a constant rate of c cells per second. We
put N identical connections into the buffer; each of the N connections is constrained both by GCRA(T1, τ1)
and GCRA(T2, τ2). What is the maximum value of N which is possible if we want to guarantee that there is
no cell loss at all ?

Give the numerical application for T1 = 0.5 ms, τ1 = 4.5 ms, T2 = 5 ms, τ2 = 495 ms, c = 106 cells/second,
X = 104 cells

64 CHAPTER 1. NETWORK CALCULUS

EXERCISE 1.27. We consider a flow defined by its function R(t), with R(t) = the number of bits observed
since time t = 0.

1. The flow is fed into a buffer, served at a rate r. Call q(t) the buffer content at time t. We do the same
assumptions as in the lecture, namely, the buffer is large enough, and is initially empty. What is the
expression of q(t) assuming we know R(t) ?
We assume now that, unlike what we saw in the lecture, the initial buffer content (at time t = 0) is not
0, but some value q0 ≥ 0. What is now the expression for q(t) ?

2. The flow is put into a leaky bucket policer, with rate r and bucket size b. This is a policer, not a shaper,
so nonconformant bits are discarded. We assume that the bucket is large enough, and is initially
empty. What is the condition on R which ensures that no bit is discarded by the policer (in other
words, that the flow is conformant) ?
We assume now that, unlike what we saw in the lecture, the initial bucket content (at time t = 0) is
not 0, but some value b0 ≥ 0. What is now the condition on R which ensures that no bit is discarded
by the policer (in other words, that the flow is conformant) ?

EXERCISE 1.28. Consider a variable capacity network node, with capacity curve M(t). Show that there is
one maximum function S∗(t) such that for all 0 ≤ s ≤ t, we have

M(t) −M(s) ≥ S∗(t− s)

Show that S∗ is super-additive.

Conversely, if a function β is super-additive, show that there is a variable capacity network node, with
capacity curve M(t), such that for all 0 ≤ s ≤ t, we have M(t) −M(s) ≥ S∗(t− s).

Show that, with a notable exception, a shaper cannot be modeled as a variable capacity node.

EXERCISE 1.29. 1. Consider a packetized greedy shaper with shaping curve σ(t) = rt for t ≥ 0.
Assume that L(k) = kM where M is fixed. Assume that the input is given by R(t) = 10M for
t > 0 and R(0) = 0. Compute the sequence R(i)(t) used in the representation of the output of the
packetized greedy shaper, for i = 1, 2, 3,

2. Same question if σ(t) = (rt+ 2M)1{t > 0}.

EXERCISE 1.30. Consider a source given by the function{
R(t) = B for t > 0
R(t) = 0 for t ≤ 0

Thus the flow consists of an instantaneous burst of B bits.

1. What is the minimum arrival curve for the flow ?
2. Assume that the flow is served in one node that offers a minimum service curve of the rate latency

type, with rate r and latency ∆. What is the maximum delay for the last bit of the flow ?
3. We assume now that the flow goes through a series of two nodes, N1 and N2, where Ni offers to the

flow a minimum service curve of the rate latency type, with rate ri and latency ∆i, for i = 1, 2. What
is the the maximum delay for the last bit of the flow through the series of two nodes ?

4. With the same assumption as in the previous item, call R1(t) the function describing the flow at the
output of node N1 (thus at the input of node N2). What is the worst case minimum arrival curve for
R1 ?

5. We assume that we insert between N1 and N2 a “reformatter” S. The input to S is R1(t). We call
R′

1(t) the output of S. Thus R′
1(t) is now the input to N2. The function of the “reformatter”S is to

delay the flow R1 in order to output a flow R′
1 that is a delayed version of R. In other words, we must

have R′
1(t) = R(t − d) for some d. We assume that the reformatter S is optimal in the sense that it

chooses the smallest possible d. In the worst case, what is this optimal value of d ?

1.11. EXERCISES 65

6. With the same assumptions as in the previous item, what is the worst case end-to-end delay through
the series of nodes N1,S,N2 ? Is the reformatter transparent ?

EXERCISE 1.31. Let σ be a good function. Consider the concatenation of a bit-by-bit greedy shaper, with
curve σ, and an L-packetizer. Assume that σ(0+) = 0. Consider only inputs that are L-packetized

1. Is this system a packetized shaper for σ ?
2. Is it a packetized shaper for σ + lmax ?
3. Is it a packetized greedy shaper for σ + lmax ?

EXERCISE 1.32. Assume that σ is a good function and σ = σ0 + lu0 where u0 is the step function with a
step at t = 0. Can we conclude that σ0 is sub-additive ?

EXERCISE 1.33. Is the operator (PL) upper-semi-continuous ?

EXERCISE 1.34. 1. Consider the concatenation of an L-packetizer and a network element with mini-
mum service curve β and maximum service curve γ. Can we say that the combined system offer a
minimum service curve (β(t) − lmax)+ and a maximum service curve γ, as in the case where the
concatenation would be in the reverse order ? .

2. Consider the concatenation of a GPS node offering a guarantee λr1 , an L-packetizer, and a second
GPS node offering a guarantee λr2 . Show that the combined system offers a rate-latency service curve
with rate R = min(r1, r2) and latencyE = lmax

max(r1,r2) .

EXERCISE 1.35. Consider a node that offers to a flow R(t) a rate-latency service curve β = SR,L. Assume
that R(t) is L-packetized, with packet arrival times called T1, T2, ... (and is left-continuous, as usual)

Show that (R⊗ β)(t) = minTi∈[0,t][R(Ti) + β(t− Ti)] (and thus, the inf is attained).

EXERCISE 1.36. 1. Assume K connections, each with peak rate p, sustainable rate m and burst toler-
ance b, are offered to a trunk with constant service rate P and FIFO buffer of capacity X . Find the
conditions on K for the system to be loss-free.

2. If Km = P , what is the condition on X for K connections to be accepted ?
3. What is the maximum number of connection if p= 2 Mb/s,m = 0.2 Mb/s,X = 10MBytes, b = 1Mbyte

and P = 0.1, 1, 2 or 10 Mb/s ?
4. For a fixed buffer size X , draw the acceptance region when K and P are the variables.

EXERCISE 1.37. Show the formulas giving the expressions for fB(R) and fB(α).

EXERCISE 1.38. 1. What is the effective bandwith for a connection with p = 2 Mb/s, m = 0.2 Mb/s, b =
100 Kbytes when D = 1msec, 10 msec, 100 msec, 1s ?

2. Plot the effective bandwidth e as a function of the delay constraint in the general case of a connection
with parameters p,m, b.

EXERCISE 1.39. 1. Compute the effective bandwidth for a mix of VBR connections 1, . . . , I .
2. Show how the homogeneous case can be derived from your formula
3. Assume K connections, each with peak rate p, sustainable rate m and burst tolerance b, are offered

to a trunk with constant service rate P and FIFO buffer of capacity X . Find the conditions on K for
the system to be loss-free.

4. Assume that there are two classes of connections, with Ki connections in class i, i = 1, 2, offered
to a trunk with constant service rate P and FIFO buffer of infinite capacity X . The connections are
accepted as long as their queuing delay does not exceed some value D. Draw the acceptance region,
that is, the set of (K1,K2) that are accepted by CAC2. Is the acceptance region convex ? Is the
complementary of the acceptance region in the positive orthant convex ? Does this generalize to more
than two classes ?

66 CHAPTER 1. NETWORK CALCULUS

CHAPTER 2

APPLICATION OF NETWORK CALCULUS TO

THE INTERNET

In this chapter we apply the concepts of Chapter 1 and explain the theoretical underpinnings of integrated
and differentiated services. Integrated services define how reservations can be made for flows. We explain
in detail how this framework was deeply influenced by GPS. In particular, we will see that it assumes that
every router can be modeled as a node offering a minimum service curve that is a rate-latency function. We
explain how this is used in a protocol such as RSVP. We also analyze the more efficient framework based
on service curve scheduling. This allows us to address in a simple way the complex issue of schedulability.

We explain the concept of Guaranteed Rate node, which corresponds to a service curve element, but with
some differences, because it uses a max-plus approach instead of min-plus. We analyze the relation between
the two approaches.

Differentiated services differ radically, in that reservations are made per class of service, rather than per
flow. We show how the bounding results in Chapter 1 can be applied to find delay and backlog bounds. We
also introduce the “damper”, which is a way of enforcing a maximum service curve, and show how it can
radically reduce the delay bounds.

2.1 GPS AND GUARANTEED RATE NODES

In this section we describe GPS and its derivatives; they form the basis on which the Internet guaranteed
model was defined.

2.1.1 PACKET SCHEDULING

A guaranteed service network offers delay and throughput guarantees to flows, provided that the flows
satisfy some arrival curve constraints (Section 2.2). This requires that network nodes implement some form
of packet scheduling, also called service discipline. Packet scheduling is defined as the function that decides,
at every buffer inside a network node, the service order for different packets.

A simple form of packet scheduling is FIFO: packets are served in the order of arrival. The delay bound, and
the required buffer, depend on the minimum arrival curve of the aggregate flow (Section 1.8 on page 53). If
one flow sends a large amount of traffic, then the delay increases for all flows, and packet loss may occur.

67

68 CHAPTER 2. APPLICATION TO THE INTERNET

Thus FIFO scheduling requires that arrival curve constraints on all flows be strictly enforced at all points
in the network. Also, with FIFO scheduling, the delay bound is the same for all flows. We study FIFO
scheduling in more detail in Section 6.

An alternative [25, 45] is to use per flow queuing, in order to (1) provide isolation to flows and (2) offer
different guarantees. We consider first the ideal form of per flow queuing called “Generalized Processor
Sharing” (GPS) [63], which was already mentioned in Chapter 1.

2.1.2 GPS AND A PRACTICAL IMPLEMENTATION (PGPS)

A GPS node serves several flows in parallel, and has a total output rate equal to c b/s. A flow i is allocated
a given weight, say φi. Call Ri(t), R∗

i (t) the input and output functions for flow i. The guarantee is that at
any time t, the service rate offered to flow i is 0 is flow i has no backlog (namely, if Ri(t) = R∗

i (t)), and
otherwise is equal to φi∑

j∈B(t) φj
c, where B(t) is the set of backlogged flows at time t. Thus

R∗
i (t) =

∫ t

0

φi∑
j∈B(s) φj

1{i∈B(s)}ds

In the formula, we used the indicator function 1{expr}, which is equal to 1 if expr is true, and 0 otherwise.

It follows immediately that the GPS node offers to flow i a service curve equal to λric, with ri = φiC∑
j φj

. It

is shown in [64] that a better service curve can be obtained for every flow if we know some arrival curve
properties for all flows; however the simple property is sufficient to understand the integrated service model.

GPS satisfies the requirement of isolating flows and providing differentiated guarantees. We can compute
the delay bound and buffer requirements for every flow if we know its arrival curve, using the results of
Chapter 1. However, a GPS node is a theoretical concept, which is not really implementable, because it
relies on a fluid model, and assumes that packets are infinitely divisible. How can we make a practical
implementation of GPS ? One simple solution would be to use the virtual finish times as we did for the
buffered leaky bucket controller in Section 1.7.3: for every packet we would compute its finish time θ under
GPS, then at time θ present the packet to a multiplexer that serves packets at a rate c. Figure 2.1 (left) shows
the finish times on an example. It also illustrates the main drawback that this method would have: at times
3 and 5, the multiplexer would be idle, whereas at time 6 it would have a burst of 5 packets to serve. In
particular, such a scheduler would not be work conserving.

This is what motivated researchers to find other practical implementations of GPS. We study here one
such implementation of GPS, called packet by packet generalized processor sharing (PGPS) [63]. Other
implementations of GPS are discussed in Section 2.1.3.

PGPS emulates GPS as follows. There is one FIFO queue per flow. The scheduler handles packets one
at a time, until it is fully transmitted, at the system rate c. For every packet, we compute the finish time
that it would have under GPS (we call this the “GPS-finish-time”). Then, whenever a packet is finished
transmitting, the next packet selected for transmission is the one with the earliest GPS-finish-time, among
all packets present. Figure 2.1 shows one example. We see that, unlike the simple solution discussed earlier,
PGPS is work conserving, but does so at the expense of maybe scheduling a packet before its finish time
under GPS.

We can quantify the difference between PGPS and GPS in the following proposition. In Section 2.1.3, we
will see how to derive a service curve property.

PROPOSITION 2.1.1 ([63]). The finish time for PGPS is at most the finish time of GPS plus L
c , where c is

the total rate and L is the maximum packet size.

2.1. GPS AND GUARANTEED RATE NODES 69

 � � � � � � � � 	 �
 � �
 � � � � � � � � 	 �
 � �

* � � 1 � �

2 � � � � � - � �

3 � � % �

�

�

�
�
�

� � � �

Figure 2.1: Scheduling with GPS (left) and PGPS (right). Flow 0 has weight 0.5, flows 1 to 5 have weight 0.1. All
packets have the same transmission time equal to 1 time unit.

PROOF: Call D(n) the finish time of the nth packet for the aggregate input flow under PGPS, in the
order of departure, and θ(n) under GPS. Call n0 the number of the packet that started the busy period in
which packet n departs. Note that PGPS and GPS have the same busy periods, since if we observe only the
aggregate flows, there is no difference between PGPS and GPS.

There may be some packets that depart before packet n in PGPS, but that nonetheless have a later departure
time under GPS. Call m0 ≥ n0 the largest packet number for which this occurs, if any; otherwise let
m0 = n0−1. In this proposition, we call l(m) the length in bits of packetm. Under PGPS, packetm0 started
service atD(m0)− l(m0)

c , which must be earlier than the arrival times of packetsm = m0+1, ..., n. Indeed,
otherwise, by definition of PGPS, the PGPS scheduler would have scheduled packets m = m0 + 1, ..., n
before packet m0. Now let us observe the GPS system. Packets m = m0 + 1, ..., n depart no later than
packet n, by definition of m0; they have arrived after D(m0) − l(m0)

c . By expressing the amount of service

in the interval [D(m0) − l(m0)
c , θ(n)] we find thus

n∑
m=m0+1

l(m) ≤ c

(
θ(n) −D(m0) +

l(m0)
c

)
Now since packets m0, ..., n are in the same busy period, we have

D(n) = D(m0) +

∑n
m=m0+1 l(m)

c

By combining the two equations above we find D(n) ≤ θ(n) + l(m0)
c , which shows the proposition in the

case where m0 ≥ n0.

If m0 = n0 − 1, then all packets n0, ..., n depart before packet n under GPS and thus the same reasoning
shows that

n∑
m=n0

l(m) ≤ c (θ(n) − t0)

where t0 is the beginning of the busy period, and that

D(n) = t0 +

∑n
m=n0

l(m)
c

Thus D(n) ≤ θ(n) in that case.

70 CHAPTER 2. APPLICATION TO THE INTERNET

2.1.3 GUARANTEED RATE (GR) NODES AND THE MAX-PLUS APPROACH

The service curve concept defined earlier can be approached from the dual point of view, which consists in
studying the packet arrival and departure times instead of the functions R(t) (which count the bits arrived
up to time t). This latter approach leads to max-plus algebra (which has the same properties as min-plus),
is often more appropriate to account for details due to variable packet sizes, but works well only when the
service curves are of the rate-latency type. It also useful when nodes cannot be assumed to be FIFO per
flow, as may be the case with DiffServ (Section 2.4).

GR also allows to show that many schedulers have the rate-latency service curve property. Indeed, a large
number of practical implementations of GPS, other than PGSP, have been proposed in the literature; let
us mention: virtual clock scheduling [49], packet by packet generalized processor sharing [63] and self-
clocked fair queuing [40](see also [30]). For a thorough discussion of practical implementations of GPS,
see [81, 30]). These implementations differ in their implementation complexity and in the bounds that can
be obtained. It is shown in [32] that all of these implementations fit in the following framework, called
“Guaranteed Rate”, which we define in now. We will also analyze how it relates to the min-plus approach.

DEFINITION 2.1.1 (GR NODE[32]). Consider a node that serves a flow. Packets are numbered in order of
arrival. Let an ≥ 0, dn ≥ 0 be the arrival and departure times. We say that a node is the a guaranteed rate
(GR) node for this flow, with rate r and delay e, if it guarantees that dn ≤ fn + e, where fn is defined by
Equation (2.1). {

f0 = 0
fn = max {an, fn−1} + ln

r for all n ≥ 1
(2.1)

The variables fn (“Guaranteed Rate Clocks”) can be interpreted as the departures times from a FIFO con-
stant rate server, with rate r. The parameter e expresses how much the node deviates from it. Note however
that a GR node need not be FIFO. A GR node is also called “Rate-Latency server”.

Example: GPS. Consider an ideal GPS scheduler, which allocates a rate Ri = cφi∑
j φj

to some flow i. It is a

GR node for flow i, with rate Ri and latency = 0 (the proof is left to the reader)

DEFINITION 2.1.2 (ONE WAY DEVIATION OF A SCHEDULER FROM GPS). We say that S deviates from
GPS by e if for all packet n the departure time satisfies

dn ≤ gn + e (2.2)

where gn is the departure time from a hypothetical GPS node that allocates a rate r = cφ1∑
j φj

to this flow

(assumed to be flow 1).

We interpret this definition as a comparison to a hypothetical GPS reference scheduler that would serve the
same flows.

THEOREM 2.1.1. If a scheduler satisfies Equation (2.2), then it is GR with rate r and latency e.

PROOF: gn ≤ fn and the rest is immediate.

Example: PGPS. Consider a PGPS scheduler, which allocates a rate Ri = cφi∑
j φj

to some flow i. It is a GR

node for flow i, with rate Ri and latency L
c , where L is the maximum packet size (among all flows present

at the scheduler) (this follows from Proposition 2.1.1).

2.1. GPS AND GUARANTEED RATE NODES 71

THEOREM 2.1.2 (MAX-PLUS REPRESENTATION OF GR). Consider a system where packets are numbered
1, 2, ... in order of arrival. Call an, dn the arrival and departure times for packet n, and ln the size of packet
n. Define by convention d0 = 0. The system is a GR node with rate r and latency e if and only if for all n
there is some k ∈ {1, ..., n} such that

dn ≤ e+ ak +
lk + ...+ ln

r
(2.3)

PROOF: The recursion Equation (2.1) can be solved iteratively, using the same max-plus method as in
the proof of Proposition 1.2.4. Define

An
j = aj +

lj + ...+ ln
r

for 1 ≤ j ≤ n

Then we obtain
fn = max(An

n, A
n
n−1, ..., A

n
1)

The rest follows immediately.

Equation (2.3) is the dual of the service curve definition (Equation (1.9) on Page 71), with β(t) = r(t−e)+.
We now elucidate this relationship.

THEOREM 2.1.3 (EQUIVALENCE WITH SERVICE CURVE). Consider a node with L-packetized input.

1. If the node guarantees a minimum service curve equal to the rate-latency function β = βr,v, and if it
is FIFO, then it is a GR node with rate r and latency v.

2. Conversely, a GR node with rate r and latency e is the concatenation of a service curve element, with
service curve equal to the rate-latency function βr,v, and an L-packetizer. If the GR node is FIFO,
then so is the service curve element.

The proof is long and is given at the end of this section.

By applying Theorem 1.7.1, we obtain

COROLLARY 2.1.1. A GR node offers a minimum service curve βr,v+ lmax
r

The service curve can be used to obtain backlog bounds.

THEOREM 2.1.4 (DELAY BOUND). For an α-smooth flow served in a (possibly non FIFO) GR node with
rate r and latency e, the delay for any packet is bounded by

sup
t>0

[
α(t)
r

− t] + e (2.4)

PROOF: By Theorem 2.1.2, for any fixed n, we can find a 1 ≤ j ≤ n such that

fn = aj +
lj + ...+ ln

r

The delay for packet n is
dn − an ≤ fn + e− an

Define t = an − aj . By hypothesis
lj + ...+ ln ≤ α(t+)

where α(t+) is the limit to the right of α at t. Thus

dn − an ≤ −t+
α(t+)
r

+ e ≤ sup
t≥0

[
α(t+)
r

− t] + e

Now supt>0[
α(t)

r − t] = supt≥0[
α(t+)

r − t].

72 CHAPTER 2. APPLICATION TO THE INTERNET

COMMENT: Note that Equation (2.4) is the horizontal deviation between the arrival curve α and the
rate-latency service curve with rate r and latency e. Thus, for FIFO GR nodes, Theorem 2.1.4 follows from
Theorem 2.1.2 and the fact that the packetizer can be ignored for delay computations. The information in
Theorem 2.1.4 is that it also holds for non-FIFO nodes.

2.1.4 CONCATENATION OF GR NODES

FIFO NODES For GR nodes that are FIFO per flow, the concatenation result obtained with the service
curve approach applies.

THEOREM 2.1.5. Specifically, the concatenation of M GR nodes (that are FIFO per flow) with rates rm
and latencies em is GR with rate r = minm rm and latency e =

∑
i=1,...,n ei +

∑
i=1,...,n−1

Lmax
ri

, where
Lmax is the maximum packet size for the flow.

If rm = r for all m then the extra term is (M − 1)Lmax
r ; it is due to packetizers.

PROOF: By Theorem 2.1.3–(2), we can decompose system i into a concatenation Si,Pi, where Si offers
the service curve βri,ei and Pi is a packetizer.

Call S the concatenation
S1,P1,S2,P2, ...,Sn−1,Pn−1,Sn

By Theorem 2.1.3–(2), S is FIFO and provides the service curve βr,e. By Theorem 2.1.3–(1), it is GR with
rate r and latency e. Now Pn does not affect the finish time of the last bit of every packet.

Note that a slight change if the proof of the theorem shows that the theorem is also valid if we replace
e =

∑
i=1,...,n ei +

∑
i=1,...,n−1

Lmax
ri

by e =
∑

i=1,...,n ei +
∑

i=2,...,n
Lmax

ri
.

End-to-end Delay Bound.

A bound on the end-to-end delay through a concatenation of GR nodes is thus

D =
M∑

m=1

vm + lmax

M−1∑
m=1

1
rm

+
σ

minm rm
(2.5)

which is the formula in [32]. It is a generalization of Equation (1.23) on Page 45.

A Composite Node.We analyze in detail one specific example, which often arises in practice when mod-
elling a router. We consider a composite node, made of two components. The former (“variable delay
component”) imposes to packets a delay in the range [δmax − δ, δmax]. The latter is FIFO and offers to its
input the packet scale rate guarantee, with rate r and latency e. We show that, if the variable delay compo-
nent is known to be FIFO, then we have a simple result. We first give the following lemma, which has some
interest of its own.

LEMMA 2.1.1 (VARIABLE DELAY AS GR). Consider a node which is known to guarantee a delay ≤ δmax.
The node need not be FIFO. Call lmin the minimum packet size. For any r > 0, the node is GR with latency
e = [δmax − lmin

r]+ and rate r.

PROOF: With the standard notation in this section, the hypothesis implies that dn ≤ an + δmax for all
n ≥ 1. Define fn by Equation (2.1). We have fn ≥ an + ln

r ≥ an + lmin
r , thus dn − fn ≤ δmax − lmin

r ≤
[δmax − lmin

r]+.

2.1. GPS AND GUARANTEED RATE NODES 73

THEOREM 2.1.6. (Composite GR Node with FIFO Variable Delay Component) Consider the concatenation
of two nodes. The former imposes to packets a delay ≤ δmax. The latter is a GR node with rate r and latency
e. Both nodes are FIFO. The concatenation of the two nodes, in any order, is GR with rate r and latency
e′′ = e+ δmax.

PROOF: The former node is GR(r′, e′ = [δmax − lmin
r′]+) for any r′ > r. By Theorem 2.1.5 (and the note

after it), the concatenation is GR(r, e+ e′ + lmax
r′). Let r′ go to ∞.

GR NODES THAT ARE NOT FIFO PER FLOW The concatenation result is no longer true. We study in
detail the composite node.

THEOREM 2.1.7. Consider the concatenation of two nodes. The first imposes to packets a delay in the range
[δmax − δ, δmax]. The second is FIFO and offers the guaranteed rate clock service to its input, with rate r
and latency e. The first node is not assumed to be FIFO, so the order of packet arrivals at the second node
is not the order of packet arrivals at the first one. Assume that the fresh input is constrained by a continuous
arrival curve α(·). The concatenation of the two nodes, in this order, offers to the fresh input the guaranteed
rate clock service with rate r and latency

e′′ = e+ δmax +
α(δ) − lmin

r

The proof is given in the next section.

Application: For α(t) = ρt+ σ, we find

e′′ = e+ δmax +
ρδ + σ − lmin

r

2.1.5 PROOFS

Proof of Theorem 2.1.3

Part 1: Consider a service curve element S. Assume to simplify the demonstration that the input and
output functions R and R∗ are right-continuous. Consider the virtual system S0 made of a bit-by-bit greedy
shaper with shaping curve λr, followed by a constant bit-by-bit delay element. The bit-by-bit greedy shaper
is a constant bit rate server, with rate r. Thus the last bit of packet n departs from it exactly at time fn,
defined by Equation (2.1), thus the last bit of packet n leaves S0 at d0

n = fn + e. The output function of S0

is R0 = R ⊗ βr,e. By hypothesis, R∗ ≥ R0, and by the FIFO assumption, this shows that the delay in S is
upper bounded by the delay in S ′. Thus dn ≤ fn + e.

Part 2: Consider the virtual system S whose output S(t) is defined by

if di−1 < t ≤ di

then S(t) = min{R(t),max[L(i− 1), L(i) − r(di − t)]} (2.6)

See Figure 2.2 for an illustration. It follows immediately that R′(t) = PL(S(t)).

Also consider the virtual system S0 whose output is

S0(t) = (βr,v ⊗R)(t)

S0 is the constant rate server, delayed by v. Our goal is now to show that S ≥ S0.

74 CHAPTER 2. APPLICATION TO THE INTERNET

Call d0
i the departure time of the last bit of packet i in S0 (see Figure 2.2 for an example with i = 2). Let

u = d0
i − di. The definition of GR node means that u ≥ 0. Now since S0 is a shifted constant rate server,

we have:

if d0
i −

li
r
< s < d0

i then S0(s) = L(i) − r(d0
i − s)

Also d0
i−1 ≤ d0

i − li
r thus S0(d0

i − li
r) = L(i− 1) and

if s ≤ d0
i −

li
r

then S0(s) ≤ L(i− 1)

It follows that

if di−1 + u < s < d0
i then S0(s) ≤ max[L(i− 1), L(i) − r(d0

i − s)] (2.7)

Consider now some t ∈ (di−1, di] and let s = t+ u. If S(t) = R(t), since R ≥ S0, we then obviously have
S(t) ≥ S0(t). Else, from Equation (2.1), S(t) = max[L(i−1), L(i)−r(di−t)]. We have d0

i −s = di−t and
thus, combining with Equation (2.7), we derive that S0(s) ≤ S(t). Now s ≥ t, thus finally S0(t) ≤ S(t).
One can also readily see that S is FIFO if di−1 ≤ di for all i.

�

� � � �
� � �

� �

� �

� �

� � � � � � � � �
 �

� + � � �

4 � � �

� � � � � � �� � � �
 � � �

 � � �

 � � �

4
 � � �

Figure 2.2: Arrival and departure functions for GR node. The virtual system output is S(t).

Proof of Theorem 2.1.7.

We use the same notation and convention as in the proof of Theorem 7.5.3. We can also assume that all
packet arrivals are distinct, using the same type of reduction.

Fix some n ≥ 1; due to Theorem 2.1.2, it is sufficient to show that there is some k ∈ {1, ..., n} such that

dn ≤ e2 + ak +
lk + ...+ ln

r
(2.8)

By hypothesis, there exists some j such that bj ≤ bn and

dn ≤ bj + e+
B[bj , bn]

r
(2.9)

We cannot assume that j ≤ n; thus, define k as the oldest packet arrived in the interval [bj , bn], in other
words: k = inf{i ≥ 1 : bj ≤ bi ≤ bn}. Necessarily, we have now k ≤ n.

Any packet that arrives at the second node in [bj , bn] must have arrived at node 1 after or with packet k, and
before bn. Thus B[bj , bn] ≤ A[ak, bn]. Now bn ≤ an + δ. Thus by Lemma 7.7.1 in this appendix:

B[bj , bn] ≤ A[ak, an] +A(an, bn]
≤ A[ak, an] + α(δ) − lmin

2.2. THE INTEGRATED SERVICES MODEL OF THE IETF 75

Also, bj ≤ bk ≤ ak + δ and by Equation (2.9):

dn ≤ ak + e+ δ + α(δ) +A[ak, an] − lmin

which shows Equation (2.8).

2.2 THE INTEGRATED SERVICES MODEL OF THE IETF

2.2.1 THE GUARANTEED SERVICE

The Internet supports different reservation principles. Two services are defined: the “guaranteed” service,
and the “ controlled load” service. They differ in that the former provides real guarantees, while the latter
provides only approximate guarantees. We outline the differences in the rest of this section. In both cases,
the principle is based on “admission control”, which operates as follows.

• In order to receive the guaranteed or controlled load service, a flow must first perform a reservation
during a flow setup phase.

• A flow must confirm to an arrival curve of the form α(t) = min(M + pt, rt+ b), which is called the
T-SPEC (see Section 1.2.2 on page13). The T-SPEC is declared during the reservation phase.

• All routers along the path accept or reject the reservation. With the guaranteed service, routers accept
the reservation only if they are able to provide a service curve guarantee and enough buffer for loss-
free operation. The service curve is expressed during the reservation phase, as explained below.
For the controlled load service, there is no strict definition of what accepting a reservation means.
Most likely, it means that the router has an estimation module that says that, with good probability,
the reservation can be accepted and little loss will occur; there is no service curve or delay guarantee.

In the rest of this chapter we focus on the guaranteed service. Provision of the controlled load service relies
on models with loss, which are discussed in Chapter 9.

2.2.2 THE INTEGRATED SERVICES MODEL FOR INTERNET ROUTERS

The reservation phase assumes that all routers can export their characteristics using a very simple model.
The model is based on the view that an integrated services router implements a practical approximation
of GPS, such as PGPS, or more generally, a GR node. We have shown in Section 2.1.3 that the service
curve offered to a flow by a router implementing GR is a rate-latency function, with rate R and latency T
connected by the relationship

T =
C

R
+D (2.10)

with C = the maximum packet size for the flow and D = L
c , where L is the maximum packet size in the

router across all flows, and c the total rate of the scheduler. This is the model defined for an Internet node
[75].

FACT 2.2.1. The Integrated Services model for a router is that the service curve offered to a flow is always
a rate-latency function, with parameters related by a relation of the form (2.10).

The values of C and D depend on the specific implementation of a router, see Corollary 2.1.1 in the case of
GR nodes. Note that a router does not necessarily implement a scheduling method that approximates GPS.
In fact, we discuss in Section 2.3 a family of schedulers that has many advantages above GPS. If a router
implements a method that largely differs from GPS, then we must find a service curve that lower-bounds
the best service curve guarantee offered by the router. In some cases, this may mean loosing important

76 CHAPTER 2. APPLICATION TO THE INTERNET

information about the router. For example, it is not possible to implement a network offering constant delay
to flows by means of a system like SCED+, discussed in Section 2.4.3, with the Integrated Services router
model.

2.2.3 RESERVATION SETUP WITH RSVP

Consider a flow defined by TSPEC (M,p, r, b), that traverses nodes 1, . . . , N . Usually, nodes 1 and N are
end-systems while nodes n for 1 < n < N are routers. The Integrated Services model assumes that node n
on the path of the flow offers a rate latency service curve βRn,Tn , and further assumes that Tn has the form

Tn =
Cn

R
+Dn

where Cn and Dn are constants that depend on the characteristics of node n.

The reservation is actually put in place by means of a flow setup procedure such as the resource reservation
protocol (RSVP). At the end of the procedure, node n on the path has allocated to the flow a value Rn ≥ r.
This is equivalent to allocating a service curve βRn,Tn . From Theorem 1.4.6 on page 28, the end-to-end
service curve offered to the flow is the rate-latency function with rate R and latency T given by{

R = minn=1...N Rn

T =
∑N

n=1

(
Cn
Rn

+Dn

)
Let Ctot =

∑N
n=1Cn and Dtot =

∑N
n=1Dn. We can re-write the last equation as

T =
Ctot
R

+Dtot −
N∑

n=1

Sn (2.11)

with

Sn = Cn

(
1
R

− 1
Rn

)
(2.12)

The term Sn is called the “local slack” term at node n.

From Proposition 1.4.1 we deduce immediately:

PROPOSITION 2.2.1. If R ≥ r, the bound on the end-to-end delay, under the conditions described above is

b−M

R

(
p−R

p− r

)+

+
M + Ctot

R
+Dtot −

N∑
n=1

Sn (2.13)

We can now describe the reservation setup with RSVP. Some details of flow setup with RSVP are illustrated
on Figure 2.3. It shows that two RSVP flows are involved: an advertisement (PATH) flow and a reservation
(RESV) flow. We describe first the point-to-point case.

• A PATH message is sent by the source; it contains the T-SPEC of the flow (source T-SPEC), which
is not modified in transit, and another field, the ADSPEC, which is accumulated along the path. At
a destination, the ADSPEC field contains, among others, the values of Ctot, Dtot used in Equation
2.13. PATH messages do not cause any reservation to be made.

• RESV messages are sent by the destination and cause the actual reservations to be made. They follow
the reverse path marked by PATH messages. The RESV message contains a value, R′, (as part of
the so-called R-SPEC), which is a lower bound on the rate parameters Rn that routers along the
path will have to reserve. The value of R′ is determined by the destination based on the end-to-end
delay objective dobj, following the procedure described below. It is normally not changed by the
intermediate nodes.

2.2. THE INTEGRATED SERVICES MODEL OF THE IETF 77

Sender A Receiver
B

1. path m essage
TSPEC=
2K ,10M b/s,512kb/s,32K
AdSpec=()

2. path m essage
Sender TSPEC=
2K ,10M b/s,512kb/s,32K
AdSpec=(10.2kb, 0.05s)

3. path m essage
Sender TSPEC=
2K ,10M b/s,512kb/s,32K
AdSpec=(51.2, 0.1)

4. B requests guaranteed QoS
reservation w ith delay variation

0.6s; B reserves 622 kb/s

5. resv m essage
Receiver TSPEC=
2K ,10M b/s,512kb/s,24K
R-SPEC =(622 kb/s)

6. resv m essage
Receiver TSPEC=
2K ,10M b/s,512kb/s,24K
R-SPEC =(622 kb/s)

7. resv m essage
Receiver TSPEC=
2K ,10M b/s,512kb/s,24K
R-SPEC =(622 kb/s)

R2R1

Figure 2.3: Setup of Reservations, showing the PATH and RESV flows

Define function f by

f(R′) :=
b−M

R′

(
p−R′

p− r

)+

+
M + Ctot

R′ +Dtot

In other words, f is the function that defines the end-to-end delay bound, assuming all nodes along the path
would reserve Rn = R′. The destination computes R′ as the smallest value ≥ r for which f(R′) ≤ dobj.
Such a value exists only if Dtot < dobj.

In the figure, the destination requires a delay variation objective of 600 ms, which imposes a minimum
value of R′ =622 kb/s. The value of R′ is sent to the next upstream node in the R-SPEC field of the PATH
message. The intermediate nodes do not know the complete valuesCtot andDtot, nor do they know the total
delay variation objective. Consider the simple case where all intermediate nodes are true PGPS schedulers.
Node n simply checks whether it is able to reserve Rn = R′ to the flow; this involves verifying that the
sum of reserved rates is less than the scheduler total rate, and that there is enough buffer available (see
below). If so, it passes the RESV message upstream, up to the destination if all intermediate nodes accept
the reservation. If the reservation is rejected, then the node discards it and normally informs the source. In
this simple case, all nodes should set their rate to Rn = R′ thus R = R′, and Equation (2.13) guarantees
that the end-to-end delay bound is guaranteed.

In practice, there is a small additional element (use of the slack term), due to the fact that the designers of
RSVP also wanted to support other schedulers. It works as follows.

There is another term in the R-SPEC, called the slack term. Its use is illustrated on Figure 2.4. In the
figure, we see that the end-to-end delay variation requirement, set by the destination, is 1000 ms. In that
case, the destination reserves the minimum rate, namely, 512 kb/s. Even so, the delay variation objective
Dobj is larger than the bound Dmax given by Formula (2.13). The difference Dobj − Dmax is written in
the slack term S and passed to the upstream node in the RESV message. The upstream node is not able to
compute Formula (2.13) because it does not have the value of the end-to-end parameters. However, it can
use the slack term to increase its internal delay objective, on top of what it had advertised. For example,
a guaranteed rate node may increase its value of v (Theorem 2.1.2) and thus reduce the internal resources
required to perform the reservation. The figure shows that R1 reduces the slack term by 100 ms. This is
equivalent to increasing the Dtot parameter by 100ms, but without modifying the advertised Dtot.

78 CHAPTER 2. APPLICATION TO THE INTERNET

Sender A Receiver
B

1. path m essage
TSPEC=
2K ,10M b/s,512kb/s,32K
AdSpec=()

2. path m essage
Sender TSPEC=
2K ,10M b/s,512kb/s,32K
AdSpec=(10.2s/kb/s,
0.05s)

3. path m essage
Sender TSPEC=
2K ,10M b/s,512kb/s,32K
AdSpec=(51.2, 0.1)

4. B requests guaranteed QoS
reservation w ith delay variation

1.0s; B reserves 512kb/s

5. resv m essage
Receiver TSPEC=
2K ,10M b/s,512kb/s,24K
R-SPEC =(512kb/s , S=
0.288s)

6. resv m essage
Receiver TSPEC=
2K ,10M b/s,512kb/s,24K
R-SPEC =(512kb/s , S=
0.288s)

6. resv m essage
Receiver TSPEC=
2K ,10M b/s,512kb/s,24K
R-SPEC =(512 kb/s,
S=0.188s)

R2R1

Figure 2.4: Use of the slack term

The delays considered here are the total (fixed plus variable) delays. RSVP also contains a field used for
advertising the fixed delay part, which can be used to compute the end-to-end fixed delay. The variable part
of the delay (called delay jitter) is then obtained by subtraction.

2.2.4 A FLOW SETUP ALGORITHM

There are many different ways for nodes to decide which parameter they should allocate. We present here
one possible algorithm. A destination computes the worst case delay variation, obtained if all nodes reserve
the sustainable rate r. If the resulting delay variation is acceptable, then the destination sets R = r and
the resulting slack may be used by intermediate nodes to add a local delay on top of their advertised delay
variation defined by C and D. Otherwise, the destination sets R to the minimum value Rmin that supports
the end-to-end delay variation objective and sets the slack to 0. As a result, all nodes along the path have
to reserve Rmin. As in the previous cases, nodes may allocate a rate larger than the value of R they pass
upstream, as a means to reduce their buffer requirement.

DEFINITION 2.2.1 (A FLOW SETUP ALGORITHM). • At a destination system I , compute

Dmax = fT (r) +
Ctot

r
+Dtot

If Dobj > Dmax then assign to the flow a rate RI = r and an additional delay variation dI ≤
Dobj −Dmax; set SI = Dobj −Dmax − dI and send reservation request RI , SI to station I − 1.
Else (Dobj ≤ Dmax) find the minimum Rmin such that fT (Rmin) + Ctot

Rmin
≤ Dobj −Dtot, if it exists.

Send reservation request RI = Rmin, SI = 0 to station I − 1. If Rmin does not exist, reject the
reservation or increase the delay variation objective Dobj .

• At an intermediate system i: receive from i+ 1 a reservation request Ri+1, Si+1.
If Si = 0, then perform reservation for rate Ri+1 and if successful, send reservation request Ri =
Ri+1, Si = 0 to station i− 1.
Else (Si > 0), perform a reservation for rate Ri+1 with some additional delay variation di ≤ Si+1.
if successful, send reservation request Ri = Ri+1, Si = Si+1 − di to station i− 1.

2.3. SCHEDULABILITY 79

The algorithm ensures a constant reservation rate. It is easy to check that the end to end delay variation is
bounded by Dobj .

2.2.5 MULTICAST FLOWS

Consider now a multicast situation. A source S sends to a number of destinations, along a multicast tree.
PATH messages are forwarded along the tree, they are duplicated at splitting points; at the same points,
RESVmessages are merged. Consider such a point, call it node i, and assume it receives reservation requests
for the same T-SPEC but with respective parameters R′

in, S
′
in and R′′

in, S
′′
in. The node performs reservations

internally, using the semantics of algorithm 3. Then it has to merge the reservation requests it will send to
node i− 1. Merging uses the following rules:

R-SPEC MERGING RULES The merged reservation R,S is given by

R = max(R′, R′′)

S = min(S′, S′′)

Let us consider now a tree where algorithm 3 is applied. We want to show that the end-to-end delay bounds
at all destinations are respected.

The rate along the path from a destination to a source cannot decrease with this algorithm. Thus the mini-
mum rate along the tree towards the destination is the rate set at the destination, which proves the result.

A few more features of RSVP are:

• states in nodes need to be refreshed; if they are not refreshed, the reservation is released (“soft states”).
• routing is not coordinated with the reservation of the flow

We have so far looked only at the delay constraints. Buffer requirements can be computed using the values
in Proposition 1.4.1.

2.2.6 FLOW SETUP WITH ATM

With ATM, there are the following differences:

• The path is determined at the flow setup time only. Different connections may follow different routes
depending on their requirements, and once setup, a connection always uses the same path.

• With standard ATM signaling, connection setup is initiated at the source and is confirmed by the
destination and all intermediate systems.

2.3 SCHEDULABILITY

So far, we have considered one flow in isolation and assumed that a node is able to offer some scheduling,
or service curve guarantee. In this section we address the global problem of resource allocation.

When a node performs a reservation, it is necessary to check whether local resources are sufficient. In
general, the method for this consists in breaking the node down into a network of building blocks such as
schedulers, shapers, and delay elements. There are mainly two resources to account for: bit rate (called
“bandwidth”) and buffer. The main difficulty is the allocation of bit rate. Following [36], we will see in this

80 CHAPTER 2. APPLICATION TO THE INTERNET

section that allocating a rate amounts to allocating a service curve. It is also equivalent to the concept of
schedulability.

Consider the simple case of a PGPS scheduler, with outgoing rate C. If we want to allocate rate ri to flow
i, for every i, then we can allocate to flow i the GPS weight φi = ri

C . Assume that∑
i

ri ≤ C (2.14)

Then we know from Proposition 2.1.1 and Corollary 2.1.1 that every flow i is guaranteed the rate-latency
service curve with rate ri and latency L

C . In other words, the schedulability condition for PGPS is simply
Equation (2.14). However, we will see now that a schedulability conditions are not always as simple. Note
also that the end-to-end delay depends not only on the service curve allocated to the flow, but also on its
arrival curve constraints.

Many schedulers have been proposed, and some of them do not fit in the GR framework. The most gen-
eral framework in the context of guaranteed service is given by SCED (Service Curve Earliest Deadline
first) [36],which we describe now. We give the theory for constant size packets and slotted time; some as-
pects of the general theory for variable length packets are known [11], some others remain to be done. We
assume without loss of generality that every packet is of size 1 data unit.

2.3.1 EDF SCHEDULERS

As the name indicates, SCED is based on the concept of Earliest Deadline First (EDF) scheduler. An
EDF scheduler assigns a deadline Dn

i to the nth packet of flow i, according to some method. We assume
that deadlines are wide-sense increasing within a flow. At every time slot, the scheduler picks at one of
the packets with the smallest deadline among all packets present. There is a wide variety of methods for
computing deadlines. The “delay based” schedulers [55] set Dn

i = An + di where An is the arrival time for
the nth packet for flow i, and di is the delay budget allocated to flow i. If di is independent of i, then we
have a FIFO scheduler. We will see that those are special cases of SCED, which we view as a very general
method for computing deadlines.

An EDF scheduler is work conserving, that is, it cannot be idle if there is at least one packet present in the
system. A consequence of this is that packets from different flows are not necessarily served in the order
of their deadlines. Consider for example a delay based scheduler, and assume that flow 1 has a lrage delay
budget d1, while flow 2 has a small delay budget d2. It may be that a packet of flow 1 arriving at t1 is served
before a packet of flow 2 arriving at t2, even though the deadline of packet 1, t1 + d1 is larger than the
deadline of packet 2.

We will now derive a general schedulability criterion for EDF schedulers. Call Ri(t), t ∈ N, the arrival
function for flow i. Call Zi(t) the number of packets of flow i that have deadlines ≤ t. For example, for a
delay based scheduler, Zi(t) = Ri(t− di). The following is a modified version of [11].

PROPOSITION 2.3.1. Consider an EDF scheduler with I flows and outgoing rate C. A necessary condition
for all packets to be served within their deadlines is

for all s ≤ t :
I∑

i=1

Zi(t) −Ri(s) ≤ C(t− s) (2.15)

A sufficient condition is

for all s ≤ t :
I∑

i=1

[Zi(t) −Ri(s)]+ ≤ C(t− s) (2.16)

2.3. SCHEDULABILITY 81

PROOF: We first prove the necessary condition. Call R′
i the output for flow i. Since the scheduler is

work conserving, we have
∑I

i=1R
′
i = λC ⊗ (

∑I
i=1Ri). Now R′

i ≥ Zi by hypothesis. Thus

I∑
i=1

Zi(t) ≤ inf
s∈[0,t]

C(t− s) +
I∑

i=1

Ri(s)

which is equivalent to Equation (2.15)

Now we prove the sufficient condition, by contradiction. Assume that at some t a packet with deadline t is
not yet served. In time slot t, the packet served has a deadline ≤ t, otherwise our packet would have been
chosen instead. Define s0 such that the time interval [s0 +1, t] is the maximum time interval ending at t that
is within a busy period and for which all packets served have deadlines ≤ t.

Now call S the set of flows that have a packet with deadline ≤ t present in the system at some point in the
interval [s0 + 1, t]. We show that if

if i ∈ S then R′
i(s0) = Ri(s0) (2.17)

that is, flow i is not backlogged at the end of time slot s0. Indeed, if s0 + 1 is the beginning of the busy
period, then the property is true for any flow. Otherwise, we proceed by contradiction. Assume that i ∈ S
and that i would have some backlog at the end of time slot s0. At time s0 some packet with deadline > t
was served; thus the deadline of all packets remaining in the queue at the end of time slot s0 must have
a deadline > t. Since deadlines are assumed wide-sense increasing within a flow, all deadlines of flow i
packets that are in the queue at time s0, or will arrive later, have deadline > t, which contradicts that i ∈ S.

Further, it follows from the last argument that if i ∈ S, then all packets served before or at t must have a
deadline ≤ t. Thus

if i ∈ S then R′
i(t) ≤ Zi(t)

Now since there is at least one packet with deadline ≤ t not served at t, the previous inequality is strict for
at least one i in S. Thus ∑

i∈S
R′

i(t) <
∑
i∈S

Zi(t) (2.18)

Observe that all packets served in [s0 + 1, t] must be from flows in S. Thus

I∑
i=1

(R′
i(t) −R′

i(s0)) =
∑
i∈S

(R′
i(t) −R′

i(s0))

Combining with Equation (2.17) and Equation (2.18) gives

I∑
i=1

(R′
i(t) −R′

i(s0)) <
∑
i∈S

(Zi(t) −Ri(s0))

Now [s0 + 1, t] is entirely in a busy period thus
∑I

i=1(R
′
i(t) −R′

i(s0)) = C(t− s0); thus

C(t− s0) <
∑
i∈S

(Zi(t) −Ri(s0)) =
∑
i∈S

(Zi(t) −Ri(s0))+ ≤
I∑

i=1

(Zi(t) −Ri(s0))+

which contradicts Equation (2.16).

A consequence of the proposition that if a set of flows is schedulable for some deadline allocation algorithm,
then it is also schedulable for any other deadline allocation method that produces later or equal deadlines.
Other consequences, of immediate practical importance, are drawn in the next section.

82 CHAPTER 2. APPLICATION TO THE INTERNET

2.3.2 SCED SCHEDULERS [73]

Given, for all i, a function βi, SCED defines a deadline allocation algorithm that guarantees, under some
conditions, that flow i does have βi as a minimum service curve1. Roughly speaking, SCED sets Zi(t), the
number of packets with deadline up to t, to (Ri ⊗ βi)(t).

DEFINITION 2.3.1 (SCED). Call An
i the arrival time for packet n of flow i. Define functions Rn

i by:

Rn
i (t) = inf

s∈[0,An
i]

[Ri(s) + βi(t− s)]

With SCED, the deadline for packet n of flow i is defined by

Dn
i = (Rn

i)−1(n) = min{t ∈ N : Rn
i (t) ≥ n}

Function βi is called the “target service curve” for flow i.

FunctionRn
i is similar to the min-plus convolutionRi⊗βi, but the minimum is computed over all times up to

An
i . This allows to compute a packet deadline as soon as the packet arrives; thus SCED can be implemented

in real time. The deadline is obtained by applying the pseudo-inverse of Rn
i , as illustrated on Figure 2.5.

If βi = δdi , then it is easy to see that Dn
i = An

i + di, namely, SCED is the delay based scheduler in that
case. The following proposition is the main property of SCED. It shows that SCED implements a deadline

� � � � �

� �
$ � � �

� �
$0 �

$

$

�

� � � � �

Figure 2.5: Definition of SCED. Packet n of flow i arrives at time An
i . Its deadline is Dn

i .

allocation method based on service curves.

PROPOSITION 2.3.2. For the SCED scheduler, the number of packets with deadline ≤ t is given by Zi(t) =
�(Ri ⊗ βi)(t)�

PROOF: We drop index i in this demonstration. First, we show that Z(t) ≥ �(R ⊗ β)(t)�. Let n =
�(R⊗β)(t)�. Since R⊗β ≤ R and R takes integer values, we must have R(t) ≥ n and thus An ≤ t. Now
Rn(t) ≥ (R⊗ β)(t) thus

Rn(t) ≥ (R⊗ β)(t) ≥ n

1We use the original work in [73], which is called there “SCED-B”. For simplicity, we call it SCED.

2.3. SCHEDULABILITY 83

By definition of SCED, Dn this implies that Dn ≤ t which is equivalent to Z(t) ≥ n.

Conversely, for some fixed but arbitrary t, let now n = Z(t). Packet n has a deadline ≤ t, which implies
that An ≤ t and for all s ∈ [0, An] :

R(s) + β(t− s) ≥ n (2.19)

Now for s ∈ [An, t] we have R(s) ≥ n thus R(s) + β(t − s) ≥ n. Thus Equation (2.19) is true for all
s ∈ [0, t], which means that (R⊗ β)(t) ≥ n.

THEOREM 2.3.1 (SCHEDULABILITY OF SCED, ATM). Consider a SCED scheduler with I flows, total
outgoing rate C, and target service curve βi for flow i.

1. If
I∑

i=1

βi(t) ≤ Ct for all t ≥ 0 (2.20)

then every packet is served before or at its deadline and every flow i receives �βi� as a service curve.
2. Assume that in addition we know that every flow i is constrained by an arrival curve αi. If

I∑
i=1

(αi ⊗ βi)(t) ≤ Ct for all t ≥ 0 (2.21)

then the same conclusion holds

PROOF:

1. Proposition 2.3.2 implies thatZi(t) ≤ Ri(s)+βi(t−s) for 0 ≤ s ≤ t. ThusZi(t)−Ri(s) ≤ βi(t−s).
Now 0 ≤ βi(t− s) thus

[Zi(t) −Ri(s)]+ = max[Zi(t) −Ri(s), 0] ≤ βi(t− s)

By hypothesis,
∑I

i=1 βi(t − s) ≤ C(t − s) thus by application of Proposition 2.3.1, we know that
every packet is served before or at its deadline. Thus R′

i ≥ Zi and from Proposition 2.3.2:

R′
i ≥ Zi = �βi ⊗Ri�

Now Ri takes only integer values thus �βi ⊗Ri� = �βi� ⊗Ri.
2. By hypothesis, Ri = αi ⊗ Ri thus Zi = �αi ⊗ βi ⊗ Ri� and we can apply the same argument, with
αi ⊗ βi instead of βi.

SCHEDULABILITY OF DELAY BASED SCHEDULERS A delay based scheduler assigns a delay objective
di to all packets of flow i. A direct application of Theorem 2.3.1 gives the following schedulability condition.

THEOREM 2.3.2 ([55]). Consider a delay based scheduler that serves I flows, with delay di assigned to
flow i. All packets have the same size and time is slotted. Assume flow i is αi-smooth, where αi is sub-
additive. Call C the total outgoing bit rate. Any mix of flows satisfying these assumptions is schedulable
if ∑

i

αi(t− di) ≤ Ct

If αi(t) ∈ N then the condition is necessary.

84 CHAPTER 2. APPLICATION TO THE INTERNET

PROOF: A delay based scheduler is a special case of SCED, with target service curve βi = δdi . This
shows that the condition in the theorem is sufficient. Conversely, consider the greedy flows given byRi(t) =
αi(t). This is possible because αi is assumed to be sub-additive. Flow Ri must be schedulable, thus the
output R′

i satisfies R′
i(t) ≥ αi(i− di). Now

∑
iR

′
i(t) ≤ ct, which proves that the condition must hold.

It is shown in [55] that a delay based scheduler has the largest schedulability region among all schedulers,
given arrival curves and delay budgets for every flow. Note however that in a network setting, we are
interested in the end-to-end delay bound, and we know (Section 1.4.3) that it is generally less than the sum
of per hop bounds.

The schedulability of delay based schedulers requires that an arrival curve is known and enforced at every
node in the network. Because arrival curves are modified by network nodes, this motivates the principle of
Rate Controlled Service Disciplines (RCSDs) [44, 82, 30], which implement in every node a packet shaper
followed by a delay based scheduler. The packet shaper guarantees that an arrival curve is known for every
flow. Note that such a combination is not work conserving.

Because of the ”pay bursts only once” phenomenon, RCSD might provide end-to-end delay bounds that are
worse than guaranteed rate nodes. However, it is possible to avoid this by aggressively reshaping flows in
every node, which, from Theorem 2.3.2, allows us to set smaller deadlines. If the arrival curves constraints
on all flows are defined by a single leaky bucket, then it is shown in [66, 65] that one should reshape a flow
to its sustained rate at every node in order to achieve the same end-to-end delay bounds as GR nodes would.

SCHEDULABILITY OF GR NODES Consider the family of GR nodes, applied to the ATM case. We
cannot give a general schedulability condition, since the fact that a scheduler is of the GR type does not tell
us exactly how the scheduler operates. However, we show that for any rate r and delay v we can implement
a GR node with SCED.

THEOREM 2.3.3 (GR NODE AS SCED, ATM CASE). Consider the SCED scheduler with I flows and
outgoing rate C. Let the target service curve for flow i be equal to the rate-latency service curve with rate
ri and latency vi. If

I∑
i=1

ri ≤ C

then the scheduler is a GR node for each flow i, with rate ri and delay vi.

PROOF: From Proposition 2.3.2:

Zi(t) = �(Ri ⊗ λri)(t− vi)�

thus Zi is the output of the constant rate server, with rate ri, delayed by vi. Now from Theorem 2.3.1 the
condition in the theorem guarantees that R′

i ≥ Zi, thus the delay for any packet of flow i is bounded by the
delay of the constant rate server with rate ri, plus vi.

Note the fundamental difference between rate based and delay based schedulers. For the former, schedula-
bility is a condition on the sum of the rates; it is independent of the input traffic. In contrast, for delay based
schedulers, schedulability imposes a condition on the arrival curves. Note however that in order to obtain a
delay bound, we need some arrival curves, even with delay based schedulers.

BETTER THAN DELAY BASED SCHEDULER A scheduler need not be either rate based or delay based.
Rate based schedulers suffer from coupling between delay objective and rate allocation: if we want a low
delay, we may be forced to allocate a large rate, which because of Theorem 2.3.3 will reduce the number
of flows than can be scheduled. Delay based schedulers avoid this drawback, but they require that flows be

2.3. SCHEDULABILITY 85

reshaped at every hop. Now, with clever use of SCED, it is possible to obtain the benefits of delay based
schedulers without paying the price of implementing shapers.

Assume that for every flow i we know an arrival curve αi and we wish to obtain an end-to-end delay bound
di. Then the smallest network service curve that should be allocated to the flow is αi ⊗ δdi (the proof is
easy and left to the reader). Thus a good thing to do is to build a scheduler by allocating to flow i the target
service curve αi ⊗ δdi . The schedulability condition is the same as with a delay based scheduler, however,
there is a significant difference: the service curve is guaranteed even if some flows are not conforming to
their arrival curves. More precisely, if some flows do not conform to the arrival curve constraint, then the
service curve is still guaranteed, but the delay bound is not.

This observation can be exploited to allocate service curves in a more flexible way than what is done in
Section 2.2 [20]. Assume flow i uses the sequence of nodes m = 1, ...,M . Every node receives a part dm

i

of the delay budget di, with
∑M

m=1 d
m
i ≤ di. Then it is sufficient that every node implements SCED with a

target service curve βm
i = δdm

i
⊗ αi for flow i. The schedulability condition at node m is∑

j∈Em

αj(t− dm
j) ≤ Cmt

where Em is the set of flows scheduled at node m and Cm is the outgoing rate of node m. If it is satisfied,
then flow i receives αi ⊗ δdi as end-to-end service curve and therefore has a delay bounded by di. The
schedulability condition is the same as if we had implemented at node m the combination of a delay based
scheduler with delay budget dm

i , and a reshaper with shaping curve αi; but we do not have to implement a
reshaper. In particular, the delay bound for flow i at node m is larger than dm

i ; we find again the fact that the
end-to-end delay bound is less than the sum of individual bounds.

In [73], it is explained how to allocate a service curves βm
i to every network element m on the path of the

flow, such that β1
i ⊗ β2

i ⊗ ... = αi ⊗ δi, in order to obtain a large schedulability set. This generalizes and
improves the schedulability region of RCSD.

EXTENSION TO VARIABLE LENGTH PACKETS We can extend the previous results to variable length
packets; we follow the ideas in [11]. The first step is to consider a fictitious preemptive EDF scheduler
(system I), that allocates a deadline to every bit. We define ZI

i (t) as before, as the number of bits whose
deadline is ≤ t. A preemptive EDF scheduler serves the bits present in the system in order of their deadlines.
It is preemptive (and fictitious) in that packets are not delivered entirely, but, in contrast, are likely to be
interleaved. The results in the previous sections apply with no change to this system.

The second step is to modify system I by allocating to every bit a deadline equal to the deadline of the last
bit in the packet. Call it system II. We have ZII

i (t) = PLi(ZI
i (t)) where PLi is the cumulative packet

length (Section 1.7) for flow i. From the remarks following Proposition 2.3.1, it follows that if system I is
schedulable, then so is system II. System II is made of a preemptive EDF scheduler followed by a packetizer.

The third step consists in defining “packet-EDF” scheduler (system III); this is derived from system II in the
same way as PGSP is from GPS. More precisely, the packet EDF scheduler picks the next packet to serve
among packets present in the system with minimum deadline. Then, when a packet is being served, it is not
interrupted. We also say that system III is the non-preemptive EDF scheduler. Then the departure time of
any packet in system III is bounded by its departure time in system II plus lmax

C where lmax is the maximum
packet size across all flows and C is the total outgoing rate. The proof is similar to Proposition 2.1.1 and is
left to the reader (it can also be found in [11]).

We can apply the three steps above to a SCED scheduler with variable size packets, called “Packet-SCED”.

DEFINITION 2.3.2 (PACKET SCED). A PSCED schedulers is a non-premptive EDF schedulers, where
deadlines are allocated as follows. Call An

i the arrival time for packet n of flow i. Define functions Rn
i by:

Rn
i (t) = inf

s∈[0,An
i]

[Ri(s) + βi(t− s)]

86 CHAPTER 2. APPLICATION TO THE INTERNET

With PSCED, the deadline for packet n of flow i is defined by

Dn
i = (Rn

i)−1(Li(n)) = min{t ∈ N : Rn
i (t) ≥ (Li(n))}

where Li is the cumulative packet length for flow i. Function βi is called the “target service curve” for flow
i.

The following proposition follows from the discussion above.

PROPOSITION 2.3.3. [11] Consider a PSCED scheduler with I flows, total outgoing rate C, and target
service curve βi for flow i. Call limax the maximum packet size for flow i and let lmax = maxi l

i
max.

1. If
I∑

i=1

βi(t) ≤ Ct for all t ≥ 0 (2.22)

then every packet is served before or at its deadline plus lmax
C . A bound on packet delay is h(αi, βi) +

lmax
C . Moreover, every flow i receives [βi(t− limax) − lmax

C]+ as a service curve.
2. Assume that, in addition, we know that every flow i is constrained by an arrival curve αi. If

I∑
i=1

(αi ⊗ βi)(t) ≤ Ct for all t ≥ 0 (2.23)

then the same conclusion holds.

Note that the first part of the conclusion means that the maximum packet delay can be computed by assuming
that flow i would receive βi (not βi(t− limax)) as a service curve, and adding max

C .

PROOF: It follows from the three steps above that the PSCED scheduler can be broken down into a
preemptive EDF scheduler, followed by a packetizer, followed by a delay element. The rest follows from
the properties of packetizers and Theorem 2.3.1.

2.3.3 BUFFER REQUIREMENTS

As we mentioned at the beginning of this section, buffer requirements have to be computed in order to
accept a reservation. The condition is simply

∑
iXi ≤ X where Xi is the buffer required by flow i at this

network element, and X is the total buffer allocated to the class of service. The computation of Xi is based
on Theorem 1.4.1; it requires computing an arrival curve of every flow as it reaches the node. This is done
using Theorem 1.4.2 and the flow setup algorithm, such as in Definition 2.2.1.

It is often advantageous to reshape flows at every node. Indeed, in the absence of reshaping, burstiness
is increased linearly in the number of hops. But we know that reshaping to an initial constraint does not
modify the end-to-end delay bound and does not increase the buffer requirement at the node where it is
implemented. If reshaping is implemented per flow, then the burstiness remains the same at every node.

2.4 APPLICATION TO DIFFERENTIATED SERVICES

2.4.1 DIFFERENTIATED SERVICES

In addition to the reservation based services we have studied in Section 2.2, the Internet also proposes
differentiated services [7]. The major goal of differentiated services is to provide some form of better

2.4. APPLICATION TO DIFFERENTIATED SERVICES 87

service while avoiding per flow state information as is required by integrated services. The idea to achieve
this is based on the following principles.

• Traffic classes are defined; inside a network, all traffic belonging to the same class is treated as one
single aggregate flow.

• At the network edge, individual flows (called “micro-flows”) are assumed to conform to some arrival
curve, as with integrated services.

� � 6 & � � 6 �

� � � � � � ' � 7 � � � � & � � � �

8 9 � � : : � 	 : � � 	
� � � $ � � 	 � �

� � � 	 � � �
' � � 	 $ � " � 	 �

Figure 2.6: Network Model for EF. Microflows are individually shaped and each conform to some arrival curve. At all
nodes, microflows R1 to R3 are handled as one aggregate flow, with a guaranteed rate (GR) guarantee. Upon leaving
a node, the different microflows take different paths and become part of other aggregates at other nodes.

If the aggregate flows receive appropriate service curves in the network, and if the total traffic on every
aggregate flow is not too large, then we should expect some bounds on delay and loss. The condition on
microflows is key to ensuring that the total aggregate traffic remains within some arrival curve constraints.
A major difficulty however, as we will see, is to derive bounds for individual flows from characteristics of
an aggregate.

Differentiated services is a framework that includes a number of different services. The main two services
defined today are expedited forwarding (EF)[23, 5] and assured forwarding (AF)[39]. The goal of EF is
to provide to an aggregate some hard delay guarantees, and no loss. The goal of AF is to separate traffic
between a small number of classes (4); inside each class, three levels of drop priorities are defined. One of
the AF classes could be used to provide a low delay service with no loss, similar to EF.

In this chapter, we focus on the fundamental issue of how aggregate scheduling impacts delay and through-
put guarantees. In the rest of this section, we use the network model shown on Figure 2.6. Our problem is
to find bounds for end-to-end delay jitter on one hand, for backlog at all nodes on the other hand, under the
assumptions mentioned above. Delay jitter is is the difference between maximum and minimum delay; its
value determines the size of playout buffers (Section 1.1.3).

2.4.2 AN EXPLICIT DELAY BOUND FOR EF

We consider EF, the low delay traffic class, as mentioned in Section 2.4.1, and find a closed form expression
for the worst case delay, which is valid in any topology, in a lossless network. This bound is based on a
general time stopping method explained in detail in Chapter 6. It was obtained in [14] and [43].

ASSUMPTION AND NOTATION (See Figure 2.6)

88 CHAPTER 2. APPLICATION TO THE INTERNET

• Microflow i is constrained by the arrival curve ρit+ σi at the network access. Inside the network, EF
microflows are not shaped.

• Nodem acts as a Guaranteed Rate node for the entire EF aggregate, with rate rm and latency em. This
is true in particular if the aggregate is served as one flow in a FIFO service curve element, with a rate-
latency service curve; but it also holds quite generally, even if nodes are non-FIFO (Section 2.1.3).
In Chapter 6, we explain that the generic node model used in the context of EF is packet scale rate
guarantee, which satisfies this assumption.
Let e be an upper bound on em for all m.

• h is a bound on the number of hops used by any flow. This is typically 10 or less, and is much less
than the total number of nodes in the network.

• Utilization factors: Define νm = 1
rm

∑
i�m ρi, where the notation i � m means that node m is on the

path of microflow i. Let ν be an upper bound on all vm.
• Scaled burstiness factors: Define τm = 1

rm

∑
i�m σi. Let τ be an upper bound on all τm.

• Lmax is an upper bound on the size (in bits) of any EF packet.

THEOREM 2.4.1 (CLOSED FORM BOUND FOR DELAY AND BACKLOG [14]). If ν < 1
h−1 then a bound on

end-to-end delay variation for EF is hD1 with

D1 =
e+ τ

1 − (h− 1)ν

At nodem, the buffer required for serving low delay traffic without loss is bounded byBreq = rmD1+Lmax.

PROOF: (Part 1:) Assume that a finite bound exists and call D the least upper bound. The data that feeds
node m has undergone a variable delay in the range [0, (h− 1)D], thus an arrival curve for the EF aggregate
at node m is νrm(t+ (h− 1)D) + rmτ . By application of Equation (2.4), the delay seen by any packet is
bounded by e+ τ + (h− 1)Dν; thus D ≤ e+ τ + (h− 1)Dν. If the utilization factor ν is less than 1

h−1 ,
it follows that D ≤ D1.

(Part 2:) We prove that a finite bound exists, using the time-stopping method. For any time t > 0, consider
the virtual system made of the original network, where all sources are stopped at time t. This network
satisfies the assumptions of part 1, since there is only a finite number of bits for the entire lifetime of the
network. Call D′(t) the worst case delay across all nodes for the virtual network indexed by t. From the
above derivation we see that D′(t) ≤ D1 for all t. Letting t tend to +∞ shows that the worst case delay at
any node remains bounded by D1.

(Part 3:) By Corollary 2.1.1, the backlog is bounded by the vertical deviation between the arrival curve
νrm(t + (h − 1)D) + rmτ and the service curve [rm(t − em) − Lmax]+, which after some algebra gives
Breq

The theorem can be slightly improved by avoiding to take maxima for νm; this gives the following result
(the proof is left to the reader):

COROLLARY 2.4.1. If ν < 1
h−1 then a bound on end-to-end delay variation for EF is hD′

1 with

D′
1 = min

m

{
em + τm

1 − (h− 1)νm

}

IMPROVED BOUND WHEN PEAK RATE IS KNOWN: A slightly improved bound can be obtained if, in
addition, we have some information about the total incoming bit rate at every node. We add the following
assumptions to the previous list.

2.4. APPLICATION TO DIFFERENTIATED SERVICES 89

• Let Cm denote a bound on the peak rate of all incoming low delay traffic traffic at node m. If we
have no information about this peak rate, then Cm = +∞. For a router with large internal speed and
buffering only at the output, Cm is the sum of the bit rates of all incoming links (the delay bound is
better for a smaller Cm).

• Fan-in: Let Im be the number of incident links at node m. Let F be an upper bound on ImLmax
rm

. F is
the maximum time to transmit a number of EF packets that simultaneously appear on multiple inputs.

• Redefine τm := max{ ImLmax
rm

, 1
rm

∑
i�m σi}. Let τ be an upper bound on all τm.

• Let um = [Cm−rm]+

Cm−νmrm
. Note that 0 ≤ um ≤ 1, um increases with Cm, and if Cm = +∞, then

um = 1. Call u = maxm um. The parameter u ∈ [0, 1] encapsulates how much we gain by knowing
the maximum incoming rates Cm (u is small for small values of Cm).

THEOREM 2.4.2 (IMPROVED DELAY BOUND WHEN PEAK RATE IS KNOWN [14, 43]). Let ν∗ = minm{ Cm
(h−1)(Cm−rm)

If ν < ν∗, a bound on end-to-end delay variation for EF is hD2 with

D2 =
e+ uτ + (1 − u)F

1 − (h− 1)uν

PROOF: The proof is similar to the proof of Theorem 2.4.1. Call D the least bound, assuming it exists.

An arrival curve for the flow of EF packets arriving at nodem on some incident link l is C l
mt+Lmax, where

C l
m is the peak rate of the link (this follows from item 4 in Theorem 1.7.1). Thus an arrival curve for the

incoming flow of EF packets at node m is Cmt + ImLmax. The incoming flow is thus constrained by the
T-SPEC (M,p, r, b) (see Page 13) with M = ImLmax, p = Cm, r = rmνm, b = rmτm + (h− 1)Drmνm.
By Proposition 1.4.1, it follows that

D ≤ ImLmax(1 − um)
rm

+ (τm + (h− 1)Dνm)um

The condition ν < ν∗ implies that 1 − (h− 1)νmum > 0, thus

D ≤ em + τmum + ImLmax(1−um)
rm

1 − (h− 1)νmum

The above right-hand-side is an increasing function of um, due to τm ≥ ImLmax
rm

. Thus we have a bound by
replacing um by u:

D ≤ em + τmu+ ImLmax(1−u)
rm

1 − (h− 1)νmu
≤ D2

The rest of the proof follows along lines similar to the proof of Theorem 2.4.1.

It is also possible to derive an improved backlog bound, using Proposition 1.4.1. As with Theorem 2.4.2,
we also have the following variant.

COROLLARY 2.4.2. If ν < ν∗, a bound on end-to-end delay variation for EF is hD′
2 with

D′
2 = min

m

{
em + τmum + ImLmax(1−um)

rm

1 − (h− 1)νmum

}

90 CHAPTER 2. APPLICATION TO THE INTERNET

0.05 0.1 0.15 0.2

0.1

0.2

0.3

0.4

0.5

Figure 2.7: The bound D (in seconds) in Theorem 2.4.1 versus the utilization factor ν for h = 10, e = 2 1500B
rm

,
Lmax = 1000 b, σi = 100B and ρi = 32kb/s for all flows, rm = 149.760Mb/s, and Cm = +∞ (thin line) or Cm = 2rm

(thick line).

DISCUSSION: If we have no information about the peak incoming rate Cl, then we set Cl = +∞ and
Theorem 2.4.2 gives the same bound as Theorem 2.4.2. For finite values of Cm, the delay bound is smaller,
as illustrated by Figure 2.7.

The bound is valid only for small utilization factors; it explodes at ν > 1
h−1 , which does not mean that

the worst case delay does grow to infinity [41]. In some cases the network may be unbounded; in some
other cases (such as the unidirectional ring, there is always a finite bound for all ν < 1. This issue is
discussed in Chapter 6, where we we find better bounds, at the expense of more restrictions on the routes
and the rates. Such restrictions do not fit with the differentiated services framework. Note also that, for
feed-forward networks, we know that there are finite bounds for ν < 1. However we show now that the
condition ν < 1

h−1 is the best that can be obtained, in some sense.

PROPOSITION 2.4.1. [4, 14] With the assumptions of Theorem 2.4.1, if ν > 1
h−1 , then for anyD′ > 0, there

is a network in which the worst case delay is at least D′.

In other words, the worst case queuing delay can be made arbitrarily large; thus if we want to go beyond
Theorem 2.4.1, any bound for differentiated services must depend on the network topology or size, not only
on the utilization factor and the number of hops.

PROOF: We build a family of networks, out of which, for any D′, we can exhibit an example where the
queuing delay is at least D′.

The thinking behind the construction is as follows. All flows are low priority flows. We create a hierarchical
network, where at the first level of the hierarchy we choose one “flow” for which its first packet happens
to encounter just one packet of every other flow whose route it intersects, while its next packet does not
encounter any queue at all. This causes the first two packets of the chosen flow to come back-to-back after
several hops. We then construct the second level of the hierarchy by taking a new flow and making sure
that its first packet encounters two back-to-back packets of each flow whose routes it intersects, where the
two back-to-back packet bursts of all these flows come from the output of a sufficient number of networks
constructed as described at the first level of the hierarchy. Repeating this process recursively sufficient
number of times, for any chosen delay value D we can create deep enough hierarchy so that the queuing

2.4. APPLICATION TO DIFFERENTIATED SERVICES 91

delay of the first packet of some flow encounters a queuing delay more thanD (because it encounters a large
enough back-to-back burst of packets of every other flow constructed in the previous iteration), while the
second packet does not suffer any queuing delay at all. We now describe in detail how to construct such a
hierarchical network (which is really a family of networks) such that utilization factor of any link does not
exceed a given factor ν, and no flow traverses more than h hops.

Now let us describe the networks in detail. We consider a family of networks with a single traffic class and
constant rate links, all with same bit rate C. The network is assumed to be made of infinitely fast switches,
with one output buffer per link. Assume that sources are all leaky bucket constrained, but are served in an
aggregate manner, first in first out. Leaky bucket constraints are implemented at the network entry; after that
point, all flows are aggregated. Without loss of generality, we also assume that propagation delays can be set
to 0; this is because we focus only on queuing delays. As a simplification, in this network, we also assume
that all packets have a unit size. We show that for any fixed, but arbitrary delay budget D, we can build a
network of that family where the worst case queueing delay is larger than D, while each flow traverses at
most a specified number of hops.

A network in our family is called N (h, ν, J) and has three parameters: h (maximum hop count for any
flow), ν (utilization factor) and J (recursion depth). We focus on the cases where h ≥ 3 and 1

h−1 < ν < 1,
which implies that we can always find some integer k such that

ν >
1

h− 1
kh+ 1
kh− 1

(2.24)

Network N (h, ν, J) is illustrated in Figures 2.8 and 2.9; it is a collection of identical building blocks,
arranged in a tree structure of depth J . Every building block has one internal source of traffic (called
“transit traffic”), kh(h− 1) inputs (called the “building block inputs”), kh(h− 1) data sinks, h− 1 internal
nodes, and one output. Each of the h−1 internal nodes receives traffic from kh building block inputs plus it
receives transit traffic from the previous internal node, with the exception of the first one which is fed by the
internal source. After traversing one internal node, traffic from the building block inputs dies in a data sink.
In contrast, transit traffic is fed to the next internal node, except for the last one which feeds the building
block output (Figure 2.8). Figure 2.9 illustrates that our network has the structure of a complete tree, with
depth J . The building blocks are organized in levels j = 1, ..., J . Each of the inputs of a level j building
block (j ≥ 2) is fed by the output of one level j − 1 building block. The inputs of level 1 building blocks
are data sources. The output of one j − 1 building block feeds exactly one level j building block input. At
level J , there is exactly one building block, thus at level J − 1 there are kh(h − 1) building blocks, and at
level 1 there are (kh(h − 1))J−1 building blocks. All data sources have the same rate r = νC

kh+1 and burst
tolerance b = 1 packet. In the rest of this section we take as a time unit the transmission time for one packet,
so that C = 1. Thus any source may transmit one packet every θ = kh+1

ν time units. Note that a source
may refrain from sending packets, which is actually what causes the large delay jitter. The utilization factor
on every link is ν, and every flow uses 1 or h hops.

Now consider the following scenario. Consider some arbitrary level 1 building block. At time t0, assume
that a packet fully arrives at each of the building block inputs of level 1, and at time t0 +1, let a packet fully
arrive from each data source inside every level 1 building block (this is the first transit packet). The first
transit packet is delayed by hk − 1 time units in the first internal node. Just one time unit before this packet
leaves the first queue, let one packet fully arrive at each input of the second internal node. Our first transit
packet will be delayed again by hk − 1 time units. If we repeat the scenario along all internal nodes inside
the building block, we see that the first transit packet is delayed by (h − 1)(hk − 1) time units. Now from
Equation (2.24), θ < (h− 1)(hk − 1), so it is possible for the data source to send a second transit packet at
time (h− 1)(hk − 1). Let all sources mentioned so far be idle, except for the emissions already described.
The second transit packet will catch up to the first one, so the output of any level 1 building block is a burst
of two back-to-back packets. We can choose t0 arbitrarily, so we have a mechanism for generating bursts of
2 packets.

92 CHAPTER 2. APPLICATION TO THE INTERNET

� 5 � � 6 � � � 6 � � � 6 � � � �

� � 5 � � � 	 � � 6 � - � �
� � � � � �

� � - � � �

� � � - � � - �

� � 5 � � � 	 � � � � � � � � 6 � �

� - � � � � � � � � � � � - � � � � � � � �

� - 3 3 � �

Figure 2.8: The internal node (top) and the building block (bottom) used in our network example.

� � 1 � � �
 � 5 � �

� � 1 � � �
 5 �

� � 1 � � �

Figure 2.9: The network made of building blocks from Figure 2.8

2.4. APPLICATION TO DIFFERENTIATED SERVICES 93

Now we can iterate the scenario and use the same construction at level 2. The level-2 data source sends
exactly three packets, spaced by θ. Since the internal node receives hk bursts of two packets originating
from level 1, a judicious choice of the level 1 starting time lets the first level 2 transit packet find a queue of
2hk − 1 packets in the first internal node. With the same construction as in level 1, we end up with a total
queuing delay of (h− 1)(2hk − 1) > 2(h− 1)(hk − 1) > 2θ for that packet. Now this delay is more than
2θ, and the first three level-2 transit packets are delayed by the same set of non-transit packets; as a result,
the second and third level-2 transit packets will eventually catch up to the first one and the output of a level
2 block is a burst of three packets. This procedure easily generalizes to all levels up to J . In particular, the
first transit packet at level J has an end-to-end delay of at least Jθ. Since all sources become idle after some
time, we can easily create a last level J transit packet that finds an empty network and thus a zero queuing
delay.

Thus there are two packets in network N (h, ν, J), with one packet having a delay larger than Jθ, and the
other packet has zero delay. This establishes that a bound on queuing delay, and thus on delay variation in
network N (h, ν, J) has to be at least as large as Jθ.

2.4.3 BOUNDS FOR AGGREGATE SCHEDULING WITH DAMPERS

At the expense of some protocol complexity, the previous bounds can be improved without losing the feature
of aggregate scheduling. It is even possible to avoid bound explosions at all, using the concepts of damper.
Consider an EDF scheduler (for example a SCED scheduler) and assume that every packet sent on the
outgoing link carries a field with the difference d between its deadline and its actual emission time, if it is
positive, and 0 otherwise. A damper is a regulator in the next downstream node that picks for the packet an
eligibility time that lies in the interval [a+ d−∆, a+ d], where ∆ is a constant of the damper, and a is the
arrival time of the packet in the node where the damper resides. We call ∆ the “damping tolerance”. The
packet is then withheld until its eligibility time [80, 20], see Figure 2.10. In addition, we assume that the
damper operates in a FIFO manner; this means that the sequence of eligibility times for consecutive packets
is wide-sense increasing.

Unlike the scheduler, the damper does not exist in isolation. It is associated with the next scheduler on the
path of a packet. Its effect is to forbid scheduling the packet before the eligibility time chosen for the packet.
Consider Figure 2.10. Scheduler m works as follows. When it has an opportunity to send a packet, say at
time t, it picks a packet with the earliest deadline, among all packets that are present in node N , and whose
eligibility date is ≥ t. The timing information d shown in the figure is carried in a packet header, either as
a link layer header information, or as an IP hop by hop header extension. At the end of a path, we assume
that there is no damper at the destination node.

The following proposition is obvious, but important, and is given without proof.

PROPOSITION 2.4.2. Consider the combination S of a scheduler and its associated damper. If all packets
are served by the scheduler before or at their deadlines, then S provides a bound on delay variation equal
to ∆.

It is possible to let ∆ = 0, in which case the delay is constant for all packets. A bound on the end-to-end
delay variation is then the delay bound at the last scheduler using the combination of a scheduler and a
damper (this is called “jitter EDD” in [80]). In practice, we consider ∆ > 0 for two reasons. Firstly, it is
impractical to assume that we can write the field d with absolute accuracy. Secondly, having some slack in
the delay variation objective provides better performance to low priority traffic [20].

There is no complicated feasibility condition for a damper, as there is for schedulers. The operation of a
damper is always possible, as long as there is enough buffer.

PROPOSITION 2.4.3 (BUFFER REQUIREMENT FOR A DAMPER). If all packets are served by the scheduler

94 CHAPTER 2. APPLICATION TO THE INTERNET

� � 3 � 	 � � � ;� � 3 � 	 � � � 1

9 � � � �
� � � 	 � �
� � 3 � 	 �

� � � 	 � 3 ' 	 � � '

� � � � 	 � � $ � � � 	 � 3 ' 	 � � �

� 7 � � � � � $: � 9 �
 � � �

� � � � 	 � � '

� � � 	 � 3 ' 	 � � + � � �
� � � 	 � �
� � 3 � 	 �

� 	 � � � � 3 � 	 � � � � � � ' � 	 � � ' � $ 	 � � � � '

�

��
� � � + 	 � � � 	 $ � �
� � � � � 1 � � � � ;

� � � � � � � � � � �

8 ' � : �
 � ' � � " � � � � 	 � � � � + 	 � �
 " � � � � � 	 � � '

0 � � � 2 � ' � � � � $ � � 	 � ;

Figure 2.10: Dampers in a differentiated services context. The model shown here assumes that routers are made of
infinitely fast switching fabrics and output schedulers. There is one logical damper for each upstream scheduler. The
damper decides when an arriving packet becomes visible in the node.

2.4. APPLICATION TO DIFFERENTIATED SERVICES 95

before or at their deadlines, then the buffer requirement at the associated damper is bounded by the buffer
requirement at the scheduler.

PROOF: Call R(t) the total input to the scheduler, and R′(t) the amount of data with deadline ≤ t. Call
R∗(t) the input to the damper, we have R∗(t) ≤ R(t). Packets do not stay in the damper longer than until
their deadline in the scheduler, thus the output R1(t) of the damper satisfies R1(t) ≥ R′(t). The buffer
requirement at the scheduler at time t isR(t)−R′(t); at the damper it isR∗(t)−R1(t) ≥ R(t)−R′(t).

THEOREM 2.4.3 (DELAY AND BACKLOG BOUNDS WITH DAMPERS). Take the same assumptions as in
Theorem 2.4.1, we assume that every scheduler m that is not an exit point is associated with a damper in
the next downstream node, with damping tolerance ∆m. Let ∆ be a bound on all ∆m.

If ν ≤ 1, then a bound on the end-to-end delay jitter for low delay traffic is

D = e+ (h− 1)∆(1 + ν) + τν

A bound on the queuing delay at any scheduler is

D0 = e+ ν[τ + (h− 1)∆]

The buffer required at scheduler m, for serving low delay traffic without loss is bounded by

Breq = rmD0

A bound on the buffer required at damper m is the same as the buffer required at scheduler m.

PROOF: The variable part of the delay between the input of a scheduler and the input of the next one is
bounded by ∆. Now let us examine the last scheduler, say m, on the path of a packet. The delay between a
source for a flow i � m and scheduler m is a constant plus a variable part bounded by (h − 1)∆. Thus an
arrival curve for the aggregate low-delay traffic arriving at scheduler m is

α2(t) = νrm(t+ τ + (h− 1)∆)

By applying Theorem 1.4.2, a delay bound at scheduler m is given by

D2 = E + uν[τ + (h− 1)∆]

A bound on end-to-end delay variation is (h− 1)∆ +D2, which is the required formula.

The derivation of the backlog bound is similar to that in Theorem 2.4.1.

The benefit of dampers is obvious: there is no explosion to the bound, it is finite (and small if ∆ is small)
for any utilization factor up to 1 (see Figure 2.11). Furthermore, the bound is dominated by h∆, across the
whole range of utilization factors up to 1. A key factor in obtaining little delay variation is to have a small
damping tolerance δ.

There is a relation between a damper and a maximum service curve. Consider the combination of a scheduler
with minimum service curve β and its associate damper with damping tolerance ∆. Call p the fixed delay
on the link between the two. It follows immediately that the combination offers the maximum service curve
β ⊗ δp−∆ and the minimum service curve β ⊗ δp. Thus a damper may be viewed as a way to implement
maximum service curve guarantees. This is explored in detail in [20].

2.4.4 STATIC EARLIEST TIME FIRST (SETF)

A simpler alternative to the of dampers is proposed by Z.-L. Zhang et al under the name of Static Earliest
Time First (SETF) [84].

96 CHAPTER 2. APPLICATION TO THE INTERNET

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Figure 2.11: The bound D (in seconds) in Theorem 2.4.3 the same parameters as Figure 2.7, for a damping tolerance
∆ = 5 ms per damper, and Cm = +∞ (thick line). The figure also shows the two curves of Figure 2.7, for comparison.
The bound is very close to h∆ = 0.05s, for all utilization factors up to 1.

ASSUMPTIONS We take the same assumptions as with Theorem 2.4.1, with the following differences.

• At network access, packets are stamped with their time of arrival. At any node, they are served within
the EF aggregate at one node in order of time stamps. Thus we assume that nodes offer a GR guarantee
to the EF aggregate, as defined by Equation (2.1) or Equation (2.3), but where packets are numbered
in order of time stamps (i.e. their order at the network access, not at this node).

THEOREM 2.4.4. If the time stamps have infinite precision, for all ν < 1, the end-to-end delay variation for
the EF aggregate is bounded by

D = (e+ τ)
1 − (1 − ν)h

ν(1 − ν)h−1

PROOF: The proof is similar to the proof of Theorem 2.4.1. Call Dk the least bound, assuming it exists,
on the end-to-end delay after k hops, k ≤ h. Consider a tagged packet, with label n, and call dk its delay in
k hops. Consider the node m that is the hth hop for this packet. Apply Equation (2.3): there is some label
k ≤ n such that

dn ≤ e+ ak +
lk + ...+ ln

r
(2.25)

where aj and dj are the arrival and departure times at node m of the packet labeled j, and lj its length in
bits. Now packets k to n must have arrived at the network access before an − dk and after am − DHh−1.
Thus

lk + ...+ ln ≤ α(an − am − dk +Dh−1)

where α is an arrival curve at network access for the traffic that will flow through node m. We have
α(t) ≤ rm(νt+ τ). By Equation (2.4), the delay dn − an for our tagged packet is bounded by

e+ sup
t≥0

[
α(t− dk +Dh−1)

rm
− t

]
= e+ τ + ν(Dh−1 − dk)

thus
dk+1 ≤ dk + e+ τ + ν(Dh−1 − dk)

2.5. BIBLIOGRAPHIC NOTES 97

The above inequation can be solved iteratively for dk as a function of Dh−1; then take k = h − 1 and
assume the tagged packet is one that achieves the worst case k-hop delay, thus Dh−1 = dh−1 which gives
an inequality for Dh−1; last, take k = h and obtain the end-to-end delay bound as desired.

COMMENTS: The bound is finite for all values of the utilization factor ν < 1, unlike the end-to-end
bound in Theorem 2.4.1. Note that for small values of ν, the two bounds are equivalent.

We have assumed here infinite precision about the arrival time stamped in every packet. In practice, the
timestamp is written with some finite precision; in that case, Zhang [84] finds a bound which lies between
Theorem 2.4.1 and Theorem 2.4.4 (at the limit, with null precision, the bound is exactly Theorem 2.4.4).

2.5 BIBLIOGRAPHIC NOTES

The delay bound for EF in Theorem 2.4.2 was originally found in [14], but neglecting the Lmax term; a
formula that accounts for Lmax was found in [43].

Bounds that account for statistical multiplexing can be found in [58].

2.6 EXERCISES

EXERCISE 2.1. Consider a guaranteed rate scheduler, with rate R and delay v, that receives a packet flow
with cumulative packet length L. The (packetized) scheduler output is fed into a constant bit rate trunk with
rate c > R and propagation delay T .

1. Find a minimum service curve for the complete system.
2. Assume the flow of packets is (r, b)-constrained, with b > lmax. Find a bound on the end-to-end delay

and delay variation.

EXERCISE 2.2. Assume all nodes in a network are of the GR type with rate R and latency T . A flow with
T-SPEC α(t) = min(rt + b,M + pt) has performed a reservation with rate R across a sequence of H
nodes, with p ≥ R. Assume no reshaping is done. What is the buffer requirement at the hth node along the
path, for h = 1, ...H ?

EXERCISE 2.3. Assume all nodes in a network are made of a GR type with rate R and latency T , before
which a re-shaper with shaping curve σ = γr,b is inserted. A flow with T-SPEC α(t) = min(rt+ b,M +pt)
has performed a reservation with rate R across a sequence of H such nodes, with p ≥ R. What is a buffer
requirement at the hth node along the path, for h = 1, ...H ?

EXERCISE 2.4. Assume all nodes in a network are made of a shaper followed by a FIFO multiplexer.
Assume that flow I has T-SPEC, αi(t) = min(rit + bi,M + pit), that the shaper at every node uses the
shaping curve σi = γri,bi for flow i. Find the schedulability conditions for every node.

EXERCISE 2.5. A network consists of two nodes in tandem. There are n1 flows of type 1 and n2 flows of
type 2. Flows of type i have arrival curve αi(t) = rit + bi, i = 1, 2. All flows go through nodes 1 then 2.
Every node is made of a shaper followed by an EDF scheduler. At both nodes, the shaping curve for flows of
type i is some σi and the delay budget for flows of type i is di. Every flow of type i should have a end-to-end
delay bounded by Di. Our problem is to find good values of d1 and d2.

1. We assume that σi = αi. What are the conditions on d1 and d2 for the end-to-end delay bounds to be
satisfied ? What is the set of (n1, n2) that are schedulable ?

2. Same question if we set σi = λri

98 CHAPTER 2. APPLICATION TO THE INTERNET

EXERCISE 2.6. Consider the scheduler in Theorem 2.3.3. Find an efficient algorithm for computing the
deadline of every packet.

EXERCISE 2.7. Consider a SCED scheduler with target service curve for flow i given by

βi = γri,bi ⊗ δdi

Find an efficient algorithm for computing the deadline of every packet.

Hint: use an interpretation as a leaky bucket.

EXERCISE 2.8. Consider the delay bound in Theorem 2.4.1. Take the same assumptions but assume also
that the network is feedforward. Which better bound can you give ?

NETWORK CALCULUS
Parts II and III

A Theory of Deterministic Queuing Systems for the Internet
JEAN-YVES LE BOUDEC

PATRICK THIRAN

Online Version of the Book Springer Verlag - LNCS 2050
Reformatted for improved online viewing and printing

Version May 10, 2004

99

100 CHAPTER 2. APPLICATION TO THE INTERNET

PART II

MATHEMATICAL BACKGROUND

101

CHAPTER 3

BASIC MIN-PLUS AND MAX-PLUS

CALCULUS

In this chapter we introduce the basic results from Min-plus that are needed for the next chapters. Max-
plus algebra is dual to Min-plus algebra, with similar concepts and results when minimum is replaced by
maximum, and infimum by supremum. As basic results of network calculus use more min-plus algebra
than max-plus algebra, we present here in detail the fundamentals of min-plus calculus. We briefly discuss
the care that should be used when max and min operations are mixed at the end of the chapter. A detailed
treatment of Min- and Max-plus algebra is provided in [28], here we focus on the basic results that are
needed for the remaining of the book. Many of the results below can also be found in [11] for the discrete-
time setting.

3.1 MIN-PLUS CALCULUS

In conventional algebra, the two most common operations on elements of Z or R are their addition and their
multiplication. In fact, the set of integers or reals endowed with these two operations verify a number of
well known axioms that define algebraic structures: (Z,+,×) is a commutative ring, whereas (R,+,×)
is a field. Here we consider another algebra, where the operations are changed as follows: addition be-
comes computation of the minimum, multiplication becomes addition. We will see that this defines another
algebraic structure, but let us first recall the notion of minimum and infimum.

3.1.1 INFIMUM AND MINIMUM

Let S be a nonempty subset of R. S is bounded from below if there is a number M such that s ≥ M
for all s ∈ S. The completeness axiom states that every nonempty subset S of R that is bounded from
below has a greatest lower bound. We will call it infimum of S, and denote it by inf S. For example
the closed and open intervals [a, b] and (a, b) have the same infimum, which is a. Now, if S contains an
element that is smaller than all its other elements, this element is called minimum of S, and is denoted by
minS. Note that the minimum of a set does not always exist. For example, (a, b) has no minimum since
a /∈ (a, b). On the other hand, if the minimum of a set S exists, it is identical to its infimum. For example,
min[a, b] = inf[a, b] = a. One easily shows that every finite nonempty subset of R has a minimum. Finally,
let us mention that we will often use the notation ∧ to denote infimum (or, when it exists, the minimum).

103

104 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

For example, a ∧ b = min{a, b}. If S is empty, we adopt the convention that inf S = +∞.

If f is a function from S to R, we denote by f(S) its range:

f(S) = {t such that t = f(s) for some s ∈ S}.
We will denote the infimum of this set by the two equivalent notations

inf f(S) = inf
s∈S

{f(s)}.

We will also often use the following property.

THEOREM 3.1.1 (“FUBINI” FORMULA FOR INFIMUM). Let S be a nonempty subset of R, and f be a
function from S to R. Let {Sn}n∈N be a collection of subsets of S, whose union is S. Then

inf
s∈S

{f(s)} = inf
n∈N

{
inf

s∈Sn

{f(sn)}
}
.

PROOF: By definition of an infimum, for any sets Sn,

inf

{⋃
n

Sn

}
= inf

n
{inf Sn} .

On the other hands, since ∪nSn = S,

f

(⋃
n∈N

Sn

)
=
⋃
n∈N

f (Sn)

so that

inf
s∈S

{f(s)} = inf f(S) = inf f

(⋃
n∈N

Sn

)

= inf

{⋃
n∈N

f (Sn)

}
= inf

n∈N

{inf f (Sn)}

= inf
n∈N

{
inf

s∈Sn

{f(s)}
}
.

3.1.2 DIOID (R ∪ {+∞},∧, +)

In traditional algebra, one is used to working with the algebraic structure (R,+,×), that is, with the set of
reals endowed with the two usual operations of addition and multiplication. These two operations possess
a number of properties (associativity, commutativity, distributivity, etc) that make (R,+,×) a commutative
field. As mentioned above, in min-plus algebra, the operation of ‘addition’ becomes computation of the
infimum (or of the minimum if it exists), whereas the one of ‘multiplication’ becomes the classical operation
of addition. We will also include +∞ in the set of elements on which min-operations are carried out, so that
the structure of interest is now (R ∪ {+∞},∧,+). Most axioms (but not all, as we will see later) defining
a field still apply to this structure. For example, distribution of addition with respect to multiplication in
conventional (‘Plus-times’) algebra

(3 + 4) × 5 = (3 × 5) + (4 × 5) = 15 + 20 = 35

3.1. MIN-PLUS CALCULUS 105

translates in min-plus algebra as

(3 ∧ 4) + 5 = (3 + 5) ∧ (4 + 5) = 8 ∧ 9 = 8.

In fact, one easily verifies that ∧ and + satisfy the following properties:

• (Closure of ∧) For all a, b ∈ R ∪ {+∞}, a ∧ b ∈ R ∪ {+∞}.
• (Associativity of ∧) For all a, b, c ∈ R ∪ {+∞}, (a ∧ b) ∧ c = a ∧ (b ∧ c).
• (Existence of a zero element for ∧) There is some e = +∞ ∈ R ∪ {+∞} such that for all a ∈

R ∪ {+∞}, a ∧ e = a.
• (Idempotency of ∧) For all a ∈ R ∪ {+∞}, a ∧ a = a.
• (Commutativity of ∧) For all a, b ∈ R ∪ {+∞}, a ∧ b = b ∧ a.
• (Closure of +) For all a, b ∈ R ∪ {+∞}, a+ b ∈ R ∪ {+∞}.
• (Associativity of +) For all a, b, c ∈ R ∪ {+∞}, (a+ b) + c = a+ (b+ c).
• (The zero element for ∧ is absorbing for +) For all a ∈ R ∪ {+∞}, a+ e = e = e + a.
• (Existence of a neutral element for +) There is some u = 0 ∈ R ∪ {+∞} such that for all a ∈

R ∪ {+∞}, a+ u = a = u+ a.
• (Distributivity of + with respect to ∧) For all a, b, c ∈ R∪{+∞}, (a∧ b)+ c = (a+ c)∧ (b+ c) =
c+ (a ∧ b).

A set endowed with operations satisfying all the above axioms is called a dioid. Moreover as + is also
commutative (for all a, b ∈ R ∪ {+∞}, a+ b = b+ a), the structure (R ∪ {+∞},∧,+) is a commutative
dioid. All the axioms defining a dioid are therefore the same axioms as the ones defining a ring, except one:
the axiom of idempotency of the ‘addition’, which in dioids replaces the axiom of cancellation of ‘addition’
in rings (i.e. the existence of an element (−a) that ‘added’ to a gives the zero element). We will encounter
other dioids later on in this chapter.

3.1.3 A CATALOG OF WIDE-SENSE INCREASING FUNCTIONS

A function f is wide-sense increasing if and only if f(s) ≤ f(t) for all s ≤ t. We will denote by G the
set of non-negative wide-sense increasing sequences or functions and by F denote the set of wide-sense
increasing sequences or functions such that f(t) = 0 for t < 0. Parameter t can be continuous or discrete:
in the latter case, f = {f(t), t ∈ Z} is called a sequence rather than a function. In the former case, we take
the convention that the function f = {f(t), t ∈ R} is left-continuous. The range of functions or sequences
of F and G is R+ = [0,+∞].

Notation f + g (respectively f ∧ g) denotes the point-wise sum (resp. minimum) of functions f and g:

(f + g)(t) = f(t) + g(t)
(f ∧ g)(t) = f(t) ∧ g(t)

Notation f ≤ (=,≥)g means that f(t) ≤ (=,≥)g(t) for all t.

Some examples of functions belonging to F and of particular interest are the following ones. Notation [x]+

denotes max{x, 0}, 	x
 denotes the smallest integer larger than or equal to x.

DEFINITION 3.1.1 (PEAK RATE FUNCTIONS λR).

λR(t) =
{
Rt if t > 0
0 otherwise

for some R ≥ 0 (the ‘rate’).

106 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

DEFINITION 3.1.2 (BURST DELAY FUNCTIONS δT).

δT (t) =
{

+∞ if t > T
0 otherwise

for some T ≥ 0 (the ‘delay’).

DEFINITION 3.1.3 (RATE-LATENCY FUNCTIONS βR,T).

βR,T (t) = R[t− T]+ =
{
R(t− T) if t > T
0 otherwise

for some R ≥ 0 (the ‘rate’) and T ≥ 0 (the ‘delay’).

DEFINITION 3.1.4 (AFFINE FUNCTIONS γr,b).

γr,b(t) =
{
rt+ b if t > 0
0 otherwise

for some r ≥ 0 (the ‘rate’) and b ≥ 0 (the ‘burst’).

DEFINITION 3.1.5 (STEP FUNCTION vT).

vT (t) = 1{t>T} =
{

1 if t > T
0 otherwise

for some T > 0.

DEFINITION 3.1.6 (STAIRCASE FUNCTIONS uT,τ).

uT,τ (t) =
{ 	 t+τ

T
 if t > 0
0 otherwise

for some T > 0 (the ‘interval’) and 0 ≤ τ ≤ T (the ‘tolerance’).

These functions are also represented in Figure 3.1. By combining these basic functions, one obtains more
general piecewise linear functions belonging to F . For example, the two functions represented in Figure 3.2
are written using ∧ and + from affine functions and rate-latency functions as follows, with r1 > r2 > . . . >
rI and b1 < b2 < . . . < bI

f1 = γr1,b1 ∧ γr2,b2 ∧ . . . γrI ,bI
= min

1≤i≤I
{γri,bi} (3.1)

f2 = λR ∧ {βR,2T +RT} ∧ {βR,4T + 2RT} ∧ . . .
= inf

i≥0
{βR,2iT + iRT} . (3.2)

We will encounter other functions later in the book, and obtain other representations with the min-plus
convolution operator.

3.1. MIN-PLUS CALCULUS 107

γ
r,b

(t) = 0 for t = 0
 = rt + b for t > 0

r

t

Affine function

b

Rate-latency function

T

R

t

β
R,T

(t) = R[t-T]+

R

t

Peak rate function

 λ
R

(t) = Rt

T

t

δ
T
(t) = 0

 = ∞ for t > T

Burst-delay function

for t ≤ T

t

u
T
(t) = 1

{t > T}
= 0 for t ≤ T
 1 for t > T

1

Step function

TT-τ t

v
T,τ

(t) = ⎡(t+τ)/T⎤

1

2

3

Staircase function

2T-τ

4

3T-τ

Figure 3.1: A catalog of functions of F : Peak rate function (top left), burst-delay function (top right), rate-latency
function (center left), affine function (center right), staircase function (bottom left) and step function (bottom right).

108 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

r
2

t

 f
1
(t)

T t

b
2 r

1b
1

r
3

b
3

 f
2
(t)

2T 3T

RT
2RT

Figure 3.2: Two piecewise linear functions of F as defined by (3.1) (left) and (3.2) (right).

3.1.4 PSEUDO-INVERSE OF WIDE-SENSE INCREASING FUNCTIONS

It is well known that any strictly increasing function is left-invertible. That is, if for any t1 < t2, f(t1) <
f(t2), then there is a function f−1 such that f−1(f(t)) = t for all t. Here we consider slightly more
general functions, namely, wide-sense increasing functions, and we will see that a pseudo-inverse function
can defined as follows.

DEFINITION 3.1.7 (PSEUDO-INVERSE). Let f be a function or a sequence of F . The pseudo-inverse of f
is the function

f−1(x) = inf {t such that f(t) ≥ x} . (3.3)

For example, one can easily compute that the pseudo-inverses of the four functions of Definitions 3.1.1 to
3.1.4 are

λ−1
R = λ1/R

δ−1
T = δ0 ∧ T

β−1
R,T = γ1/R,T

γ−1
r,b = β1/r,b.

The pseudo-inverse enjoys the following properties:

THEOREM 3.1.2 (PROPERTIES OF PSEUDO-INVERSE FUNCTIONS). Let f ∈ F , x, t ≥ 0.

• (Closure) f−1 ∈ F and f−1(0) = 0.
• (Pseudo-inversion) We have that

f(t) ≥ x ⇒ f−1(x) ≤ t (3.4)

f−1(x) < t ⇒ f(t) ≥ x (3.5)

• (Equivalent definition)
f−1(x) = sup {t such that f(t) < x} . (3.6)

PROOF: Define subset Sx = {t such that f(t) ≥ x} ⊆ R+. Then (3.3) becomes f−1(x) = inf Sx.
(Closure) Clearly, from (3.3), f−1(x) = 0 for x ≤ 0 (and in particular f−1(0) = 0). Now, let 0 ≤ x1 < x2.

3.1. MIN-PLUS CALCULUS 109

Then Sx1 ⊇ Sx2 , which implies that inf Sx1 ≤ inf Sx2 and hence that f−1(x1) ≤ f−1(x2). Therefore f−1

is wide-sense increasing. (Pseudo-inversion) Suppose first that f(t) ≥ x. Then t ∈ Sx, and so is larger than

the infimum of Sx, which is f−1(x): this proves (3.4). Suppose next that f−1(x) < t. Then t > inf Sx,
which implies that t ∈ Sx, by definition of an infimum. This in turn yields that f(t) ≥ x and proves (3.5).
(Equivalent definition) Define subset S̃x = {t such that f(t) < x} ⊆ R+. Pick t ∈ Sx and t̃ ∈ S̃x. Then

f(t̃) < f(t), and since f is wide-sense increasing, it implies that t̃ ≤ t. This is true for any t ∈ Sx and
t̃ ∈ S̃x, hence sup S̃x ≤ inf Sx. As S̃x ∪ Sx = R+, we cannot have sup S̃x < inf Sx. Therefore

sup S̃x = inf Sx = f−1(x).

3.1.5 CONCAVE, CONVEX AND STAR-SHAPED FUNCTIONS

As an important class of functions in min-plus calculus are the convex and concave functions, it is useful to
recall some of their properties.

DEFINITION 3.1.8 (CONVEXITY IN Rn). Let u be any real such that 0 ≤ u ≤ 1.

• Subset S ⊆ Rn is convex if and only if ux+ (1 − u)y ∈ S for all x, y ∈ S.
• Function f from a subset D ⊆ Rn to R is convex if and only if f(ux+(1−u)y) ≤ uf(x)+(1−u)f(y)

for all x, y ∈ D.
• Function f from a subset D ⊆ Rn to R is concave if and only if −f is convex.

For example, the rate-latency function (Fig 3.1, center left) is convex, the piecewise linear function f1 given
by (3.1) is concave and the piecewise linear function f2 given by (3.2) is neither convex nor concave.

There are a number of properties that convex sets and functions enjoy [76]. Here are a few that will be used
in this chapter, and that are a direct consequence of Definition 3.1.8.

• The convex subsets of R are the intervals.
• If S1 and S2 are two convex subsets of Rn, their sum

S = S1 + S2 = {s ∈ Rn | s = s1 + s2 for some s1 ∈ S1 and s2 ∈ S2}

is also convex.
• Function f from an interval [a, b] to R is convex (resp. concave) if and only if f(ux + (1 − u)y) ≤

(resp. ≥) uf(x) + (1 − u)f(y) for all x, y ∈ [a, b] and all u ∈ [0.1].
• The pointwise maximum (resp. minimum) of any number of convex (resp. concave) functions is a

convex (resp. concave) function.
• If S is a convex subset of Rn+1, n ≥ 1, the function from Rn to R defined by

f(x) = inf{µ ∈ R such that (x, µ) ∈ S}

is convex.
• If f is a convex function from Rn to R, the set S defined by

S = {(x, µ) ∈ Rn+1 such that f(x) ≤ µ}

is convex. This set is called the epigraph of f . It implies in the particular case where n = 1 that the
line segment between {a, f(a)} and {b, f(b)} lies above the graph of the curve y = f(x).

110 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

The proof of these properties is given in [76] and can be easily deduced from Definition 3.1.8, or even from
a simple drawing. Chang [11] introduced star-shaped functions, which are defined as follows.

DEFINITION 3.1.9 (STAR-SHAPED FUNCTION). Function f ∈ F is star-shaped if and only if f(t)/t is
wide-sense decreasing for all t > 0.

Star-shaped enjoy the following property:

THEOREM 3.1.3 (MINIMUM OF STAR-SHAPED FUNCTIONS). Let f, g be two star-shaped functions. Then
h = f ∧ g is also star-shaped.

PROOF: Consider some t ≥ 0. If h(t) = f(t), then for all s > t, h(t)/t = f(t)/t ≥ f(s)/s ≥ h(s)/s.
The same argument holds of course if h(t) = g(t). Therefore h(t)/t ≥ h(s)/s for all s > t, which shows
that h is star-shaped.

We will see other properties of star-shaped functions in the next sections. Let us conclude this section with
an important class of star-shaped functions.

THEOREM 3.1.4. Concave functions are star-shaped.

PROOF: Let f be a concave function. Then for any u ∈ [0, 1] and x, y ≥ 0, f(ux + (1 − u)y) ≥
uf(x) + (1 − u)f(y). Take x = t, y = 0 and u = s/t, with 0 < s ≤ t. Then the previous inequality
becomes f(s) ≥ (s/t)f(t), which shows that f(t)/t is a decreasing function of t.

On the other hand, a star-shaped function is not necessarily a concave function. We will see one such
example in Section 3.1.7.

3.1.6 MIN-PLUS CONVOLUTION

Let f(t) be a real-valued function, which is zero for t ≤ 0. If t ∈ R, the integral of this function in the
conventional algebra (R,+,×) is ∫ t

0
f(s)ds

which becomes, for a sequence f(t) where t ∈ Z,

t∑
s=0

f(s).

In the min-plus algebra (R ∪ {+∞},∧,+), where the ‘addition’ is ∧ and the ‘multiplication’ is +, an
‘integral’ of the function f becomes therefore

inf
s∈R such that 0≤s≤t

{f(s)},

which becomes, for a sequence f(t) where t ∈ Z,

min
s∈Z such that 0≤s≤t

{f(s)}.

We will often adopt a shorter notation for the two previous expressions, which is

inf
0≤s≤t

{f(s)},

with s ∈ Z or s ∈ R depending on the domain of f .

3.1. MIN-PLUS CALCULUS 111

A key operation in conventional linear system theory is the convolution between two functions, which is
defined as

(f ⊗ g)(t) =
∫ +∞

−∞
f(t− s)g(s)ds

and becomes, when f(t) and g(t) are two functions that are zero for t < 0,

(f ⊗ g)(t) =
∫ t

0
f(t− s)g(s)ds.

In min-plus calculus, the operation of convolution is the natural extension of the previous definition:

DEFINITION 3.1.10 (MIN-PLUS CONVOLUTION). Let f and g be two functions or sequences of F . The
min-plus convolution of f and g is the function

(f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)} . (3.7)

(If t < 0, (f ⊗ g)(t) = 0).

Example. Consider the two functions γr,b and βR,T , with 0 < r < R, and let us compute their min-plus
convolution. Let us first compute it for 0 ≤ t ≤ T .

(γr,b ⊗ βR,T)(t) = inf
0≤s≤t

{
γr,b(t− s) +R[s− T]+

}
= inf

0≤s≤t
{γr,b(t− s) + 0} = γr,b(0) + 0 = 0 + 0 = 0

Now, if t > T , one has

(γr,b ⊗ βR,T)(t)
= inf

0≤s≤t

{
γr,b(t− s) +R[s− T]+

}
= inf

0≤s≤T

{
γr,b(t− s) +R[s− T]+

} ∧ inf
T≤s<t

{
γr,b(t− s) +R[s− T]+

}
∧ inf

s=t

{
γr,b(t− s) +R[s− T]+

}
= inf

0≤s≤T
{b+ r(t− s) + 0} ∧ inf

T<s<t
{b+ r(t− s) +R(s− T)}

∧ {0 +R(t− T)}
= {b+ r(t− T)} ∧

{
b+ rt−RT + inf

T<s<t
{(R− r)s}

}
∧ {R(t− T)}

= {b+ r(t− T)} ∧ {b+ r(t− T)} ∧ {R(t− T)}
= {b+ r(t− T)} ∧ {R(t− T)} .

The result is shown in Figure 3.3. Let us now derive some useful properties for the computation of min-plus
convolution.

THEOREM 3.1.5 (GENERAL PROPERTIES OF ⊗). Let f, g, h ∈ F .

• Rule 1 (Closure of ⊗) (f ⊗ g) ∈ F .
• Rule 2 (Associativity of ⊗) (f ⊗ g) ⊗ h = f ⊗ (g ⊗ h).
• Rule 3 (The zero element for ∧ is absorbing for ⊗) The zero element for ∧ belonging to F is the

function ε, defined as ε(t) = +∞ for all t ≥ 0 and ε(t) = 0 for all t < 0. One has f ⊗ ε = ε.
• Rule 4 (Existence of a neutral element for ⊗) The neutral element is δ0, as f ⊗ δ0 = f .
• Rule 5 (Commutativity of ⊗) f ⊗ g = g ⊗ f .
• Rule 6 (Distributivity of ⊗ with respect to ∧) (f ∧ g) ⊗ h = (f ⊗ h) ∧ (g ⊗ h).
• Rule 7 (Addition of a constant) For any K ∈ R+, (f +K) ⊗ g = (f ⊗ g) +K.

The proof of these rules is easy. We prove the two first rules, the proof of the five others are left to the reader.

112 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

r

b

T

R

t

(γr,b ⊗ βR,T)(t)

Figure 3.3: Function γr,b ⊗ βR,T when 0 < r < R.

PROOF: (Rule 1) Since f is wide-sense increasing,

f(t1 − s) + g(s) ≤ f(t2 − s) + g(s)

for all 0 ≤ t1 < t2 and all s ∈ R. Therefore

inf
s∈R

{f(t1 − s) + g(s)} ≤ inf
s∈R

{f(t2 − s) + g(s)}

and as f(t) = g(t) = 0 when t < 0, this inequality is equivalent to

inf
0≤s≤t1

{f(t1 − s) + g(s)} ≤ inf
0≤s≤t2

{f(t2 − s) + g(s)} ,

which shows that (f ⊗ g)(t1) ≤ (f ⊗ g)(t2) for all 0 ≤ t1 < t2. (Rule 2) One has

((f ⊗ g) ⊗ h)(t) = inf
0≤s≤t

{
inf

0≤u≤t−s
{f(t− s− u) + g(u)} + h(s)

}
= inf

0≤s≤t

{
inf

s≤u′≤t

{
f(t− u′) + g(u′ − s) + h(s)

}}
= inf

0≤u′≤t

{
inf

0≤s≤u′

{
f(t− u′) + g(u′ − s) + h(s)

}}
= inf

0≤u′≤t

{
f(t− u′) + inf

0≤s≤u′

{
g(u′ − s) + h(s)

}}
= inf

0≤u′≤t

{
f(t− u′) + (g ⊗ h)(u′)

}
= (f ⊗ (g ⊗ h))(t).

Rules 1 to 6 establish a structure of a commutative dioid for (F ,∧,⊗), whereas Rules 6 and 7 show that ⊗
is a linear operation on (R+,∧,+). Now let us also complete these results by two additional rules that are
helpful in the case of concave or convex functions.

THEOREM 3.1.6 (PROPERTIES OF ⊗ FOR CONCAVE/CONVEX FUNCTIONS). Let f, g ∈ F .

3.1. MIN-PLUS CALCULUS 113

• Rule 8 (Functions passing through the origin) If f(0) = g(0) = 0 then f ⊗ g ≤ f ∧ g. Moreover, if
f and g are star-shaped, then f ⊗ g = f ∧ g.

• Rule 9 (Convex functions) If f and g are convex then f ⊗ g is convex. In particular if f, g are convex
and piecewise linear, f ⊗ g is obtained by putting end-to-end the different linear pieces of f and g,
sorted by increasing slopes.

Since concave functions are star-shaped, Rule 8 also implies that if f, g are concave with f(0) = g(0) = 0,
then f ⊗ g = f ∧ g.

PROOF: (Rule 8) As f(0) = g(0) = 0,

(f ⊗ g)(t) = g(t) ∧ inf
0<s<t

{f(t− s) + g(s)} ∧ f(t) ≤ f(t) ∧ g(t). (3.8)

Suppose now that, in addition, f and g are star-shaped. Then for any t > 0 and 0 ≤ s ≤ t f(t − s) ≥
(1 − s/t)f(t) and g(s) ≥ (s/t)g(t), so that

f(t− s) + g(s) ≥ f(t) + (s/t)(g(t) − f(t)).

Now, as 0 ≤ s/t ≤ 1, f(t) + (s/t)(g(t) − f(t)) ≥ f(t) ∧ g(t) so that

f(t− s) + g(s) ≥ f(t) ∧ g(t)

for all 0 ≤ s ≤ t. Combining this inequality with (3.8), we obtain the desired result. (Rule 9) The proof

uses properties of convex sets and functions listed in the previous subsection. The epigraphs of f and g are
the sets

S1 = {(s1, µ1) ∈ R2 such that f(s1) ≤ µ1}
S2 = {(s2, µ2) ∈ R2 such that g(s2) ≤ µ2}

Since f and g are convex, their epigraphs are also convex, and so is their sum S = S1 + S2, which can be
expressed as

S = {(t, µ) ∈ R2| for some (s, ξ) ∈ [0, t] × [0, µ], f(t− s) ≤ µ− ξ, g(s) ≤ ξ}.

As S is convex, function h(t) = inf{µ ∈ R such that (t, µ) ∈ S} is also convex. Now h can be recast as

h(t)
= inf{µ ∈ R | for some(s, ξ) ∈ [0, t] × [0, µ], f(t− s) ≤ µ− ξ, g(s) ≤ ξ}
= inf{µ ∈ R | for some s ∈ [0, t], f(t− s) + g(s) ≤ µ}
= inf{f(t− s) + g(s), s ∈ [0, t]}
= (f ⊗ g)(t),

which proves that (f ⊗ g) is convex.

If f and g are piecewise linear, one can construct the set S = S1 + S2, which is the epigraph of f ⊗ g, by
putting end-to-end the different linear pieces of f and g, sorted by increasing slopes [24].

Indeed, let h′ denote the function that results from this operation, and let us show that h′ = f ⊗ g. Suppose
that there are a total of n linear pieces from f and g, and label them from 1 to n according to their increasing
slopes: 0 ≤ r1 ≤ r2 ≤ . . . ≤ rn. Figure 3.4 shows an example for n = 5. Let Ti denote the length of
the projection of segment i onto the horizontal axis, for 1 ≤ i ≤ n. Then the length of the projection of
segment i onto the vertical axis is riTi. Denote by S ′ the epigraph of h′, which is convex, and by ∂S ′ its

114 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

T2

t-s

f(t-s)

S1

r2T2

T4

r4T4

T1

r1T1

g(s)

S2

r3T3

T3 T5

r5T5

T1

r1T1

h’(t)=(f⊗g)(t)

S’=S=S1+S2

r2T2

T3 T4

r4T4

T2

r3T3

s

t

r4

r4

r5

r3
r1

r1

r2

r3

r2

Figure 3.4: Convex, piecewise linear functions f (and its epigraph S1 (top left)), g (and its epigraph S2 (top right)), and
f ⊗ g (and its epigraph S = S1 + S2 (bottom)).

3.1. MIN-PLUS CALCULUS 115

boundary. Pick any point (t, h′(t)) on this boundary ∂S ′. We will show that it can always be obtained by
adding a point (t− s, f(t− s)) of the boundary ∂S1 of S1 and a point (s, g(s)) of the boundary ∂S2 of S2.
Let k be the linear segment index to which (t, h′(t)) belongs, and assume, with no loss of generality, that
this segment is a piece of f (that is, k ⊆ ∂S1). We can express h′(t) as

h′(t) = rk(t−
k−1∑
i=1

Ti) +
k−1∑
i=1

riTi. (3.9)

Now, let s be the sum of the lengths of the horizontal projections of the segments belonging to g and whose
index is less than k, that is,

s =
∑

i⊆∂S2,1≤i≤k−1

Ti.

Then we can compute that

t− s = t−
k−1∑
i=1

Ti +
k−1∑
i=1

Ti −
∑

i⊆∂S2,1≤i≤k−1

Ti

= t−
k−1∑
i=1

Ti +
∑

i⊆∂S1,1≤i≤k−1

Ti

and that

f(t− s) = rk(t−
k−1∑
i=1

Ti) +
∑

i⊆∂S1,1≤i≤k−1

riTi

g(s) =
∑

i⊆∂S2,1≤i≤k−1

riTi.

The addition of the right hand sides of these two equations is equal to h′(t), because of (3.9), and therefore
f(t − s) + g(s) = h′(t). This shows that any point of ∂S ′ can be broken down into the sum of a point of
∂S1 and of a point of ∂S2, and hence that ∂S ′ = ∂S1 + ∂S2, which in turn implies that S ′ = S1 + S2 = S.
Therefore h′ = f ⊗ g.

The last rule is easy to prove, and states that ⊗ is isotone, namely:

THEOREM 3.1.7 (ISOTONICITY OF ⊗). Let f, g, f ′, g′ ∈ F .

• Rule 10 (Isotonicity) If f ≤ g and f ′ ≤ g′ then f ⊗ f ′ ≤ g ⊗ g′.

We will use the following theorem:

THEOREM 3.1.8. For f and g in F , if in addition g is continuous, then for any t there is some t0 such that

(f ⊗ g)(t) = fl(t0) + g(t− t0) (3.10)

where fl(t0) = sup{s<t0} f(s) is the limit to the left of f at t0. If f is left-continuous, then fl(t0) = f(t0).

PROOF: Fix t. There is a sequence of times 0 ≤ sn ≤ t such that

inf
t0≤t

(f(t0) + g(t− t0)) = lim
n→∞ (f(sn) + g(t− sn)) (3.11)

Since 0 ≤ sn ≤ t, we can extract a sub-sequence that converges towards some value t0. We take a
notation shortcut and write limn→∞ sn = t0. If f is continuous, the right hand-side in 3.11 is equal

116 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

to fl(t0) + g(t − t0) which shows the proposition. Otherwise f has a discontinuity at t0. Define δ =
f(t0) − fl(t0). We show that we can again extract a subsequence such that sn < t0. Indeed, if this would
not be true, we would have sn ≥ t0 for all but a finite number of indices n. Thus for n large enough we
would have

f(sn) ≥ fl(t0) + δ

and by continuity of g:

g(t− sn) ≥ g(t− t0) − δ

2

thus

f(sn) + g(t− sn) ≥ fl(t0) + g(t− t0) +
δ

2

Now

fl(t0) + g(t− t0) ≥ inf
s≤t

(f(s) + g(t− s))

thus

f(sn) + g(t− sn) ≥ inf
s≤t

(f(s) + g(t− s)) +
δ

2

which contradicts 3.11. Thus we can assume that sn ≤ t0 for n large enough and thus limn→∞ f(sn) =
fl(t0).

Finally, let us mention that it will sometimes be useful to break down a somewhat complex function into the
convolution of a number of simpler functions. For example, observe that the rate-latency function βR,T can
be expressed as

βR,T = δT ⊗ λR. (3.12)

3.1.7 SUB-ADDITIVE FUNCTIONS

Another class of functions will be important in network calculus are sub-additive functions, which are
defined as follows.

DEFINITION 3.1.11 (SUB-ADDITIVE FUNCTION). Let f be a function or a sequence of F . Then f is
sub-additive if and only if f(t+ s) ≤ f(t) + f(s) for all s, t ≥ 0.

Note that this definition is equivalent to imposing that f ≤ f ⊗ f . If f(0) = 0, it is equivalent to imposing
that f ⊗ f = f .

We will see in the following theorem that concave functions passing through the origin are sub-additive. So
the piecewise linear function f1 given by (3.1), being concave and passing through the origin, is sub-additive.

The set of sub-additive functions is however larger than that of concave functions: the piecewise linear
function f2 given by (3.2) is not concave, yet one check that it verifies Definition 3.1.11 and hence is sub-
additive.

Contrary to concave and convex functions, it is not always obvious, from a quick visual inspection of the
graph of a function, to establish whether it is sub-additive or not. Consider the two functions βR,T + K ′

and βR,T + K ′′, represented respectively on the left and right of Figure 3.5. Although they differ only by
the constants K ′ and K ′′, which are chosen so that 0 < K ′′ < RT < K ′ < +∞, we will see βR,T +K ′ is
sub-additive but not βR,T +K ′′. Consider first βR,T +K ′. If s+ t ≤ T , then s, t ≤ T and

βR,T (s+ t) +K ′ = K ′ < 2K ′ = (βR,T (s) +K ′) + (βR,T (t) +K ′).

3.1. MIN-PLUS CALCULUS 117

T
t

 βR,T(t) + K’

K’
RT

T
t

 βR,T(t) + K”

K”
RT

RR

Figure 3.5: Functions βR,T + K′ (left) and βR,T + K′′ (right). The only difference between them is the value of the
constant: K′′ < RT < K′.

On the other hand, if s+ t > T , then, since K ′ > RT ,

βR,T (t+ s) +K ′ = R(t+ s− T) +K ′

< R(s+ t− T) +K ′ + (K ′ −RT)
= (R(t− T) +K ′) + (R(s− T) +K ′)
≤ (βR,T (t) +K ′) + (βR,T (s) +K ′),

which proves that βR,T +K ′ is sub-additive. Consider next βR,T +K ′′. Pick s = T and t > T . Then, since
K ′′ < RT ,

βR,T (t+ s) +K ′′ =
βR,T (t+ T) +K ′′ = Rt+K ′′ = R(t− T) +RT +K ′′

> R(t− T) +K ′′ +K ′′ = (βR,T (t) +K ′′) + (βR,T (s) +K ′′),

which proves that βR,T +K ′′ is not sub-additive.

Let us list now some properties of sub-additive functions.

THEOREM 3.1.9 (PROPERTIES OF SUB-ADDITIVE FUNCTIONS). Let f, g ∈ F .

• (Star-shaped functions passing through the origin) If f is star-shaped with f(0) = 0, then f is
sub-additive.

• (Sum of sub-additive functions) If f and g are sub-additive, so is (f + g).
• (Min-plus convolution of sub-additive functions) If f and g are sub-additive, so is (f ⊗ g).

The first property also implies that concave functions passing through the origin are sub-additive. The proof
of the second property is simple and left to the reader, we prove the two others.

PROOF: (Star-shaped functions passing through the origin) Let s, t ≥ 0 be given. If s or t = 0, one
clearly has that f(s+ t) = f(s) + f(t). Assume next that s, t > 0. As f is star-shaped,

f(s) ≥ s

s+ t
f(s+ t)

f(t) ≥ t

s+ t
f(s+ t)

118 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

which sum up to give f(s)+ f(t) ≥ f(s+ t). (Min-plus convolution of sub-additive functions) Let s, t ≥ 0

be given. Then

(f ⊗ g)(s) + (f ⊗ g)(t)
= inf

0≤u≤s
{f(s− u) + g(u)} + inf

0≤v≤t
{f(t− v) + g(v)}

= inf
0≤u≤s

inf
0≤v≤t

{f(s− u) + f(t− v) + g(u) + g(v)}
≥ inf

0≤u≤s
inf

0≤v≤t
{f(s+ t− (u+ v)) + g(u+ v)}

= inf
0≤u+v≤s+t

{f(s+ t− (u+ v)) + g(u+ v)}
= (f ⊗ g)(t+ s).

The minimum of any number of star-shaped (resp. concave) functions is still a star-shaped (resp. concave)
function. If one of them passes through the origin, it is therefore a sub-additive function: for example, as
already mentioned earlier, the concave piecewise linear function f1 given by (3.1) is sub-additive. On the
other hand the minimum of two sub-additive functions is not, in general, sub-additive. Take for example
the minimum between a rate latency function βR′,T and function f2 given by (3.2), when R′ = 2R/3. with
R, T as defined in (3.2). Both functions are sub-additive, but one can check that βR′,T ∧ f2 is not.

The first property of the previous theorem tells us that all star-shaped functions are sub-additive. One can
check for example that βR,T + K ′ is a star-shaped function (which is not concave), but not βR,T + K ′′.
One can also wonder if, conversely, all sub-additive functions are star-shaped. The answer is no: take again
function f2 given by (3.2), which is sub-additive. It is not star-shaped, because f(2T)/2T = R/2 <
2R/3 = f(3T)/3T .

3.1.8 SUB-ADDITIVE CLOSURE

Given a function f ∈ F , if f(0) = 0, then f ≥ f ⊗ f ≥ 0. By repeating this operation, we will get a
sequence of functions that are each time smaller and converges to some limiting function that, as we will
see, is the largest sub-additive function smaller than f and zero in t = 0, and is called sub-additive closure
of f . The formal definition is as follows.

DEFINITION 3.1.12 (SUB-ADDITIVE CLOSURE). Let f be a function or a sequence of F . Denote f (n) the
function obtained by repeating (n − 1) convolutions of f with itself. By convention, f (0) = δ0, so that
f (1) = f , f (2) = f ⊗ f , etc. Then the sub-additive closure of f , denoted by f , is defined by

f = δ0 ∧ f ∧ (f ⊗ f) ∧ (f ⊗ f ⊗ f) ∧ . . . = inf
n≥0

{
f (n)

}
. (3.13)

Example. Let us compute the sub-additive closure of the two functions βR,T +K ′ and βR,T +K ′′, repre-
sented respectively on the left and right of Figure 3.5. Note first that Rule 7 of Theorem 3.1.5 and Rule 9 of
Theorem 3.1.6 yield that for any K > 0,

(βR,T +K) ⊗ (βR,T +K) = (βR,T ⊗ βR,T) + 2K = βR,2T + 2K.

Repeating this convolution n times yields that for all integers n ≥ 1

(βR,T +K)(n) = βR,nT + nK.

Now, if K = K ′ > RT and t ≤ nT ,

βR,nT + nK ′ = nK ′ > (n− 1)RT +K ′ = R(nT − T) +K ′

≥ R[t− T]+ +K ′ = βR,T +K ′,

3.1. MIN-PLUS CALCULUS 119

whereas if t > nT

βR,nT + nK ′ = R(t− nT) + nK ′ = R(t− T) + (n− 1)(K ′ −RT) +K ′

> R(t− T) +K ′ = βR,T +K ′

so that (βR,T +K ′)(n) ≥ βR,T +K ′ for all n ≥ 1. Therefore (3.13) becomes

βR,T +K ′ = δ0 ∧ inf
n≥1

{
(βR,T +K ′)(n)

}
= δ0 ∧ (βR,T +K ′),

and is shown on the left of Figure 3.6. On the other hand, if K = K ′′ < RT , the infimum in the previous
equation is not reached in n = 1 for every t > 0, so that the sub-additive closure is now expressed by

βR,T +K ′′ = δ0 ∧ inf
n≥1

{
(βR,T +K ′′)(n)

}
= δ0 ∧ inf

n≥1

{
(βR,nT + nK ′′)

}
,

and is shown on the right of Figure 3.6.

T
t

 βR,T(t) + K’

K’
RT

T
t

 βR,T(t) + K”

K”
2K”
3K”
4K”

2T 3T 4T

Figure 3.6: The sub-additive closure of functions βR,T + K′ (left) and βR,T + K′′ (right), when K′′ < RT < K′.

Among all the sub-additive functions that are smaller than f and that are zero in t = 0, there is one that is
an upper bound for all others; it is equal to f , as established by the following theorem.

THEOREM 3.1.10 (SUB-ADDITIVE CLOSURE). Let f be a function or a sequence of F , and let f be its
sub-additive closure. Then (i) f ≤ f , f ∈ F and f is sub-additive. (ii) if function g ∈ F is sub-additive,
with g(0) = 0 and g ≤ f , then g ≤ f .

PROOF: (i) It is obvious from Definition 3.1.12, that f ≤ f . By repeating (n − 1) times Rule 1 of
Theorem 3.1.5, one has that f (n) ∈ F for all n ≥ 1. As f (0) = δ0 ∈ F too, f = infn≥0{f (n)} ∈ F . Let us
show next that f is sub-additive. For any integers n,m ≥ 0, and for any s, t ≥ 0,

f (n+m)(t+ s) = (f (n) ⊗ f (m))(t+ s) = inf
0≤u≤t+s

{f (n)(t+ s− u) + f (m)(u)}

≤ f (n)(t) + f (m)(s)

so that

f(t+ s) = inf
n+m≥0

{f (n+m)(t+ s)} = inf
n,m≥0

{f (n+m)(t+ s)}

≤ inf
n,m≥0

{f (n)(t) + f (m)(s)}

= inf
n≥0

{f (n)(t)} + inf
m≥0

{f (m)(s)} = f(t) + f(s)

120 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

which shows that f is sub-additive. (ii) Next, suppose that g ∈ F is sub-additive, g(0) = 0 and g ≤ f .
Suppose that for some n ≥ 1, f (n) ≥ g. Clearly, this holds for n = 0 (because g(0) = 0 implies that
g ≤ δ0 = f (0)) and for n = 1. Now, this assumption and the sub-additivity of g yield that for any
0 ≤ s ≤ t, f (n)(t− s) + f(s) ≥ g(t− s) + g(s) ≥ g(t) and hence that f (n+1)(t) ≥ g(t). By recursion on
n, f (n) ≥ g for all n ≥ 0, and therefore f = infn≥0{f (n)} ≥ g.

COROLLARY 3.1.1 (SUB-ADDITIVE CLOSURE OF A SUB-ADDITIVE FUNCTION). Let f ∈ F . Then the
three following statements are equivalent: (i) f(0) = 0 and f is sub-additive (ii) f ⊗ f = f (iii) f = f .

PROOF: (i) ⇒ (ii) follows immediately from from Definition 3.1.11. (ii) ⇒ (iii): first note that f⊗f = f
implies that f (n) = f for all n ≥ 1. Second, note that (f ⊗ f)(0) = f(0) + f(0), which implies that
f(0) = 0. Therefore f = infn≥0{f (n)} = δ0 ∧ f = f . (iii) ⇒ (i) follows from Theorem 3.1.10.

The following theorem establishes some additional useful properties of the sub-additive closure of a func-
tion.

THEOREM 3.1.11 (OTHER PROPERTIES OF SUB-ADDITIVE CLOSURE). Let f, g ∈ F
• (Isotonicity) If f ≤ g then f ≤ g.
• (Sub-additive closure of a minimum) f ∧ g = f ⊗ g.
• (Sub-additive closure of a convolution) f ⊗ g ≥ f ⊗ g. If f(0) = g(0) = 0 then f ⊗ g = f ⊗ g.

PROOF: (Isotonocity) Suppose that we have shown that for some n ≥ 1, f (n) ≥ g(n) (Clearly, this holds
for n = 0 and for n = 1). Then applying Theorem 3.1.7 we get

f (n+1) = f (n) ⊗ f ≥ g(n) ⊗ g = g(n+1),

which implies by recursion on n that f ≤ g. (Sub-additive closure of a minimum) One easily shows, using

Theorem 3.1.5, that
(f ∧ g)(2) = (f ⊗ f) ∧ (f ⊗ g) ∧ (g ⊗ g).

Suppose that we have shown that for some n ≥ 0, the expansion of (f ∧ g)(n) is

(f ∧ g)(n) =
f (n) ∧ (f (n−1) ⊗ g) ∧ (f (n−2) ⊗ g(2)) ∧ . . . ∧ g(n) =

inf
0≤k≤n

{
f (n−k) ⊗ g(k)

}
.

Then

(f ∧ g)(n+1) = (f ∧ g) ⊗ (f ∧ g)(n) =
{
f ⊗ (f ∧ g)(n)

}
∧
{
g ⊗ (f ∧ g)(n)

}
= inf

0≤k≤n

{
f (n+1−k) ⊗ g(k)

}
∧ inf

0≤k≤n

{
f (n−k) ⊗ g(k+1)

}
= inf

0≤k≤n

{
f (n+1−k) ⊗ g(k)

}
∧ inf

1≤k′≤n+1

{
f (n+1−k′) ⊗ g(k′)

}
= inf

0≤k≤n+1

{
f (n+1−k) ⊗ g(k)

}
which establishes the recursion for all n ≥ 0. Therefore

f ∧ g = inf
n≥0

inf
0≤k≤n

{
f (n−k) ⊗ g(k)

}
= inf

k≥0
inf
n≥k

{
f (n−k) ⊗ g(k)

}
= inf

k≥0
inf
l≥0

{
f (l) ⊗ g(k)

}
= inf

k≥0

{
inf
l≥0

{f (l)} ⊗ g(k)

}
= inf

k≥0

{
f ⊗ g(k)

}
= f ⊗ inf

k≥0
{g(k)} = f ⊗ g.

3.1. MIN-PLUS CALCULUS 121

(Sub-additive closure of a convolution) Using the same recurrence argument as above, one easily shows that
(f ⊗ g)(n) = f (n) ⊗ g(n), and hence that

f ⊗ g = inf
n≥0

{
(f ⊗ g)(n)

}
= inf

n≥0

{
f (n) ⊗ g(n)

}
≥ inf

n,m≥0

{
f (n) ⊗ g(m)

}
=

(
inf
n≥0

{
f (n)

})
⊗
(

inf
m≥0

{
g(m)

})
= f ⊗ g. (3.14)

If f(0) = g(0) = 0, Rule 8 in Theorem 3.1.6 yields that f ⊗ g ≤ f ∧ g, and therefore that f ⊗ g ≤ f ∧ g.
Now we have just shown above that f ∧ g = f ⊗ g, so that

f ⊗ g ≤ f ⊗ g.

Combining this result with (3.14), we get f ⊗ g = f ⊗ g.

Let us conclude this section with an example illustrating the effect that a difference in taking t continuous
or discrete may have. This example is the computation of the sub-additive closure of

f(t) =
{
t2 if t > 0
0 if t ≤ 0

Suppose first that t ∈ R. Then we compute that

(f ⊗ f)(t) = inf
0≤s≤t

{
(t− s)2 + s2

}
= (t/2)2 + (t/2)2 = t2/2

as the infimum is reached in s = t/2. By repeating this operation n times, we obtain

f (n)(t) = inf
0≤s≤t

{
(t− s)2 + (f (n−1))2(s)

}
=

inf
0≤s≤t

{
(t− s)2 + s2/(n− 1)

}
= t2/n

as the infimum is reached in s = t(1 − 1/n). Therefore

f(t) = inf
n≥0

{t2/n} = lim
n→∞ t2/n = 0.

Consequently, if t ∈ R, the sub-additive closure of function f is

f = 0,

as shown on the left of Figure 3.7.

Now, if t ∈ Z, the sequence f(t) is convex and piecewise linear, as we can always connect the different
successive points (t, t2) for all t = 0, 1, 2, 3, . . .: the resulting graph appears as a succession of segments
of slopes equal to (2t+ 1) (the first segment in particular has slope 1), and of projections on the horizontal
axis having a length equal to 1, as shown on the right of Figure 3.7. Therefore we can apply Rule 9 of
Theorem 3.1.6, which yields that f ⊗ f is obtained by doubling the length of the different linear segments
of f , and putting them end-to-end by increasing slopes. The analytical expression of the resulting sequence
is

(f ⊗ f)(t) = min
0≤s≤t

{
(t− s)2 + s2

}
= 	t2/2
.

Sequence f (2) = f⊗f is again convex and piecewise linear. Note the first segment has slope 1, but has now
a double length. If we repeat n times this convolution, it will result in a convex, piecewise linear sequence
f (n)(t) whose first segment has slope 1 and horizontal length n:

f (n)(t) = t if 0 ≤ t ≤ n,

122 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

t

f(t)

f (t)(2)

f (t)(n)

f(t)
t

f(t)

f(t)

f (t)(2)

f (t)(n)

1 2 3
1

Figure 3.7: The sub-additive closure of f(t) = tλ1(t), when t ∈ R (left) and when t ∈ Z (right).

as shown on the right of Figure 3.7. Consequently, the sub-additive closure of sequence f is obtained by
letting n→ ∞, and is therefore f(t) = t for t ≥ 0. Therefore, if t ∈ Z,

f = λ1.

3.1.9 MIN-PLUS DECONVOLUTION

The dual operation (in a sense that will clarified later on) of the min-plus convolution is the min-plus decon-
volution. Similar considerations as the ones of Subsection 3.1.1 can be made on the difference between a
sup and a max. Notation ∨ stands for sup or, if it exists, for max: a ∨ b = max{a, b}.

DEFINITION 3.1.13 (MIN-PLUS DECONVOLUTION). Let f and g be two functions or sequences of F . The
min-plus deconvolution of f by g is the function

(f � g)(t) = sup
u≥0

{f(t+ u) − g(u)} . (3.15)

If both f(t) and g(t) are infinite for some t, then Equation (3.15) is not defined. Contrary to min-plus
convolution, function (f � g)(t) is not necessarily zero for t ≤ 0, and hence this operation is not closed in
F , as shown by the following example.

Example. Consider again the two functions γr,b and βR,T , with 0 < r < R, and let us compute the min-plus
deconvolution of γr,b by βR,T . We have that

(γr,b � βR,T)(t)
= sup

u≥0

{
γr,b(t+ u) −R[u− T]+

}
= sup

0≤u≤T

{
γr,b(t+ u) −R[u− T]+

} ∨ sup
u>T

{
γr,b(t+ u) −R[u− T]+

}
= sup

0≤u≤T
{γr,b(t+ u)} ∨ sup

u>T
{γr,b(t+ u) −Ru+RT}

= {γr,b(t+ T)} ∨ sup
u>T

{γr,b(t+ u) −Ru+RT} . (3.16)

Let us first compute this expression for t ≤ −T . Then γr,b(t+ T) = 0 and (3.16) becomes

(γr,b � βR,T)(t)

3.1. MIN-PLUS CALCULUS 123

= 0 ∨ sup
T<u≤−t

{γr,b(t+ u) −Ru+RT}

∨ sup
u>−t

{γr,b(t+ u) −Ru+RT}
= 0 ∨ sup

T<u≤−t
{0 −Ru+RT} ∨ sup

u>−t
{b+ r(t+ u) −Ru+RT}

= 0 ∨ 0 ∨ {b+Rt+RT} = [b+R(t+ T)]+ .

Let us next compute (γr,b � βR,T)(t) for t > −T . Then (3.16) becomes

(γr,b � βR,T)(t) = {b+ r(t+ T)} ∨ sup
u>T

{b+ r(t+ u) −Ru+RT}
= {b+ r(t+ T)} ∨ {b+ r(t+ T)} = b+ r(t+ T).

The result is shown in Figure 3.8.

r

b

–T t

R

(γr,b ∅ βR,T)(t)

Figure 3.8: Function γr,b � βR,T when 0 < r < R.

Let us now state some properties of � (Other properties will be given in the next section).

THEOREM 3.1.12 (PROPERTIES OF �). Let f, g, h ∈ F .

• Rule 11 (Isotonicity of �) If f ≤ g, then f � h ≤ g � h and h� f ≥ h� g.
• Rule 12 (Composition of �) (f � g) � h = f � (g ⊗ h).
• Rule 13 (Composition of � and ⊗) (f ⊗ g) � g ≤ f ⊗ (g � g).
• Rule 14 (Duality between � and ⊗) f � g ≤ h if and only if f ≤ g ⊗ h.
• Rule 15 (Self-deconvolution) (f � f) is a sub-additive function of F such that (f � f)(0) = 0.

PROOF: (Rule 11) If f ≤ g, then for any h ∈ F

(f � h)(t) = sup
u≥0

{f(t+ u) − h(u)} ≤ sup
u≥0

{g(t+ u) − h(u)} = (g � h)(t)

(h� f)(t) = sup
u≥0

{h(t+ u) − f(u)} ≥ sup
u≥0

{h(t+ u) − g(u)} = (h� g)(t).

(Rule 12) One computes that

124 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

((f � g) � h)(t) = sup
u≥0

{(f � g)(t+ u) − h(u)}

= sup
u≥0

{
sup
v≥0

{f(t+ u+ v) − g(v)} − h(u)
}

= sup
u≥0

{
sup
v′≥u

{
f(t+ v′) − g(v′ − u)

}− h(u)

}
= sup

u≥0
sup
v′≥u

{
f(t+ v′) − {

g(v′ − u) + h(u)
}}

= sup
v′≥0

sup
0≤u≤v′

{
f(t+ v′) − {

g(v′ − u) + h(u)
}}

= sup
v′≥0

{
f(t+ v′) − inf

0≤u≤v′

{
g(v′ − u) + h(u)

}}
= sup

v′≥0

{
f(t+ v′) − (g ⊗ h)(v′)

}
= (f � (g ⊗ h))(t).

(Rule 13) One computes that

((f ⊗ g) � g)(t) = sup
u≥0

{(f ⊗ g)(t+ u) − g(u)}

= sup
u≥0

inf
0≤s≤t+u

{f(t+ u− s) + g(s) − g(u)}

= sup
u≥0

inf
−u≤s′≤t

{
f(t− s′) + g(s′ + u) − g(u)

}
≤ sup

u≥0
inf

0≤s′≤t

{
f(t− s′) + g(s′ + u) − g(u)

}
≤ sup

u≥0
inf

0≤s′≤t

{
f(t− s′) + sup

v≥0
{g(s′ + v) − g(v)}

}
= inf

0≤s′≤t

{
f(t− s′) + sup

v≥0
{g(s′ + v) − g(v)}

}
= inf

0≤s′≤t

{
f(t− s′) + (g � g)(s′)

}
= (f ⊗ (g � g))(t).

(Rule 14) Suppose first that (f � g)(s) ≤ h(s) for all s. Take any s, v ≥ 0. Then

f(s+ v) − g(v) ≤ sup
u≥0

{f(s+ u) − g(u)} = (f � g)(s) ≤ h(s)

or equivalently,
f(s+ v) ≤ g(v) + h(s).

Let t = s+ v. The former inequality can be written as

f(t) ≤ g(t− s) + h(s).

As it is verified for all t ≥ s ≥ 0, it is also verified in particular for the value of s that achieves the infimum
of the right-hand side of this inequality. Therefore it is equivalent to

f(t) ≤ inf
0≤s≤t

{g(t− s) + h(s)} = (g ⊗ h)(t)

for all t ≥ 0. Suppose now that for all v, f(v) ≤ (g ⊗ h)(v). Pick any t ∈ R. Then, since g, h ∈ F ,

f(v) ≤ inf
0≤s≤v

{g(v − s) + h(s)} = inf
s∈R

{g(v − s) + h(s)} ≤ g(t− v) + h(t).

3.1. MIN-PLUS CALCULUS 125

Let u = t− v, the former inequality can be written as

f(t+ u) − g(u) ≤ h(t).

As this is true for all u, it is also verified in particular for the value of u that achieves the supremum of the
left-hand side of this inequality. Therefore it is equivalent to

sup
u∈R

{f(t+ u) − g(u)} ≤ h(t).

Now if u < 0, g(u) = 0, so that supu<0{f(t+ u) − g(u)} = f(t) and the former inequality is identical to

sup
u≥0

{f(t+ u) − g(u)} ≤ h(t)

for all t. (Rule 15) It is immediate to check that (f � f)(0) = 0 and that f � f is wide-sense increasing.

Now,

(f � f)(s) + (f � f)(t)
= sup

u≥0
{f(t+ u) − f(u)} + sup

v≥0
{f(s+ v) − f(v)}

= sup
u≥0

{f(t+ u) − f(u)} + sup
w≥−t

{f(s+ t+ w) − f(t+ w)}

≥ sup
w≥0

{
sup
u≥0

{f(t+ u) − f(u) + f(s+ t+ w) − f(t+ w)}
}

≥ sup
w≥0

{f(t+ w) − f(w) + f(s+ t+ w) − f(t+ w)}

= (f � f)(s+ t).

Let us conclude this section by a special property that applies to self-deconvolution of sub-additive functions.

THEOREM 3.1.13 (SELF-DECONVOLUTION OF SUB-ADDITIVE FUNCTIONS). Let f ∈ F . Then f(0) = 0
and f is sub-additive if and only if f � f = f .

PROOF: (⇒) If f is sub-additive, then for all t, u ≥ 0, f(t + u) − f(u) ≤ f(t) and therefore for all
t ≥ 0,

(f � f)(t) = sup
u≥0

{f(t+ u) − f(u)} ≤ f(t).

On the other hand, if f(0) = 0,

(f � f)(t) = sup
u≥0

{f(t+ u) − f(u)} ≥ f(t) − f(0) = f(t).

Combining both equations, we get that f � f = f . (⇐) Suppose now that f � f = f . Then f(0) =
(f � f)(0) = 0 and for any t, u ≥ 0, f(t) = (f � f)(t) ≥ f(t+u)− f(u) so that f(t) + f(u) ≥ f(t+u),
which shows that f is sub-additive.

3.1.10 REPRESENTATION OF MIN-PLUS DECONVOLUTION BY TIME INVERSION

Min-plus deconvolution can be represented in the time inverted domain by min-plus convolution, for func-
tions that have a finite lifetime. Function g ∈ G has a finite lifetime if there exist some finite T0 and
T such that g(t) = 0 if t ≤ T0 and g(t) = g(T) for t ≥ T . Call Ĝ the subset of G, which contains
functions having a finite lifetime. For function g ∈ Ĝ, we use the notation g(+∞) as a shorthand for
supt∈R{g(t)} = limt→+∞ g(t).

LEMMA 3.1.1. Let f ∈ F be such that limt→+∞ f(t) = +∞. For any g ∈ Ĝ, g � f is also in Ĝ and
(g � f)(+∞) = g(+∞).

126 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

PROOF: Define L = g(+∞) and call T a number such that g(t) = L for t ≥ T . f(0) ≥ 0 implies that
g � f ≤ g(+∞) = g(L). Thus

(g � f)(t) ≤ L for t ≥ T. (3.17)

Now since limt→+∞ f(t) = +∞, there is some T1 > T such that f(t) ≥ L for all t > T1. Now let t > 2T1.
If u > T1, then f(u) ≥ L. Otherwise, u ≤ T1 thus t − u ≥ t − T1 > T1 thus g(t − u) ≥ L. Thus in all
cases f(u) + g(t− u) ≥ L. Thus we have shown that

(g ⊗ f)(t) ≥ L for t > 2T1. (3.18)

Combining (3.17) and (3.18) shows the lemma.

DEFINITION 3.1.14 (TIME INVERSION). For a fixed T ∈ [0,+∞[, the inversion operator ΦT is defined on
Ĝ by:

ΦT (f)(g) = g(+∞) − g(T − t)

Graphically, time inversion can be obtained by a rotation of 180o around the point (T
2 ,

g(+∞)
2). It is simple

to check that ΦT (g) is in Ĝ, that time inversion is symmetrical (ΦT (ΦT (g)) = g) and preserves the total
value (ΦT (g)(+∞) = g(+∞)). Lastly, for any α and T , α is an arrival curve for g if and only if α is an
arrival curve for ΦT (g).

THEOREM 3.1.14 (REPRESENTATION OF DECONVOLUTION BY TIME INVERSION). Let g ∈ Ĝ, and let T
be such that g(T) = g(+∞). Let f ∈ F be such that limt→+∞ f(t) = +∞. Then

g � f = ΦT (ΦT (g) ⊗ f) (3.19)

The theorem says that g � f can be computed by first inverting time, then computing the min-plus con-
volution between f , and the time-inverted function g, and then inverting time again. Figure 3.9 shows a
graphical illustration.

PROOF: The proof consists in computing the right handside in Equation (3.19). Call ĝ = ΦT (g). We
have, by definition of the inversion

ΦT (ΦT (g) ⊗ f) = ΦT (ĝ ⊗ f) = (ĝ ⊗ f)(+∞) − (ĝ ⊗ f)(T − t)

Now from Lemma 3.1.1 and the preservation of total value:

(ĝ ⊗ f)(+∞) = ĝ(+∞) = g(+∞)

Thus, the right-handside in Equation (3.19) is equal to

g(+∞) − (ĝ ⊗ f)(T − t) = g(+∞) − inf
u≥0

{ĝ(T − t− u) + f(u)}

Again by definition of the inversion, it is equal to

g(+∞) − inf
u≥0

{g(+∞) − g(t+ u) + f(u)} = sup
u≥0

{g(t+ u) − f(u)}.

3.1. MIN-PLUS CALCULUS 127

g(t)

f(t)

T

T

t

0
T

(g)(t)ΦT

t

g(t)

T/2

g(T)/2

T

t

t

T/2

g(T)/2

(g)(t)ΦT

(g) ⊗ f)(t)(Φ
T

(g) ⊗ f)(t)(Φ
T

(g) ⊗ f))(t) = (g ∅ f)(t)(ΦT(ΦT

Figure 3.9: Representation of the min-plus deconvolution of g by f = γr,b by time-inversion. From top to bottom:
functions f and g, function ΦT (g), function ΦT (g) ⊗ f and finally function g � f = ΦT (ΦT (g) ⊗ f).

128 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

3.1.11 VERTICAL AND HORIZONTAL DEVIATIONS

The deconvolution operator allows to easily express two very important quantities in network calculus,
which are the maximal vertical and horizontal deviations between the graphs of two curves f and g of F .
The mathematical definition of these two quantities is as follows.

DEFINITION 3.1.15 (VERTICAL AND HORIZONTAL DEVIATIONS). Let f and g be two functions or se-
quences of F . The vertical deviation v(f, g) and horizontal deviation h(f, g) are defined as

v(f, g) = sup
t≥0

{f(t) − g(t)} (3.20)

h(f, g) = sup
t≥0

{inf {d ≥ 0 such that f(t) ≤ g(t+ d)}} . (3.21)

Figure 3.10 illustrates these two quantities on an example.

t

f(t)

g(t)

h(f,g)

v(f,g)

Figure 3.10: The horizontal and vertical deviations between functions f and g.

Note that (3.20) can be recast as
v(f, g) = (f � g)(0) (3.22)

whereas (3.20) is equivalent to requiring that h(f, g) is the smallest d ≥ 0 such that for all t ≥ 0, f(t) ≤
g(t+ d) and can therefore be recast as

h(f, g) = inf {d ≥ 0 such that (f � g)(−d) ≤ 0} .
Now the horizontal deviation can be more easily computed from the pseudo-inverse of g. Indeed, Defini-
tion 3.1.7 yields that

g−1(f(t)) = inf {∆ such that g(∆) ≥ f(t)}
= inf {d ≥ 0 such that g(t+ d) ≥ f(t)} + t

so that (3.21) can be expressed as

h(f, g) = sup
t≥0

{
g−1(f(t)) − t

}
= (g−1(f) � λ1)(0). (3.23)

We have therefore the following expression of the horizontal deviation between f and g:

PROPOSITION 3.1.1 (HORIZONTAL DEVIATION).

h(f, g) = sup
t≥0

{
g−1(f(t)) − t

}
.

3.2. MAX-PLUS CALCULUS 129

3.2 MAX-PLUS CALCULUS

Similar definitions, leading to similar properties, can be derived if we replace the infimum (or minimum, it
is exists) by a supremum (or maximum, if it exists). We use the notation ∨ for denoting sup or max. In
particular, one can show that (R ∪ {−∞},∨,+) is also a dioid, and construct a max-plus convolution and
deconvolution, which are defined as follows.

3.2.1 MAX-PLUS CONVOLUTION AND DECONVOLUTION

DEFINITION 3.2.1 (MAX-PLUS CONVOLUTION). Let f and g be two functions or sequences of F . The
max-plus convolution of f and g is the function

(f⊗g)(t) = sup
0≤s≤t

{f(t− s) + g(s)} . (3.24)

(If t < 0, (f⊗g)(t) = 0).

DEFINITION 3.2.2 (MAX-PLUS DECONVOLUTION). Let f and g be two functions or sequences of F . The
max-plus deconvolution of f by g is the function

(f�g)(t) = inf
u≥0

{f(t+ u) − g(u)} . (3.25)

3.2.2 LINEARITY OF MIN-PLUS DECONVOLUTION IN MAX-PLUS ALGEBRA

Min-plus deconvolution is, in fact, an operation that is linear in (R+,∨,+). Indeed, one easily shows the
following property.

THEOREM 3.2.1 (LINEARITY OF � IN MAX-PLUS ALGEBRA). Let f, g, h ∈ F .

• Rule 16 (Distributivity of � with respect to ∨) (f ∨ g) � h = (f � h) ∨ (g � h).
• Rule 17 (Addition of a constant) For any K ∈ R+, (f +K) � g = (f � g) +K.

Min-plus convolution is not, however, a linear operation in (R+,∨,+), because in general

(f ∨ g) ⊗ h �= (f ⊗ h) ∨ (g ⊗ h).

Indeed, take f = β3R,T , g = λR and h = λ2R for some R, T > 0. Then using Rule 9, one easily computes
(see Figure 3.11) that

f ⊗ h = β3R,T ⊗ λ2R = β2R,T

g ⊗ h = λR ⊗ λ2R = λR

(f ∨ g) ⊗ h = (β3R,T ∨ λR) ⊗ λ2R = β2R,3T/4 ∨ λR

�= β2R,T ∨ λR = (f ⊗ h) ∨ (g ⊗ h).

Conversely, we have seen that min-plus convolution is a linear operation in (R+,∧,+), and one easily
shows that min–plus deconvolution is not linear in (R+,∧,+). Finally, let us mention that one can also
replace + by ∧, and show that (R ∪ {+∞} ∪ {−∞},∨,∧) is also a dioid. Remark However, as we have
seen above, as soon as the three operations ∧, ∨ and + are involved in a computation, one must be careful
before applying any distribution.

130 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

t

 ((f⊗h)∨(g⊗h))(t)

3T/4 t

2R

2T 3T/2

3RT/2

R

T

 ((f∨g)⊗h))(t)

R

2R

2RT

Figure 3.11: Function (f ⊗ h) ∨ (g ⊗ h) (left) and (f ∨ g) ⊗ h (right) when f = β3R,T , g = λR and h = λ2R for some
R, T > 0.

3.3 EXERCISES

EXERCISE 3.1. 1. Compute α⊗ δ for any function α
2. Express the rate-latency function by means of δ and λ functions.

EXERCISE 3.2. 1. Compute
⊗

i βi when βi is a rate-latency function
2. Compute β1 ⊗ β2 with β1(t) = R(t− T)+ and β2(t) = (rt+ b)1{t>0}

EXERCISE 3.3. 1. Is ⊗ distributive with respect to the min operator ?

CHAPTER 4

MIN-PLUS AND MAX-PLUS SYSTEM

THEORY

In Chapter 3 we have introduced the basic operations to manipulate functions and sequences in Min-Plus or
Max-Plus algebra. We have studied in detail the operations of convolution, deconvolution and sub-additive
closure. These notions form the mathematical cornerstone on which a first course of network calculus has
to be built.

In this chapter, we move one step further, and introduce the theoretical tools to solve more advanced prob-
lems in network calculus developed in the second half of the book. The core object in Chapter 3 were
functions and sequences on which operations could be performed. We will now place ourselves at the level
of operators mapping an input function (or sequence) to an output function or sequence. Max-plus system
theory is developed in detail in [28], here we focus on the results that are needed for the remaining chapters
of the book. As in Chapter 3, we focus here Min-Plus System Theory, as Max-Plus System Theory follows
easily by replacing minimum by maximum, and infimum by supremum.

4.1 MIN-PLUS AND MAX-PLUS OPERATORS

4.1.1 VECTOR NOTATIONS

Up to now, we have only worked with scalar operations on scalar functions in F or G. In this chapter, we
will also work with vectors and matrices. The operations are extended in a straightforward manner.

Let J be a finite, positive integer. For vectors �z, �z′ ∈ R+ J , we define �z∧�z′ as the coordinate-wise minimum
of �z and �z′, and similarly for the + operator. We write �z ≤ �z′ with the meaning that zj ≤ z′j for 1 ≤ j ≤ J .

Note that the comparison so defined is not a total order, that is, we cannot guarantee that either �z ≤ �z′ or
�z′ ≤ �z holds. For a constant K, we note �z +K the vector defined by adding K to all elements of �z.

We denote by GJ the set of J-dimensional wide-sense increasing real-valued functions or sequences of
parameter t, and FJ the subset of functions that are zero for t < 0.

For sequences or functions �x(t), we note similarly (�x ∧ �y)(t) = �x(t) ∧ �y(t) and (�x + K)(t) = �x(t) +K
for all t ≥ 0, and write �x ≤ �y with the meaning that �x(t) ≤ �y(t) for all t.

For matrices A,B ∈ R+ J × R+ J , we define A ∧ B as the entry-wise minimum of A and B. For vector
�z ∈ R+ J , the ‘multiplication’ of vector �z ∈ R+ J by matrix A is – remember that in min-plus algebra,

131

132 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

multiplication is the + operation – by
A+ �z,

and has entries min1≤j≤J(aij + zj). Likewise, the ‘product’ of two matrices A and B is denoted by A+B
and has entries min1≤j≤J(aij + bjk) for 1 ≤ i, k ≤ J .

Here is an example of a ‘multiplication’ of a vector by a matrix, when J = 2[
5 3
1 3

]
+
[

2
1

]
=
[

4
3

]
and an example of a matrix ‘multiplication’ is[

5 3
1 3

]
+
[

2 4
1 0

]
=
[

4 3
3 3

]
.

We denote by FJ2
the set of J × J matrices whose entries are functions or sequences of F , and similarly

for GJ2
.

The min-plus convolution of a matrix A ∈ FJ2
by a vector �z ∈ FJ is the vector of FJ defined by

(A⊗ �z)(t) = inf
0≤s≤t

{A(t− s) + �z(s)}

and whose J coordinates are thus

min
1≤j≤J

{aij ⊗ zj}(t) = inf
0≤s≤t

min
1≤j≤J

{aij(t− s) + zj(s)}.

Likewise, A⊗B is defined by

(A⊗B)(t) = inf
0≤s≤t

{A(t− s) +B(s)}

and has entries min1≤j≤J(aij ⊗ bjk) for 1 ≤ i, k ≤ J .

For example, we have [
λr ∞
∞ δT

]
⊗
[
γr/2,b

δ2T

]
=
[
λr ∧ γr/2,b

δ3T

]
and [

λr ∞
∞ δT

]
⊗
[
γr/2,b γr,b

δ2T λr

]
=
[
λr ∧ γr/2,b λr

δ3T βr,T

]
.

Finally, we will also need to extend the set of wide-sense increasing functions G to include non decreasing
functions of two arguments. We adopt the following definition (a slightly different definition can be found
in [11]).

DEFINITION 4.1.1 (BIVARIATE WIDE-SENSE INCREASING FUNCTIONS). We denote by G̃ the set of bivari-
ate functions (or sequences) such that for all s′ ≤ s and any t ≤ t′

f(t, s) ≤ f(t, s′)
f(t, s) ≤ f(t′, s).

We call such functions bivariate wide-sense increasing functions.

In the multi-dimensional case, we denote by G̃J the set of J × J matrices whose entries are wide-sense
increasing bivariate functions. A matrix of A(t) ∈ FJ2

is a particular case of a matrix H(t, s) ∈ G̃J , with
s set to a fixed value.

4.1. MIN-PLUS AND MAX-PLUS OPERATORS 133

4.1.2 OPERATORS

A system is an operator Π mapping an input function or sequence �x onto an output function or sequence
�y = Π(�x). We will always assume in this book that �x, �y ∈ GJ , where J is a fixed, finite, positive integer.
This means that each of the J coordinates xj(t), yj(t), 1 ≤ j ≤ J , is a wide-sense increasing function (or
sequence) of t.

It is important to mention that Min-plus system theory applies to more general operators, taking RJ to RJ ,
where neither the input nor the output functions are required to be wide-sense increasing. This requires
minor modifications in the definitions and properties established in this chapter, see [28] for the theory
described in a more general setting. In this book, to avoid the unnecessary overhead of new notations and
definitions, we decided to expose min-plus system theory for operators taking GJ to GJ .

Most often, the only operator whose output may not be in FJ is deconvolution, but all other operators we
need will take FJ to FJ .

Most of the time, the dimension of the input and output is J = 1, and the operator takes F to F . We will
speak of a scalar operator. In this case, we will drop the arrow on the input and output, and write y = Π(x)
instead.

We write Π1 ≤ Π2 with the meaning that Π1(�x) ≤ Π2(�x) for all �x, which in turn has the meaning that
Π1(�x)(t) ≤ Π2(�x)(t) for all t.

For a set of operators Πs, indexed by s in some set S, we call infs∈S Πs the operator defined by [infs∈S Πs](x(t)) =
infs∈S [Πs(x(t))]. For S = {1, 2} we denote it with Π1 ∧ Π2.

We also denote by ◦ the composition of two operators:

(Π1 ◦ Π2)(�x) = Π1(Π2(�x)).

We leave it to the alert reader to check that infs∈S Πs and Π1 ◦ Π2 do map functions in GJ to functions in
GJ .

4.1.3 A CATALOG OF OPERATORS

Let us mention a few examples of scalar operators of particular interest. The first two have already been
studied in detail in Chapter 3, whereas the third was introduced in Section 1.7. The fact that these operators
map GJ into GJ follows from Chapter 3.

DEFINITION 4.1.2 (MIN-PLUS CONVOLUTION Cσ).

Cσ : F → F
x(t) → y(t) = Cσ(x)(t) = (σ ⊗ x)(t) = inf0≤s≤t {σ(t− s) + x(s)} ,

for some σ ∈ F .

DEFINITION 4.1.3 (MIN-PLUS DECONVOLUTION Dσ).

Dσ : F → G
x(t) → y(t) = Dσ(x)(t) = (x� σ)(t) = supu≥0 {x(t+ u) − σ(u)} ,

for some σ ∈ F .

Note that Min-plus deconvolution produces an output that does not always belong to F .

134 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

DEFINITION 4.1.4 (PACKETIZATION PL).

PL : F → F
x(t) → y(t) = PL(x)(t) = PL(x(t)) = supi∈N

{
L(i)1L(i)≤x(t)

}
,

for some wide-sense increasing sequence L (defined by Definition 1.7.1).

We will also need later on the following operator, whose name will be justified later in this chapter.

DEFINITION 4.1.5 (LINEAR IDEMPOTENT OPERATOR hσ).

hσ : F → F
x(t) → y(t) = hσ(x)(t) = inf0≤s≤t {σ(t) − σ(s) + x(s)} ,

for some σ ∈ F .

The extension of the scalar operators to the vector case is straightforward. The vector extension of the
convolution is for instance:

DEFINITION 4.1.6 (VECTOR MIN-PLUS CONVOLUTION CΣ).

CΣ : FJ → FJ

�x(t) → �y(t) = CΣ(�x)(t) = (Σ ⊗ �x)(t) = inf0≤s≤t {Σ(t− s) + �x(s)} ,

for some Σ ∈ FJ2
.

If the (i, j)th entry of Σ is σij , the ith component of �y(t) reads therefore

yi(t) = inf
0≤s≤t

min
1≤j≤J

{σij(t− s) + xj(s)}

Let us conclude with the shift operator, which we directly introduce in the vector setting:

DEFINITION 4.1.7 (SHIFT OPERATOR ST).

ST : GJ → GJ

�x(t) → �y(t) = ST (�x)(t) = �x(t− T),

for some T ∈ R.

Let us remark that S0 is the identity operator: S0(�x) = �x.

4.1.4 UPPER AND LOWER SEMI-CONTINUOUS OPERATORS

We now study a number of properties of min-plus linear operators. We begin with that of upper-semi
continuity.

DEFINITION 4.1.8 (UPPER SEMI-CONTINUOUS OPERATOR). Operator Π is upper semi-continuous if for
any (finite or infinite) set of functions or sequences {�xn}, �xn ∈ GJ ,

Π
(
inf
n
{�xn}

)
= inf

n
{Π(�xn)} . (4.1)

4.1. MIN-PLUS AND MAX-PLUS OPERATORS 135

We can check that Cσ, CΣ, hσ and ST are upper semi-continuous. For example, for CΣ, we check indeed that

CΣ

(
inf
n
{�xn}

)
(t) = inf

0≤s≤t

{
Σ(t− s) + inf

n
{�xn(s)}

}
= inf

0≤s≤t
inf
n

{Σ(t− s) + �xn(s)}
= inf

n
inf

0≤s≤t
{Σ(t− s) + �xn(s)}

= inf
n

{CΣ(�xn)(t)} .

To show that PL is upper semi-continuous, we proceed in two steps. Let x� = infn{xn}. We first note that

PL

(
inf
n
{xn}

)
= PL (x�) ≤ inf

n
{PL(xn)}

because x� ≤ xn for any n and PL is a wide-sense increasing function. We next show that the converse
inequality also holds. We first assume that there is some m such that xm = x�, namely that the infimum is
actually a minimum. Then

inf
n

{PL(xn)} ≤ PL(xm) = PL (x�) .

We next suppose that there is no integer n such that xn = x�. Then for any ε > 0, there is an integer m
such that 0 < xm − x� < ε. Therefore

inf
n

{PL(xn)} ≤ PL(xm) ≤ PL (x� + ε) .

Since the above inequality is true for any ε > 0, and since PL is a right-continuous function, it implies that

inf
n

{PL(xn)} ≤ PL (x�) = PL

(
inf
n
{xn}

)
.

This concludes the proof.

On the other hand, Dσ is not upper semi-continuous, because its application to an inf would involve the
three operations sup, inf and +, which do not commute, as we have seen at the end of the previous chapter.

It is easy to show that if Π1 and Π2 are upper semi-continuous, so are Π1 ∧ Π2 and Π1 ◦ Π2.

The dual definition of upper semi-continuity is that of lower semi-continuity, which is defined as follows.

DEFINITION 4.1.9 (LOWER SEMI-CONTINUOUS OPERATOR). Operator Π is lower semi-continuous if for
any (finite or infinite) set of functions or sequences {�xn}, �xn ∈ GJ ,

Π
(

sup
n
{�xn}

)
= sup

n
{Π(�xn)} . (4.2)

It is easy to check that Dσ is lower semi-continuous, unlike other operators, except ST which is also lower
semi-continuous.

4.1.5 ISOTONE OPERATORS

DEFINITION 4.1.10 (ISOTONE OPERATOR). Operator Π is isotone if �x1 ≤ �x2 always implies Π(�x1) ≤
Π(�x2).

All upper semi-continuous operators are isotone. Indeed, if �x1 ≤ �x2, then �x1 ∧ �x2 = �x1 and since Π is
upper semi-continuous,

Π(�x1) = Π(�x1 ∧ �x2) = Π(�x1) ∧ Π(�x2) ≤ Π(�x2).

Likewise, all lower semi-continuous operators are isotone. Indeed, if �x1 ≤ �x2, then �x1 ∨ �x2 = �x2 and since
Π is lower semi-continuous,

Π(�x1) ≤ Π(�x1) ∨ Π(�x2) = Π(�x1 ∨ �x2) = Π(�x2).

136 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

4.1.6 LINEAR OPERATORS

In classical system theory on (R,+,×), a system Π is linear if its output to a linear combination of inputs
is the linear combination of the outputs to each particular input. In other words, Π is linear if for any (finite
or infinite) set of inputs {xi}, and for any constant k ∈ R,

Π

(∑
i

xi

)
=
∑

i

Π(xi)

and for any input x and any constant k ∈ R,

Π (k · x) = k · Π(x).

The extension to min-plus system theory is straightforward. The first property being replaced by that of
upper semi-continuity, a min-plus linear operator is thus defined as an upper semi-continuous operator that
has the following property (“multiplication” by a constant):

DEFINITION 4.1.11 (MIN-PLUS LINEAR OPERATOR). Operator Π is min-plus linear if it is upper semi-
continuous and if for any �x ∈ GJ and for any k ≥ 0,

Π (�x+ k) = Π (�x) + k. (4.3)

One can easily check that Cσ, CΣ, hσ and ST are min-plus linear, unlike Dσ and PL. Dσ is not linear because
it is not upper semi-continuous, and PL is not linear because it fails to verify (4.3).

In classical linear theory, a linear system is represented by its impulse response h(t, s), which is defined as
the output of the system when the input is the Dirac function. The output of such a system can be expressed
as

Π(x)(t) =
∫ ∞

−∞
h(t, s)x(s)ds

Its straightforward extension in Min-plus system theory is provided by the following theorem [28]. To prove
this theorem in the vector case, we need first to extend the burst delay function introduced in Definition 3.1.2,
to allow negative values of the delay, namely, the value T in

δT (t) =
{

0 if t ≤ T
∞ if t > T,

is now taking values in R. We also introduce the following matrix DT ∈ GJ × GJ .

DEFINITION 4.1.12 (SHIFT MATRIX). The shift matrix is defined by

DT (t) =

⎡⎢⎢⎢⎢⎢⎢⎣
δT (t) ∞ ∞ · · · ∞
∞ δT (t) ∞
∞ ∞ δT (t)

. . .
...

...
...

. . . ∞
∞ · · · ∞ δT (t)

⎤⎥⎥⎥⎥⎥⎥⎦
for some T ∈ R.

THEOREM 4.1.1 (MIN-PLUS IMPULSE RESPONSE). Π is a min-plus linear operator if and only if there is
a unique matrix H ∈ G̃J (called the impulse response), such that for any �x ∈ GJ and any t ∈ R,

Π(�x)(t) = inf
s∈R

{H(t, s) + �x(s)} . (4.4)

4.1. MIN-PLUS AND MAX-PLUS OPERATORS 137

PROOF: If (4.4) holds, one immediately sees that Π is upper semi-continuous and verifies (4.3), and
therefore is min-plus linear. Π maps GJ to GJ because H ∈ G̃J .

Suppose next that Π is min-plus linear, and let us prove that there is a unique matrix H(t, s) ∈ G̃J such that
(4.4) holds.

Let us first note that Ds(t) + �x(s) = �x(s) for any s ≥ t. Since �x ∈ GJ , we have

inf
s≥t

{Ds(t) + �x(s)} = inf
s≥t

{�x(s)} = �x(t).

On the other hand, all entries of Ds(t) are infinite for s < t. We have therefore that

inf
s<t

{Ds(t) + �x(s)} = ∞

We can combine these two expressions as

�x(t) = inf
s∈R

{Ds(t) + �x(s)} ,

or, dropping explicit dependence on t,

�x = inf
s∈R

{Ds + �x(s)} .

Let �ds,j denote the jth column of Ds:

�ds,j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞
...
∞
δs
∞
...
∞

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where δs is located at the jth position in this vector. Using repeatedly the fact Π is min-plus linear, we get
that

Π(�x) = Π
(

inf
s∈R

{Ds + �x(s)}
)

= inf
s∈R

{Π (Ds + �x(s))}

= inf
s∈R

{
Π
(

min
1≤j≤J

{
�ds,j + xj(s)

})}
= inf

s∈R

{
min

1≤j≤J

{
Π
(
�ds,j + xj(s)

)}}
= inf

s∈R

{
min

1≤j≤J

{
Π
(
�ds,j

)
+ xj(s)

}}
.

Defining

H(t, s) =
[
�h1(t, s) . . . �hj(t, s) . . . �hJ(t, s)

]
(4.5)

where
�hj(t, s) = Π

(
�ds,j

)
(t) (4.6)

for all t ∈ R, we obtain therefore that

Π(�x)(t) = inf
s∈R

{
min

1≤j≤J

{
�hj(t, s) + xj(s)

}}
= inf

0s∈R

{H(t, s) + �x(s)} .

138 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

We still have to check that H(t, s) ∈ G̃J . Since for any fixed s, Π
(
�ds,j

)
∈ GJ , we have that for any t ≤ t′

�hj(t, s) = Π
(
�ds,j

)
(t) ≤ Π

(
�ds,j

)
(t′) = �hj(t′, s),

hence H(t, s) ≤ H(t′, s). On the other hand, if s′ ≤ s, one easily check that �ds,j ≤ �ds′,j . Therefore, since
Π is isotone (because it is linear and thus upper semi-continuous),

�hj(t, s) = Π
(
�ds,j

)
(t) ≤ Π

(
�ds′,j

)
(t) = �hj(t, s′)

and therefore H(t, s) ≤ H(t, s′) for any s ≥ s′. This shows that H(t, s) ∈ G̃J .

To prove uniqueness, suppose that there is another matrix H ′ ∈ G̃J that satisfies (4.4), and let �h′j denote its
jth column. Then for any u ∈ R and any 1 ≤ j ≤ J , taking �x = �du,j as the input, we get from (4.6) that
for t ∈ R

�hj(t, u) = Π
(
�du,j

)
(t) = inf

s∈R

{
H ′(t, s) + �du,j(s)

}
= inf

s∈R

{
�h′j(t, s) + δu(s)

}
= inf

s≤u

{
�h′j(t, s)

}
= �h′j(t, u).

Therefore H ′ = H .

We will denote a general min-plus linear operator whose impulse response is H by LH . In other words, we
have that

LH(�x)(t) = inf
s∈R

{H(t, s) + �x(s)} .
One can compute that the impulse response corresponding to CΣ is

H(t, s) =
{

Σ(t− s) if s ≤ t
Σ(0) if s > t

,

to hσ is

H(t, s) =
{
σ(t) − σ(s) if s ≤ t
0 if s > t

,

and to ST is
H(t, s) = DT (t− s).

In fact the introduction of the shift matrix allows us to write the shift operator as a min-plus convolution:
ST = CDT

if T ≥ 0.

Let us now compute the impulse response of the compostion of two min-plus linear operators.

THEOREM 4.1.2 (COMPOSITION OF MIN-PLUS LINEAR OPERATORS). Let LH and LH′ be two min-plus
linear operators. Then their composition LH ◦LH′ is also min-plus linear, and its impulse repsonse denoted
by H ◦H ′ is given by

(H ◦H ′)(t, s) = inf
u∈R

{
H(t, u) +H ′(u, s)

}
.

PROOF: The composition LH ◦ LH′ applied to some �x ∈ GJ is

LH(LH′(�x))(t) = inf
u

{
H(t, u) + inf

s

{
H ′(u, s) + �x(s)

}}
= inf

u
inf
s

{
H(t, u) +H ′(u, s) + �x(s)

}
= inf

s

{
inf
u

{
H(t, s) +H ′(u, s)

}
+ �x(s)

}
.

4.1. MIN-PLUS AND MAX-PLUS OPERATORS 139

We can therefore write
LH ◦ LH′ = LH◦H′ .

Likewise, one easily shows that
LH ∧ LH′ = LH∧H′ .

Finally, let us mention the dual definition of a max-plus linear operator.

DEFINITION 4.1.13 (MAX-PLUS LINEAR OPERATOR). Operator Π is max-plus linear if it is lower semi-
continuous and if for any �x ∈ GJ and for any k ≥ 0,

Π (�x+ k) = Π (�x) + k. (4.7)

Max-plus linear operators can also be represented by their impulse response.

THEOREM 4.1.3 (MAX-PLUS IMPULSE RESPONSE). Π is a max-plus linear operator if and only if there is
a unique matrix H ∈ G̃J (called the impulse response), such that for any �x ∈ GJ and any t ∈ R,

Π(�x)(t) = sup
s∈R

{H(t, s) + �x(s)} . (4.8)

One can easily check that Dσ and ST are max-plus linear, unlike CΣ, hσ and PL.

For example, Dσ(x)(t) can be written as

Dσ(x)(t) = sup
u≥0

{x(t+ u) − σ(u)} = sup
s≥t

{x(s) − σ(s− t)} = sup
s∈R

{x(s) − σ(s− t)}

which has the form (4.8) if H(t, s) = −σ(s− t).

Likewise, ST (x)(t) can be written as

ST (�x) (t) = �x(t− T) = sup
s∈R

{�x(s) −D−T (s− t)}

which has the form (4.8) if H(t, s) = −D−T (s− t).

4.1.7 CAUSAL OPERATORS

A system is causal if its output at time t only depends on its input before time t.

DEFINITION 4.1.14 (CAUSAL OPERATOR). Operator Π is causal if for any t, �x1(s) = �x2(s) for all s ≤ t
always implies Π(�x1)(t) = Π(�x2)(t).

THEOREM 4.1.4 (MIN-PLUS CAUSAL LINEAR OPERATOR). A min-plus linear system with impulse re-
sponse H is causal if H(t, s) = H(t, t) for s > t.

PROOF: If H(t, s) = 0 for s > t and if �x1(s) = �x2(s) for all s ≤ t then since �x1, �x2 ∈ GJ ,

LH(�x1)(t) = inf
s∈R

{H(t, s) + �x1(s)}
= inf

s≤t
{H(t, s) + �x1(s)} ∧ inf

s>t
{H(t, s) + �x1(s)}

= inf
s≤t

{H(t, s) + �x1(s)} ∧ inf
s>t

{H(t, t) + �x1(s)}
= inf

s≤t
{H(t, s) + �x1(s)}

140 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

= inf
s≤t

{H(t, s) + �x2(s)}
= inf

s≤t
{H(t, s) + �x2(s)} ∧ inf

s>t
{H(t, t) + �x2(s)}

= inf
s≤t

{H(t, s) + �x2(s)} ∧ inf
s>t

{H(t, s) + �x2(s)}
= inf

s∈R

{H(t, s) + �x2(s)} = LH(�x2)(t).

Cσ, CΣ, hσ and PL are causal. ST is causal if and only if T ≥ 0. Dσ is not causal. Indeed if �x1(s) = �x2(s)
for all s ≤ t, but that �x1(s) �= �x2(s) for all s > t, then

Dσ(�x1)(t) = sup
u≥0

{�x1(t+ u) − σ(u)}

�= sup
u≥0

{�x2(t+ u) − σ(u)}

= Dσ(�x1)(t)

4.1.8 SHIFT-INVARIANT OPERATORS

A system is shift-invariant, or time-invariant, if a shift of the input of T time units yields a shift of the output
of T time units too.

DEFINITION 4.1.15 (SHIFT-INVARIANT OPERATOR). Operator Π is shift-invariant if it commutes with all
shift operators, i.e. if for any �x ∈ G and for any T ∈ R

Π(ST (�x)) = ST (Π(�x)).

THEOREM 4.1.5 (SHIFT-INVARIANT MIN-PLUS LINEAR OPERATOR). Let LH and LH′ be two min-plus
linear, shift-invariant operators.

(i) A min-plus linear operator LH is shift-invariant if and only if its impulse response H(t, s) depends only
on the difference (t− s).

(ii) Two min-plus linear, shift-invariant operators LH and LH′ commute. If they are also causal, the impulse
response of their composition is

(H ◦H ′)(t, s) = inf
0≤u≤t−s

{
H(t− s− u) +H ′(u)

}
= (H ⊗H ′)(t− s).

PROOF: (i) Let �hj(t, s) and �ds,j(t) denote (respectively) the jth column of H(t, s) and of Ds(t). Note
that �ds,j(t) = Ss(�d0,j)(t). Then (4.6) yields that

�hj(t, s) = Π
(
�ds,j

)
(t) = Π

(
Ss(�d0,j)

)
(t)

= Ss

(
Π(�d0,j)

)
(t) =

(
Π(�d0,j)

)
(t− s) = �hj(t− s, 0)

Therefore H(t, s) can be written as a function of a single variable H(t− s).

(ii) Because of Theorem 4.1.2, the impulse response of LH ◦ LH′ is

(H ◦H ′)(t, s) = inf
u

{
H(t, u) +H ′(u, s)

}
.

Since H(t, u) = H(t− u) and H ′(u, s) = H ′(u− s), and setting v = u− s, the latter can be written as

(H ◦H ′)(t, s) = inf
u

{
H(t− u) +H ′(u− s)

}
= inf

v

{
H(t− s− v) +H ′(v)

}
.

4.2. CLOSURE OF AN OPERATOR 141

Similarly, the impulse response of LH′ ◦ LH can be written as

(H ′ ◦H)(t, s) = inf
u

{
H ′(t− u) +H(u− s)

}
= inf

v

{
H(v) +H ′(t− s− v)

}
where this time we have set v = t − u. Both impulse responses are identical, which shows that the two
operators commute.

If they are causal, then their impulse response is infinite for t > s and the two previous relations become

(H ◦H ′)(t, s) = (H ′ ◦H)(t, s) = inf
0≤v≤t

{
H(t− s− v) +H ′(v)

}
= (H ⊗H ′)(t− s).

Min-plus convolution CΣ (including of course Cσ and ST) is therefore shift-invariant. In fact, it follows
from this theorem that the only min-plus linear, causal and shift-invariant operator is min-plus convolution.
Therefore hσ is not shift-invariant.

Min-plus deconvolution is shift-invariant, as

Dσ(ST (x))(t) = sup
u≥0

{ST (x)(t+ u) − σ(u)} = sup
u≥0

{x(t+ u− T) − σ(u)}

= (x� σ)(t− T) = Dσ(x)(t− T) = ST (Dσ) (x)(t).

Finally let us mention that PL is not shift-invariant.

4.1.9 IDEMPOTENT OPERATORS

An idempotent operator is an operator whose composition with itself produces the same operator.

DEFINITION 4.1.16 (IDEMPOTENT OPERATOR). Operator Π is idempotent if its self-composition is Π, i.e.
if

Π ◦ Π = Π.

We can easily check that hσ and PL are idempotent. If σ is sub-additive, with σ(0) = 0, then Cσ ◦ Cσ = Cσ,
which shows that in this case, Cσ is idempotent too. The same applies to Dσ.

4.2 CLOSURE OF AN OPERATOR

By repeatedly composing a min-plus operator with itself, we obtain the closure of this operator. The formal
definition is as follows.

DEFINITION 4.2.1 (SUB-ADDITIVE CLOSURE OF AN OPERATOR). Let Π be a min-plus operator taking
GJ → GJ . Denote Π(n) the operator obtained by composing Π (n − 1) times with itself. By convention,
Π(0) = S0 = CD0 , so Π(1) = Π, Π(2) = Π ◦ Π, etc. Then the sub-additive closure of Π, denoted by Π, is
defined by

Π = S0 ∧ Π ∧ (Π ◦ Π) ∧ (Π ◦ Π ◦ Π) ∧ . . . = inf
n≥0

{
Π(n)

}
. (4.9)

In other words,
Π(�x) = �x ∧ Π(�x) ∧ Π(Π(�x)) ∧ . . .

It is immediate to check that Π does map functions in GJ to functions in GJ .

The next theorem provides the impulse response of the sub-additive closure of a min-plus linear operator. It
follows immediately from applying recursively Theorem 4.1.2.

142 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

THEOREM 4.2.1 (SUB-ADDITIVE CLOSURE OF A LINEAR OPERATOR). The impulse response of LH is

H(t, s) = inf
n∈N

inf
un,...,u2,u1

{H(t, u1) +H(u1, u2) + . . .+H(un, s)} . (4.10)

and LH = LH .

For a min-plus linear, shift-invariant and causal operator, (4.10) becomes

H(t− s)
= inf

n∈N

inf
s≤un≤...≤u2≤u1≤t

{H(t− u1) +H(u1 − u2) + . . .+H(un − s)}
= inf

n∈N

inf
0≤vn≤...≤v2≤v1≤t−s

{H(t− s− v1) +H(v1 − v2) + . . .+H(vn)}

= inf
n∈N

{H(n)}(t− s) (4.11)

where H(n) = H ⊗H ⊗ . . .⊗H (n times, n ≥ 1) and H(0) = S0.

In particular, if all entries σij(t) of Σ(t) are sub-additive functions, we find that

CΣ = CΣ.

In the scalar case, the closure of the min-plus convolution operator Cσ reduces to the min-plus convolution
of the sub-additive closure of σ:

Cσ = Cσ.

If σ is a “good” function (i.e., a sub-additive function with σ(0) = 0), then Cσ = Cσ.

The sub-additive closure of the idempotent operators hσ and PL are easy to compute too. Indeed, since
hσ(x) ≤ x and PL(x) ≤ x,

hσ = hσ

and
PL = PL.

The following result is easy to prove. We write Π ≤ Π′ to express that Π(�x) ≤ Π′(�x) for all �x ∈ GJ .

THEOREM 4.2.2 (SUB-ADDITIVE CLOSURE OF AN ISOTONE OPERATOR). If Π and Π′ are two isotone
operators, and Π ≤ Π′, then Π ≤ Π′.

Finally, let us conclude this section by computing the closure of the minimum between two operators.

THEOREM 4.2.3 (SUB-ADDITIVE CLOSURE OF Π1 ∧ Π2). Let Π1,Π2 be two isotone operators taking
GJ → GJ . Then

Π1 ∧ Π2 = (Π1 ∧ S0) ◦ (Π2 ∧ S0). (4.12)

PROOF: (i) Since S0 is the identity operator,

Π1 ∧ Π2 = (Π1 ◦ S0) ∧ (S0 ◦ Π2)
≥ ((Π1 ∧ S0) ◦ S0) ∧ (S0 ◦ (Π2 ∧ S0))
≥ ((Π1 ∧ S0) ◦ (Π2 ∧ S0)) ∧ ((Π1 ∧ S0) ◦ (Π2 ∧ S0))
= (Π1 ∧ S0) ◦ (Π2 ∧ S0).

Since Π1 and Π2 are isotone, so are Π1 ∧ Π2 and (Π1 ∧ S0) ◦ (Π2 ∧ S0). Consequently, Theorem 4.2.2
yields that

Π1 ∧ Π2 ≥ (Π1 ∧ S0) ◦ (Π1 ∧ S0). (4.13)

4.2. CLOSURE OF AN OPERATOR 143

(ii) Combining the two inequalities

Π1 ∧ S0 ≥ Π1 ∧ Π2 ∧ S0

Π2 ∧ S0 ≥ Π1 ∧ Π2 ∧ S0

we get that
(Π1 ∧ S0) ◦ (Π1 ∧ S0) ≥ (Π1 ∧ Π2 ∧ S0) ◦ (Π1 ∧ Π2 ∧ S0). (4.14)

Let us show by induction that

((Π1 ∧ Π2) ∧ S0)
(n) = min

0≤k≤n

{
(Π1 ∧ Π2)(k)

}
.

Clearly, the claim holds for n = 0, 1. Suppose it is true up to some n ∈ N. Then

((Π1 ∧ Π2) ∧ S0)
(n+1)

= ((Π1 ∧ Π2) ∧ S0) ◦ ((Π1 ∧ Π2) ∧ S0)
(n)

= ((Π1 ∧ Π2) ∧ S0) ◦
(

min
0≤k≤n

{
(Π1 ∧ Π2)(k)

})
=
(

(Π1 ∧ Π2) ◦ min
0≤k≤n

{
(Π1 ∧ Π2)(k)

})
∧
(
S0 ◦ min

0≤k≤n

{
(Π1 ∧ Π2)(k)

})
= min

1≤k≤n+1

{
(Π1 ∧ Π2)(k)

}
∧ min

0≤k≤n

{
(Π1 ∧ Π2)(k)

}
= min

0≤k≤n+1

{
(Π1 ∧ Π2)(k)

}
.

Therefore the claim holds for all n ∈ N, and

(((Π1 ∧ Π2) ∧ S0) ◦ ((Π1 ∧ Π2) ∧ S0))
(n) = ((Π1 ∧ Π2) ∧ S0)

(2n)

= min
0≤k≤2n

{
(Π1 ∧ Π2)(k)

}
.

Consequently,

(Π1 ∧ Π2 ∧ S0) ◦ (Π1 ∧ Π2 ∧ S0) = inf
n∈N

min
0≤k≤2n

{
(Π1 ∧ Π2)(k)

}
= inf

k∈N

{
(Π1 ∧ Π2)(k)

}
= Π1 ∧ Π2

and combining this result with (4.13) and (4.14), we get (4.12).

If one of the two operators is an idempotent operator, we can simplify the previous result a bit more. We
will use the following corollary in Chapter 9.

COROLLARY 4.2.1 (SUB-ADDITIVE CLOSURE OF Π1∧hM). Let Π1 be an isotone operator taking F → F ,
and let M ∈ F . Then

Π1 ∧ hM = (hM ◦ Π1) ◦ hM . (4.15)

PROOF: Theorem 4.2.3 yields that

Π1 ∧ hM = (Π1 ∧ S0) ◦ hM (4.16)

144 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

because hM ≤ S0. The right hand side of (4.16) is the inf over all integers n of

({Π1 ∧ S0} ◦ hM)(n)

which we can expand as

{Π1 ∧ S0} ◦ hM ◦ {Π1 ∧ S0} ◦ hM ◦ . . . ◦ {Π1 ∧ S0} ◦ hM .

Since

hM ◦ {Π1 ∧ S0} ◦ hM = {hM ◦ Π1 ◦ hM} ∧ hM

= ({hM ◦ Π1} ∧ S0) ◦ hM

= min
0≤q≤1

{
(hM ◦ Π1)

(q)
}
◦ hM ,

the previous expression is equal to

min
0≤q≤n

{
(hM ◦ Π1)

(q)
}
◦ hM .

Therefore we can rewrite the right hand side of (4.16) as

(Π1 ∧ S0) ◦ hM = inf
n∈N

{
min

0≤q≤n

{
(hM ◦ Π1)

(q)
}
◦ hM

}
= inf

q∈N

{
(hM ◦ Π1)

(q)
}
◦ hM = (hM ◦ Π1) ◦ hM ,

which establishes (4.15).

Therefore we can rewrite the right hand side of (4.16) as

(Π1 ∧ S0) ◦ hM = inf
n∈N

{
min

0≤q≤n

{
(hM ◦ Π1)

(q)
}
◦ hM

}
= hM ◦ inf

q∈N

{
(hM ◦ Π1)

(q)
}
◦ hM = hM ◦ (hM ◦ Π1) ◦ hM ,

which establishes (4.15).

The dual of super-additive closure is that of super-additive closure, defined as follows.

DEFINITION 4.2.2 (SUPER-ADDITIVE CLOSURE OF AN OPERATOR). Let Π be an operator taking GJ →
GJ . The super-additive closure of Π, denoted by Π, is defined by

Π = S0 ∨ Π ∨ (Π ◦ Π) ∨ (Π ◦ Π ◦ Π) ∨ . . . = sup
n≥0

{
Π(n)

}
. (4.17)

4.3 FIXED POINT EQUATION (SPACE METHOD)

4.3.1 MAIN THEOREM

We now have the tools to solve an important problem of network calculus, which has some analogy with
ordinary differential equations in conventional system theory.

The latter problem reads as follows: let Π be an operator from RJ to RJ , and let �a ∈ RJ . What is then the
solution �x(t) to the differential equation

d�x

dt
(t) = Π(�x)(t) (4.18)

4.3. FIXED POINT EQUATION (SPACE METHOD) 145

with the inital condition
�x(0) = �a. (4.19)

Here Π is an operator taking GJ → GJ , and �a ∈ GJ . The problem is now to find the largest function
�x(t) ∈ GJ , which verifies the recursive inequality

�x(t) ≤ Π(�x)(t) (4.20)

and the initial condition
�x(t) ≤ �a(t). (4.21)

The differences are however important: first we have inequalities instead of equalities, and second, contrary
to (4.18), (4.20) does not describe the evolution of the trajectory �x(t) with time t, starting from a fixed
point �a, but the successive iteration of Π on the whole trajectory �x(t), starting from a fixed, given function
�a(t) ∈ GJ .

The following theorem provides the solution this problem, under weak, technical assumptions that are almost
always met.

THEOREM 4.3.1 (SPACE METHOD). Let Π be an upper semi-continuous operator taking GJ → GJ . For
any fixed function �a ∈ GJ , the problem

�x ≤ �a ∧ Π(�x) (4.22)

has one maximum solution in GJ , given by �x� = Π(�a).

The theorem is proven in [28]. We give here a direct proof that does not have the pre-requisites in [28]. It
is based on a fixed point argument. We call the application of this theorem “Space method”, because the
iterated variable is not time t (as in the “Time method” described shortly later) but the full sequence �x itself.
The theorem applies therefore indifferently whether t ∈ Z or t ∈ R.

PROOF: (i) Let us first show that Π(�a) is a solution of (4.22). Consider the sequence {�xn} of decreasing
sequences defined by

�x0 = �a

�xn+1 = �xn ∧ Π(�xn), n ≥ 0.

Then one checks that
�x� = inf

n≥0
{�xn}

is a solution to (4.22) because �x� ≤ �x0 = �a and because Π is upper-semi-continuous so that

Π(�x�) = Π(inf
n≥0

{�xn}) = inf
n≥0

{Π(�xn)} ≥ inf
n≥0

{�xn+1} ≥ inf
n≥0

{�xn} = �x�.

Now, one easily checks that �xn = inf0≤m≤n{Π(m)(�a)}, so

�x� = inf
n≥0

{�xn} = inf
n≥0

inf
0≤m≤n

{Π(m)(�a)} = inf
n≥0

{Π(n)(�a)} = Π(�a).

This also shows that �x� ∈ GJ .

(ii) Let �x be a solution of (4.22). Then �x ≤ �a and since Π is isotone, Π(�x) ≤ Π(�a). From (4.22), �x ≤ Π(�x),
so that �x ≤ Π(�a). Suppose that for some n ≥ 1, we have shown that �x ≤ Π(n−1)(�a). Then as �x ≤ Π(�x)
and as Π is isotone, it yields that �x ≤ Π(n)(�a). Therefore �x ≤ infn≥0{Π(n)(�a)} = Π(�a), which shows that
�x� = Π(�a) is the maximal solution.

Similarly, we have the following result in Max-plus algebra.

146 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

THEOREM 4.3.2 (DUAL SPACE METHOD). Let Π be a lower semi-continuous operator taking GJ → GJ .
For any fixed function �a ∈ GJ , the problem

�x ≥ �a ∨ Π(�x) (4.23)

has one minimum solution, given by �x� = Π(�a).

4.3.2 EXAMPLES OF APPLICATION

Let us now apply this theorem to five particular examples. We will first revisit the input-output charac-
terization of the greedy shaper of Section 1.5.2, and of the variable capacity node described at the end of
Section 1.3.2. Next we will apply it to two window flow control problems (with a fixed length window).
Finally, we will revisit the variable length packet greedy shaper of Section 1.7.4.

INPUT-OUTPUT CHARACTERIZATION OF GREEDY SHAPERS

Remember that a greedy shaper is a system that delays input bits in a buffer, whenever sending a bit would
violate the constraint σ, but outputs them as soon as possible otherwise. If R is the input flow, the output is
thus the maximal function x ∈ F satisfying the set of inequalities (1.13), which we can recast as

x ≤ R ∧ Cσ(x).

It is thus given by R∗ = Cσ = Cσ(x) = σ ⊗ x. If σ is a “good” function, one therefore retrieves the main
result of Theorem 1.5.1.

INPUT-OUTPUT CHARACTERIZATION OF VARIABLE CAPACITY NODES

The variable capacity node was introduced at the end of Section 1.3.2, where the variable capacity is modeled
by a cumulative function M(t), where M(t) is the total capacity available to the flow between times 0 and
t. If m(t) is the instantaneous capacity available to the flow at time t, then M(t) is the primitive of this
function. In other words, if t ∈ R,

M(t) =
∫ t

0
m(s)ds (4.24)

and if t ∈ Z the integral is replaced by a sum on s. If R is the input flow and x is the output flow of the
variable capacity node, then the variable capacity constraint imposes that for all 0 ≤ s ≤ t

x(t) − x(s) ≤M(t) −M(s),

which we can recast using the idempotent operator hM as

x ≤ hM (x). (4.25)

On the other hand, the system is causal, so that

x ≤ R. (4.26)

The output of the variable capacity node is therefore the maximal solution of system (4.25) and (4.26). It is
thus given by

R∗(t) = hM (R)(t) = hM (R)(t) = inf
0≤s≤t

{M(t) −M(s) +R(s)}

because the sub-additive closure of an idempotent operator is the operator itself, as we have seen in the
previous section.

4.3. FIXED POINT EQUATION (SPACE METHOD) 147

STATIC WINDOW FLOW CONTROL – EXAMPLE 1

Let us now consider an example of a feedback system. This example is found independently in [10] and
[68, 2]. A data flow a(t) is fed via a window flow controller to a network offering a service curve β. The
window flow controller limits the amount of data admitted into the network in such a way that the total
backlog is less than or equal to W , where W > 0 (the window size) is a fixed number (Figure 4.1).

a(t) x(t)

y(t)

network

controller

Figure 4.1: Static window flow control, from [10] or [68]

Call x(t) the flow admitted to the network, and y(t) the output. The definition of the controller means that
x(t) is the maximum solution to {

x(t) ≤ a(t)
x(t) ≤ y(t) +W

(4.27)

We do not know the mapping Π : x → y = Π(x), but we assume that Π is isotone, and we assume that
y(t) ≥ (β ⊗ x)(t), which can be recast as

Π(x) ≥ Cβ(x). (4.28)

We also recast System (4.27) as
x ≤ a ∧ {Π(x) +W} , (4.29)

and direclty apply Theorem 4.3.1 to derive that the maximum solution is

x = (Π +W)(a).

Since Π is isotone, so is Π +W . Therefore, because of (4.28) and applying Theorem 4.2.2, we get that

x = (Π +W)(a) ≥ (Cβ +W)(a). (4.30)

Because of Theorem 4.2.1,

(Cβ +W)(a) = Cβ+W (a) = Cβ+W (a) = (β +W) ⊗ a.

Combining this relationship with (4.30) we have that

y ≥ β ⊗ x ≥ β ⊗
(
(β +W) ⊗ a

)
=
(
β ⊗ (β +W)

)
(a),

which shows that the complete, closed-loop system of Figure 4.1 offers to flow a a service curve [10]

βwfc1 = β ⊗ (β +W). (4.31)

For example, if β = βR,T then the service curve of the closed-loop system is the function represented on
Figure 4.2. When RT ≤ W , the window does not add any restriction on the service guarantee offered by
the open-loop system, as in this case βwfc1 = β. If RT > W on the other hand, the service curve is smaller
than the open-loop service curve.

148 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

T

R

t

βwfc1(t) = β(t) = R[t-T]+

T

R
t

βwfc1(t)

W

2T 3T 4T

Case 1: RT ≤ W

W

Case 2: RT > W

Figure 4.2: The service curve βwfc1
of the closed-loop system with static window flow control, when the service curve

of the open loop system is βR,T with RT ≤ W (left) and RT > W (right).

STATIC WINDOW FLOW CONTROL – EXAMPLE 2

Let us extend the window flow control model to account for the existence of background traffic, which
constraints the input traffic rate at time t, dx/dt(t) (if t ∈ R) or x(t) − x(t − 1) (if t ∈ Z), to be less
that some given rate m(t). Let M(t) denote the primitive of this prescribed rate function. Then the rate
constraint on x becomes (4.25). Function M(t) is not known, but we assume that there is some function
γ ∈ F such that

M(t) −M(s) ≥ γ(t− s)

for any 0 ≤ s ≤ t, which we can recast as
hM ≥ Cγ . (4.32)

This is used in [47] to derive a service curve offered by the complete system to the incoming flow x, which
we shall also compute now by applying Theorem 4.3.1.

With the additional constraint (4.25), one has to compute the maximal solution of

x ≤ a ∧ {Π(x) +W} ∧ hM (x), (4.33)

which is
x = ({Π +W} ∧ hM)(a). (4.34)

As in the previous subsection, we do not know Π but we assume that it is isotone and that Π ≥ Cβ . We
also know that hM ≥ Cγ . A first approach to get a service curve for y, is to compute a lower bound of the
right hand side of (4.34) by time-invariant linear operators, which commute as we have seen earlier in this
chapter. We get

{Π +W} ∧ hM ≥ {Cβ +W} ∧ Cγ = C{β+W}∧γ ,

and therefore (4.34) becomes

x ≥ C{β+W}∧γ(a) = C{β+W}∧γ
(a) = ({β +W} ∧ γ) ⊗ a.

Because of Theorem 3.1.11,
{β +W} ∧ γ = (β +W) ⊗ γ

so that
y ≥ β ⊗ x ≥

(
β ⊗ (β +W) ⊗ γ

)
⊗ a

4.4. FIXED POINT EQUATION (TIME METHOD) 149

and thus a service curve for flow a is

β ⊗ (β +W) ⊗ γ. (4.35)

Unfortunately, this service curve can be quite useless. For example, if for some T > 0, γ(t) = 0 for
0 ≤ t ≤ T , then γ(t) = 0 for all t ≥ 0, and so the service curve is zero.

A better bound is obtained by differing the lower bounding of hM by the time-invariant operator Cγ after
having used the idempotency property in the computation of the sub-additive closure of the right hand side
of (4.34), via Corollary 4.2.1. Indeed, this corollary allows us to replace (4.34) by

x =
(
(hM ◦ (Π +W)) ◦ hM

)
(a).

Now we can bound hM below by Cγ to obtain

(hM ◦ (Π +W)) ◦ hM ≥ (Cγ ◦ Cβ+W) ◦ Cγ

= Cγ⊗(β+W) ◦ Cγ

= Cβ⊗γ+W ◦ Cγ

= C
γ⊗(β⊗γ+W)

.

We obtain a better service curve than by our initial approach, where we had directly replaced hM by Cgamma:

βwfc2 = β ⊗ γ ⊗ (β ⊗ γ +W). (4.36)

is a better service curve than (4.35).

For example, if β = βR,T and γ = βR′,T ′ , with R > R′ and W < R′(T + T ′), then the service curve of the
closed-loop system is the function represented on Figure 4.3.

PACKETIZED GREEDY SHAPER

Our last example in this chapter is the packetized greedy shaper introduced in Section 1.7.4. It amounts to
computing the maximum solution to the problem

x ≤ R ∧ PL(x) ∧ Cσ(x)

where R is the input flow, σ is a “good” function and L is a given sequence of cumulative packet lengths.

We can apply Theorem 4.3.1 and next Theorem 4.2.2 to obtain

x = PL ∧ Cσ(R) = PL ◦ Cσ(R)

which is precisely the result of Theorem 1.7.4.

4.4 FIXED POINT EQUATION (TIME METHOD)

We conclude this chapter by another version of Theorem 4.3.1 that applies only to the disrete-time setting. It
amounts to compute the maximum solution �x = Π(�a) of (4.22) by iterating on time t instead of interatively
applying operator Π to the full trajectory �a(t). We call this method the “time method” (see also [11]). It
is valid under stronger assumptions than the space method, as we require here that operator Π be min-plus
linear.

150 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

T

R

t

β(t) = R[t-T]+

T+T’

R’
t

βwfc2(t)

W

T+T’

R’

t

(β ⊗ γ)(t)

T’

R’

t

γ(t) = R’[t-T’]+

Figure 4.3: The service curve βwfc2
of the closed-loop system with window flow control (bottom right), when the

service curve of the open loop system is β = βR,T (top left) and when γ = βR′,T ′ (top right), with R > R′ and
W < R′(T + T ′).

THEOREM 4.4.1. Let Π = LH be a min-plus linear operator taking FJ → FJ , with impulse response
H ∈ F̃J . For any fixed function �a ∈ FJ , the problem

�x ≤ �a ∧ LH(�x) (4.37)

has one maximum solution, given by

�x�(0) = �a(0)
�x�(t) = �a(0) ∧ inf

0≤u≤t−1
{H(t, u) + �x�(u)}.

PROOF: Note that the existence of a maximum solution is given by Theorem 4.3.1. Define �x� by the
recursion in the Theorem. As H ∈ F̃J it follows easily by induction that �x� is a solution to problem (4.37).
Conversely, for any solution �x, �x(0) ≤ a(0) = �x�(0) and if �x(u) ≤ �x�(u) for all 0 ≤ u ≤ t− 1, it follows
that �x(t) ≤ �x�(t) which shows that �x� is the maximal solution.

4.5 CONCLUSION

This chapter has introduced min-plus and max-plus operators, and discussed their properties, which are
summarized in Table 4.5. The central result of this chapter, which will be applied in the next chapters,
is Theorem 4.3.1, which enables us to compute the maximal solution of a set of inqualities involving the
iterative application of an upper semi-continuous operator.

4.5. CONCLUSION 151

Operator Cσ Dσ ST hσ PL

Upper semi-continuous yes no yes yes yes
Lower semi-continuous no yes yes no no

Isotone yes yes yes yes yes
Min-plus linear yes no yes yes no
Max-plus linear no yes yes no no

Causal yes no yes (1) yes yes
Shift-invariant yes yes yes no no

Idempotent no (2) no (2) no (3) yes yes

(1) (if T ≥ 0)
(2) (unless σ is a ‘good’ function)
(3) (unless T = 0)

Table 4.1: A summary of properties of some common operators

152 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

PART III

A SECOND COURSE IN NETWORK

CALCULUS

153

CHAPTER 5

OPTIMAL MULTIMEDIA SMOOTHING

In this chapter we apply network calculus to smooth multimedia data over a network offering reservation
based services, such as ATM or RSVP/IP, for which we know one minimal service curve. One approach
to stream video is to act on the quantization levels at the encoder output: this is called rate control, see
e.g. [26]. Another approach is to smooth the video stream, using a smoother fed by the encoder, see e.g.
[69, 72, 59]. In this chapter, we deal with this second approach.

A number of smoothing algorithms have been proposed to optimize various performance metrics, such as
peak bandwidth requirements, variability of transmission rates, number of rate changes, client buffer size
[29]. With network calculus, we are able to compute the minimal client buffer size required given a maximal
peak rate, or even a more complex (VBR) smoothing curve. We can also compute the minimal peak rate
required given a given client buffer size. We will see that the scheduling algorithm that must be implemented
to reach these bounds is not unique, and we will determine the full set of video transmission schedules that
minimize these resources and achieve these optimal bounds.

5.1 PROBLEM SETTING

A video stream stored on the server disk is directly delivered to the client, through the network, as shown on
Figure 5.1. At the sender side, a smoothing device reads the encoded video stream R(t) and sends a stream
x(t) that must conform to an arrival curve σ, which we assume to be a ‘good’ function, i.e. is sub-additive
and such that σ(0) = 0. The simplest and most popular smoothing curve in practice is a constant rate curve
(or equivalently, a peak rate constraint) σ = λr for some r > 0.

We take the transmission start as origin of time: this implies that x(t) = 0 for t ≤ 0.

At the receiver side, the video stream R will be played back after D units of times, the playback delay: the
output of the decoding buffer B must therefore be R(t−D).

The network offers a guaranteed service to the flow x. If y denotes the output flow, it is not possible, in
general, to express y as a function of x. However we assume that the service guarantee can be expressed by
a service curve β. For example, as we have seen in Chapter 1, the IETF assumes that RSVP routers offer a
rate-latency service curve β of the form βL,C(t) = C[t − L]+ = max{0, C(t − L)}. Another example is
a network which is completely transparent to the flow (i.e. which does not incur any jitter to the flow nor
rate limitation, even if it can introduce a fixed delay, which we ignore in this chapter as we can always take
it into account separately). We speak of a null network. It offers a service curve β(t) = δ0(t).

155

156 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

R(t+d) y(t) R(t-D)x(t)
β

display
video
Client

Network

Client

buffer

σ

Smoother
playback

B

Video
Server

Figure 5.1: Video smoothing over a single network.

To keep mathematical manipulations simple, we assume that the encoding buffer size is large enough to
contain the full data stream. On the other hand, the receiver (decoding) buffer is a much more scarce
resource. Its finite size is denoted by B.

As the stream is pre-recorded and stored in the video server, it allows the smoother to prefetch and send
some of the data before schedule. We suppose that the smoother is able to look ahead data for up to d time
units ahead. This look-ahead delay can take values ranging from zero (in the most restrictive case where no
prefetching is possible) up to the length of the full stream. The sum of the look-ahead delay and playback
delay is called the total delay, and is denoted by T : T = D + d.

These constraints are described more mathematically in Section 5.2.

We will then apply Theorem 4.3.1 to solve the following problems:

(i) we first compute, in Section 5.3, the minimal requirements on the playback delay D, on the look-ahead
delay d, and on the client buffer sizeB guaranteeing a lossless transmission for given smoothing and service
curves σ and β.

(ii) we then compute, in Section 5.4, all scheduling strategies at the smoother that will achieve transmission
in the parameter setting computed in Section 5.3. We call the resulting scheduling “optimal smoothing”.

(iii) in the CBR case (σ = λr), for a given rate r and for a rate-latency service curve (β = βL,C), we will
obtain, in Section 5.5, closed-form expressions of the minimal values of D, T = D + d and B required for
lossless smoothing. We will also solve the dual problem of computing the minimal rate r needed to deliver
video for a given playback delay D, look-ahead delay d and client buffer size B.

We will then compare optimal smoothing with greedy shaping in Section 5.6 and with separate delay equal-
ization in Section 5.7. Finally, we will repeat problems (i) and (iii) when intermediate caching is allowed
between a backbone network and an access network.

5.2 CONSTRAINTS IMPOSED BY LOSSLESS SMOOTHING

We can now formalize the constraints that completely define the smoothing problem illustrated on Fig-
ure 5.1).

• Flow x ∈ F : As mentioned above, the chosen origin of time is such that x(t) = 0 for t ≤ 0, or
equivalently

x(t) ≤ δ0(t). (5.1)

• Smoothness constraint: Flow x is constrained by an arrival curve σ(·). This means that for all t ≥ 0

x(t) ≤ (x⊗ σ)(t) = Cσ(x)(t). (5.2)

5.3. MINIMAL REQUIREMENTS ON DELAYS AND PLAYBACK BUFFER 157

• Playback delay constraint (no playback buffer underflow): The data is read out from the playback
buffer after D unit of times at a rate given by R(t−D). This implies that y(t) ≥ R(t−D). However
we do not know the exact expression of y as a function of x. All we know is that the network
guarantees a service curve β, namely that y(t) ≥ (x⊗β)(t). The output flow may therefore be as low
as (x⊗β)(t), and hence we can replace y in the previous inequality to obtain (x⊗β)(t) ≥ R(t−D).
Using Rule 14 in Theorem 3.1.12, we can recast this latter inequality as

x(t) ≥ (R� β)(t−D) = Dβ(R)(t−D) (5.3)

for all t ≥ 0.
• Playback buffer constraint (no playback buffer overflow): The size of the playback buffer is lim-

ited to B, and to prevent any overflow of the buffer, we must impose that y(t) − R(t −D) ≤ B for
all t ≥ 0. Again, we do not know the exact value of y, but we know that it can be as high as x, but not
higher, because the network is a causal system. Therefore the constraint becomes, for all t ≥ 0,

x(t) ≤ R(t−D) +B. (5.4)

• Look-ahead delay constraint: We suppose that the encoder can prefetch data from the server up to
d time units ahead, which translates in the following inequality:

x(t) ≤ R(t+ d). (5.5)

5.3 MINIMAL REQUIREMENTS ON DELAYS AND PLAYBACK BUFFER

Inequalities (5.1) to (5.5) can be recast as two sets of inequalities as follows:

x(t) ≤ δ0(t) ∧R(t+ d) ∧ {R(t−D) +B} ∧ Cσ(x)(t) (5.6)

x(t) ≥ (R� β)(t−D). (5.7)

There is a solution x to the smoothing problem if and only if it simultaneously verifies (5.6) and (5.7). This
is equivalent to requiring that the maximal solution of (5.6) is larger than the right hand side of (5.7) for all
t.

Let us first compute the maximal solution of (5.6). Inequality (5.6) has the form

x ≤ a ∧ Cσ(x) (5.8)

where

a(t) = δ0(t) ∧R(t+ d) ∧ {R(t−D) +B}. (5.9)

We can thus apply Theorem 4.3.1 to compute the unique maximal solution of (5.8), which is xmax =
Cσ(a) = σ ⊗ a because σ is a ‘good’ function. Replacing a by its expression in (5.9), we compute that the
maximal solution of (5.6) is

xmax(t) = σ(t) ∧ {(σ ⊗R)(t+ d)} ∧ {(σ ⊗R)(t−D) +B} . (5.10)

We are now able to compute the smallest values of the playback delay D, of the total delay T and of
the playback buffer B ensuring the existence of a solution to the smoothing problem, thanks to following
theorem. The requirement on d for reaching the smallest value of D is therefore d = T −D.

158 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

THEOREM 5.3.1 (REQUIREMENTS FOR OPTIMAL SMOOTHING). The smallest values of D, T and B en-
suring a lossless smoothing to a ‘good’ curve σ through a network offering a service curve β are

Dmin = h(R, (β ⊗ σ)) = inf {t ≥ 0 : (R� (β ⊗ σ))(−t) ≤ 0} (5.11)

Tmin = h((R�R), (β ⊗ σ)) (5.12)

= inf {t ≥ 0 : ((R�R) � (β ⊗ σ))(−t) ≤ 0}
Bmin = v((R�R), (β ⊗ σ)) = ((R�R) � (β ⊗ σ))(0). (5.13)

where h and v denote respectively the horizontal and vertical distances given by Definition 3.1.15.

PROOF: The set of inequalities (5.6) and (5.7) has a solution if, and only if, the maximal solution of (5.6)
is larger or equal to the right hand side of (5.7) at all times. This amounts to impose that for all t ∈ R

(R� β)(t−D) − σ(t) ≤ 0
(R� β)(t−D) − (σ ⊗R)(t+ d) ≤ 0

(R� β)(t−D) − (σ ⊗R)(t−D) ≤ B.

Using the deconvolution operator and its properties, the latter three inequalities can be recast as

(R� (β ⊗ σ))(−D) ≤ 0
((R�R) � (β ⊗ σ)) (−T) ≤ 0

((R�R) � (β ⊗ σ)) (0) ≤ B.

The minimal values of D, T and B satisfying these three inequalities are given by (5.11), (5.12) and (5.13).
These three inequalities are therefore the necessary and sufficient conditions ensuring the existence of a
solution to the smoothing problem.

5.4 OPTIMAL SMOOTHING STRATEGIES

An optimal smoothing strategy is a solution x(t) to the lossless smoothing problem where D, T = D + d
andB take their minimal value given by Theorem 5.3.1. The previous section shows that there exists at least
one optimal solution, namely (5.10). It is however not the only one, as we will see in this section.

5.4.1 MAXIMAL SOLUTION

The maximal solution (5.10) requires only the evaluation of an infimum at time t over the past values of
R and over the future values of R up to time t + dmin, with dmin = Tmin − Dmin. Of course, we need
the knowledge of the traffic trace R(t) to dimension Dmin, dmin and Bmin. However, once we have these
values, we do not need the full stream for the computation of the smoothed input to the network.

5.4.2 MINIMAL SOLUTION

To compute the minimal solution, we reformulate the lossless smoothing problem slightly differently. Be-
cause of Rule 14 of Theorem 3.1.12, an inequality equivalent to (5.2) is

x(t) ≥ (x� σ)(t) = Dσ(x)(t). (5.14)

5.5. OPTIMAL CONSTANT RATE SMOOTHING 159

We use this equivalence to replace the set of inequalities (5.6) and (5.7) by the equivalent set

x(t) ≤ δ0(t) ∧R(t+ d) ∧ {R(t−D) +B}
(5.15)

x(t) ≥ (R� β)(t−D) ∨ Dσ(x)(t). (5.16)

One can then apply Theorem 4.3.2 to compute the minimal solution of (5.16), which is xmin = Dσ(b) =
b�σ where b(t) = δ0(t)∧R(t+ d)∧{R(t−D)+B}, because σ is a ‘good’ function. Eliminating b from
these expressions, we compute that the minimal solution is

xmin(t) = (R� (β ⊗ σ))(t−D), (5.17)

and compute the constraints on d, D and B ensuring that it verifies (5.15): one would get the very same
values of Dmin, Tmin and Bmin given by (5.11) (5.12) and (5.13).

It does achieve the values of Dmin and Bmin given by (5.11) and (5.13), but requires nevertheless the
evaluation, at time t, of a supremum over all values of R up to the end of the trace, contrary to the maximal
solution (5.10). Min-plus deconvolution can however be represented in the time inverted domain by a min-
plus convolution, as we have seen in Section 3.1.10. As the duration of the pre-recorded stream is usually
known, the complexity of computing a min-plus deconvolution can thus be reduced to that of computing a
convolution.

5.4.3 SET OF OPTIMAL SOLUTIONS

Any function x ∈ F such that
xmin ≤ x ≤ xmax

and
x ≤ x⊗ σ

is therefore also a solution to the lossless smoothing problem, for the same minimal values of the playback
delay, look-ahead delay and client buffer size. This gives the set of all solutions. A particular solution among
these can be selected to further minimize another metric, such as the ones discussed in [29], e.g. number of
rate changes or rate variability.

The top of Figure 5.2 shows, for a synthetic trace R(t), the maximal solution (5.10) for a CBR smoothing
curve σ(t) = λr(t) and a service curve β(t) = δ0(t), whereas the bottom shows the minimal solution (5.17).
Figure 5.3 shows the same solutions on a single plot, for the MPEG trace R(t) of the top of Figure 1.2.4
representing the number of packet arrivals per time slot of 40 ms corresponding to a MPEG-2 encoded video
when the packet size is 416 bytes for each packet.

An example of VBR smoothing on the same MPEG trace is shown on Figure 5.4, with a smoothing curve
derived from the T-SPEC field, which is given by σ = γP,M ∧ γr,b, where M is the maximum packet size
(here M = 416 Bytes), P the peak rate, r the sustainable rate and b the burst tolerance. Here we roughly
have P = 560 kBytes/sec, r = 330 kBytes/sec and b = 140 kBytes The service curve is a rate-latency curve
βL,C with L = 1 second and r = 370 kBytes/sec. The two traces have the same envelope, thus the same
minimum buffer requirement (here, 928kBytes). However the second trace has its bursts later, thus, has a
smaller minimum playback delay (D2 = 2.05s versus D1 = 2.81s).

5.5 OPTIMAL CONSTANT RATE SMOOTHING

Let us compute the above values in the case of a constant rate (CBR) smoothing curve σ(t) = λr(t) = rt
(with t ≥ 0) and a rate-latency service curve of the network β(t) = βL,C(t) = C[t− L]+. We assume that

160 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

xmax(t)

R(t-Dmin)

R(t)

σ (t)=rt

Dmin t

Bmin

dmin

R(t+dmin)

xmin(t)

R(t-Dmin)

R(t)

Dmin

Bmin

dmin

R(t+dmin)

t

Figure 5.2: In bold, the maximal solution (top figure) and minimal solution (bottom figure) to the CBR
smoothing problem with a null network.

r < C, the less interesting case where r ≥ C being handled similarly. We will often use the decomposition
of a rate-latency function as the min-plus convolution of a pure delay function, with a constant rate function:
βL,C = δL ⊗ λC . We will also use the following lemma.

LEMMA 5.5.1. If f ∈ F ,

h(f, βL,C) = L+
1
C

(f � λC)(0). (5.18)

5.5. OPTIMAL CONSTANT RATE SMOOTHING 161

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

frame number

cu
m

ul
at

iv
e

flo
w

 [K
by

te
s]

x (t)
min

max
x (t)

min
D

min
d

t

R(t - D)min

R(t + d)
R(t)min

minB

Figure 5.3: In bold, the maximal and minimal solutions to the CBR smoothing problem of an MPEG trace
with a null network. A frame is generated every 40 msec.

� � � .

�

.

<

=

�

� � � .

�

.

<

=

�

� � � .

�

�

�

.

5

<

>

� � � .

�

�

�

.

5

<

>

� � � .

�

�

�

.

5

<

>

� � � .

�

�

�

.

5

<

>

� � � .

�

.

<

=

�

� � � .

�

.

<

=

�

� �

� �

Figure 5.4: Two MPEG traces with the same arrival curve (left). The corresponding playback delays D1

and D2 are the horizontal deviations between the cumulative flows R(t) and function σ ⊗ β (right).

162 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

PROOF: As f(t) = 0 for t ≤ 0 and as βL,C = δL ⊗ λC , we can write for any t ≥ 0

(f � βL,C)(−t) = sup
u≥0

{f(u− t) − (δL ⊗ λC)(u)}

= sup
u≥0

{f(u− t) − λC(u− L)}

= sup
v≥−t

{f(v) − λC(v + t− L)}

= sup
v≥0

{f(v) − λC(v + t− L)}

= sup
v≥0

{f(v) − λC(v)} − C(t− L)

= (f � λC)(0) − Ct+ CL,

from which we deduce the smallest value of t making the left-hand side of this equation non-positive is
given by (5.18).

In the particular CBR case, the optimal values (5.11), (5.12) and (5.13) become the following ones.

THEOREM 5.5.1 (REQUIREMENTS FOR CBR OPTIMAL SMOOTHING). If σ = λr and β = βL,C with
r < C, the smallest values of D, of T and of B are

Dmin = L+
1
r
(R� λr)(0) (5.19)

Tmin = L+
1
r
((R�R) � λr)(0) (5.20)

Bmin = ((R�R) � λr))(L) ≤ rTmin. (5.21)

PROOF: To establish (5.19) and (5.20), we note that R and (R�R) ∈ F . Since r < C

β ⊗ σ = βL,C ⊗ λr = δL ⊗ λC ⊗ λr = δL ⊗ λr = βL,r

so that we can apply Lemma 5.5.1 with f = R and f = (R�R), respectively.

To establish (5.21), we develop (5.13) as follows

((R�R) � (β ⊗ σ))(0) = ((R�R) � (δL ⊗ λr))(0)
= sup

u≥0
{(R�R)(u) − λr(u− L)}

= ((R�R) � λr)(L)
= sup

u≥L
{(R�R)(u) − λr(u− L)}

= sup
u≥L

{(R�R)(u) − λr(u)} + rL

≤ sup
u≥0

{(R�R)(u) − λr(u)} + rL

= ((R�R) � λr)(0) + rL = rTmin.

This theorem provides the minimal values of playback delay Dmin and buffer Bmin, as well as the minimal
look-ahead delay dmin = Tmin −Dmin for a given constant smoothing rate r < C and a given rate-latency
service curve βL,C . We can also solve the dual problem, namely compute for given values of playback delay
D, of the look-ahead delay d, of the playback buffer B and for a given rate-latency service curve βL,C , the
minimal rate rmin which must be reserved on the network.

5.6. OPTIMAL SMOOTHING VERSUS GREEDY SHAPING 163

THEOREM 5.5.2 (OPTIMAL CBR SMOOTHING RATE). If σ = λr and β = βL,C with r < C, the smallest
value of r, given D ≥ L, d and B ≥ (R�R)(L), is

rmin = sup
t>0

{
R(t)

t+D − L

}
∨ sup

t>0

{
(R�R)(t)

t+D + d− L

}
∨ sup

t>0

{
(R�R)(t+ L) −B

t

}
. (5.22)

PROOF: Let us first note that because of (5.19), there is no solution if D < L. On the other hand, if
D ≥ L, then (5.19) implies that the rate r must be such that for all t > 0

D ≥ L+
1
r
(R(t) − rt)

or equivalently r ≥ R(t)/(t+D−L). The latter being true for all t > 0, we must have r ≥ supt≥0{R(t)/(t+
D − L)}. Repeating the same argument with (5.20) and (5.21), we obtain the minimal rate (5.22).

In the particular case where L = 0 and r < C the network is completely transparent to the flow, and can
be considered as a null network: can replace β(t) by δ0(t). The values (5.19), (5.20) and (5.21) become,
respectively,

Dmin =
1
r
(R� λr)(0) (5.23)

Tmin =
1
r
((R�R) � λr)(0) (5.24)

Bmin = ((R�R) � λr))(0) = rTmin. (5.25)

It is interesting to compute these values on a real video trace, such as the first trace on top of Figure 1.2.4.
Since Bmin is directly proportional to Tmin because of (5.25), we show only the graphs of the values of
Dmin and dmin = Tmin − Dmin, as a function of the CBR smoothing rate r on Figure 5.5. We observe
three qualitative ranges of rates: (i) the very low ones where the playback delay is very large, and where
look-ahead does not help in reducing it; (ii) a middle range where the playback delay can be kept quite
small, thanks to the use of look-ahead and (iii) the high rates above the peak rate of the stream, which do not
require any playback nor lookahead of the stream. These three regions can be found on every MPEG trace
[79], and depend on the location of the large burst in the trace. If it comes sufficiently late, then the use of
look-ahead can become quite useful in keeping the playback delay small.

5.6 OPTIMAL SMOOTHING VERSUS GREEDY SHAPING

An interesting question is to compare the requirements on D and B, due to the scheduling obtained in Sec-
tion 5.4, which are minimal, with those that a simpler scheduling, namely the greedy shaper of Section 1.5,
would create. As σ is a ‘good’ function, the solution of a greedy shaper is

xshaper(t) = (σ ⊗R)(t). (5.26)

To be a solution for the smoothing problem, it must satisfy all constraints listed in Section 5.2. It already
satisfies (5.1), (5.2) and (5.5). Enforcing (5.3) is equivalent to impose that for all t ∈ R

(R� β)(t−D) ≤ (σ ⊗R)(t),

which can be recast as
((R�R) � (β ⊗ σ))(−D) ≤ 0. (5.27)

164 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

rate r [kBytes/sec]

D
m

in
 [s

ec
]

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

rate r [kBytes/sec]

dm
in

 [s
ec

]

Figure 5.5: Minimum playback delay Dmin and corresponding look-ahead delay dmin for a constant rate
smoothing r of the MPEG-2 video trace shown on top of Figure 1.2.4.

This implies that the minimal playback delay needed for a smoothing using a greedy shaping algorithm
is equal to the minimal total delay Tmin, the sum of the playback and lookahead delays, for the optimal
smoothing algorithm. It means that the only way an optimal smoother allows to decrease the playback delay
is its ability to look ahead and send data in advance. If this look-ahead is not possible (d = 0) as for example
for a live video transmission, the playback delay is the same for the greedy shaper and the optimal smoother.

The last constraint that must be verified is (5.4), which is equivalent to impose that for all t ∈ R

(σ ⊗R)(t) ≤ R(t−D) +B,

which can be recast as
((R⊗ σ) �R)(D) ≤ B. (5.28)

Consequently, the minimal requirements on the playback delay and buffer using a greedy shaper instead of
an optimal smoother are given by the following theorem.

THEOREM 5.6.1 (REQUIREMENTS FOR GREEDY SHAPER). If σ is a ‘good’ function, then the smallest
values of D and B for lossless smoothing of flow R by a greedy shaper are

Dshaper = Tmin = h((R�R), (β ⊗ σ)) (5.29)

Bshaper = ((R⊗ σ) �R)(Dshaper) ∈ [Bmin, σ(Dshaper)]. (5.30)

PROOF: The expressions of Dshaper and Bshaper follow immediately from (5.27) and (5.28). The only
point that remains to be shown is that Bshaper ≤ σ(Dshaper), which we do by picking s = u in the inf
below:

Bshaper = (R� (R⊗ σ)) (Dshaper)

5.7. COMPARISON WITH DELAY EQUALIZATION 165

= sup
u≥0

{
inf

0≤s≤u+Dshaper

{
R(s) + σ(u+Dshaper − s)

}
−R(u)

}
≤ sup

u≥0

{
R(u) + σ(u+Dshaper − u) −R(u)

}
= σ(Dshaper).

Consequently, a greedy shaper does not minimize, in general, the playback buffer requirements, although it
does minimize the playback delay when look-ahead is not possible. Figure 5.6 shows the maximal solution
xmax of the optimal shaper (top) and the solution xshaper of the greedy shaper (bottom) when the shaping
curve is a one leaky bucket affine curve σ = γr,b, when the look-ahead delay d = 0 (no look ahead possible)
and for a null network (β = δ0). In this case the playback delays are identical, but not the playback buffers.

Another example is shown on Figure 5.7 for the MPEG-2 video trace shown on top of Figure 1.2.4. Here
the solution of the optimal smoother is the minimal solution xmin.

There is however one case where a greedy shaper does minimize the playback buffer: a constant rate smooth-
ing (σ = λr) over a null network (β = δ0). Indeed, in this case, (5.25) becomes

Bmin = rTmin = rDshaper = σ(Dshaper),

and therefore Bshaper = Bmin. Consequently, if no look-ahead is possible and if the network is transparent
to the flow, greedy shaping is an optimal CBR smoothing strategy.

5.7 COMPARISON WITH DELAY EQUALIZATION

A common method to implement a decoder is to first remove any delay jitter caused by the network, by
delaying the arriving data in a delay equalization buffer, before using the playback buffer to compensate for
fluctuations due to pre-fetching. Figure 5.8 shows such a system. If the delay equalization buffer is properly
configured, its combination with the guaranteed service network results into a fixed delay network, which,
from the viewpoint we take in this chapter, is equivalent to a null network. Compared to the original scenario
in Figure 5.1, there are now two separate buffers for delay equalization and for compensation of prefetching.
We would like to understand the impact of this separation on the minimum playback delay Dmin.

The delay equalization buffer operates by delaying the first bit of data by an initial delay Deq, equal to the
worst case delay through the network. We assume that the network offers a rate-latency service curve βL,C .
Since the flow x is constainted by the arrival curve σ which is assumed to be a ‘good’ function, we know
from Theorem 1.4.4, that the worst-case delay is

Deq = h(σ, βL,C).

On the other hand, the additional part of the playback delay to compensate for fluctuations due to pre-
fetching, denoted by Dpf , is given by (5.11) with β replaced by δ0:

Dpf = h(R, δ0 ⊗ σ) = h(R, σ).

The sum of these two delays is, in general, larger than the optimal playback delay (without a separation
between equalization and compensation for prefetching), Dmin, given by (5.11):

Dmin = h(R, βL,C ⊗ σ).

166 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

σ(t)

t

b

R(t– Dmin)

Dmin

R(t)

σ(t)

t

b

R(t– Dshaper)

Dshaper

xshaper(t)

Bshaper

R(t)

Bmin

xmax(t)

(a) Optimal smoothing solution, with
playback buffer requirements

(a) Greedy shaper solution, with
playback buffer requirements

Figure 5.6: In bold, the maximal solution (top figure) and minimal solution (bottom figure) to the smoothing
problem with a null network, no look-ahead and an affine smoothing curve σ = γr,b .

Consider the example of Figure 5.9, where σ = γr,b with r < C. Then one easily computes the three delays
Dmin, Deq and Dpf , knowing that

βL,C ⊗ σ = δL ⊗ λC ⊗ γr,b = δL ⊗ (λC ∧ γr,b)
= (δL ⊗ λC) ∧ (δL ⊗ γr,b) = βL,C ∧ (δL ⊗ γr,b).

One clearly has Dmin < Deq + Dpf : separate delay equalization gives indeed a larger overall playback
delay. In fact, looking carefully at the figure (or working out the computations), we can observe that the
combination of delay equalization and compensation for prefetching in a single buffer accounts for the
busrtiness of the (optimally) smoothed flow only once. This is another instance of the “pay bursts only

5.7. COMPARISON WITH DELAY EQUALIZATION 167

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Frame number

C
um

m
ul

at
iv

e

of
 b

its

Video trace R(t)
Optimal shaping

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Frame number

C
um

m
ul

at
iv

e

of
 b

its

Video trace R(t)
Optimal smoothing

Figure 5.7: Example of optimal shaping versus optimal smoothing for the MPEG-2 video trace shown on
top of Figure 1.2.4. The example is for a null network and a smoothing curve σ = γP,M∧γr,b withM = 416
bytes, P = 600 kBytes/sec, r = 300 kBytes/sec and b = 80 kBytes. The figure shows the optimal shaper
[resp. smoother] output and the original signal (video trace), shifted by the required playback delay. The
playback delay is 2.76 sec for optimal shaping (top) and 1.92 sec for optimal smoothing (bottom).

R(t-D)

display
video
Client

Client

buffer
playback

R(t+d)

σ

x(t)

Smoother

β

Network

y(t)Delay
equalizer

Video
Server

Guaranteed service network

Figure 5.8: Delay equalization at the receiver.

168 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

once” phenomenon, which we have already met in Section 1.4.3.

min
D

β(t)

t

R(t)

eqD

pf
D

σ(t)

(σ⊗β)(t)

Figure 5.9: Delays Dmin, Deq and Dpf for a rate-latency service curve βL,C and an affine smoothing curve
σ = γr,b .

We must however make – once again – an exception for a constant rate smoothing. Indeed, if σ = λr (with
r < C), then Dpf is given by (5.23) and Dmin by (5.19), so that

Deq = h(λr, βL,C) = L

Dpf =
1
r
(R� λr)(0)

Dmin = L+
1
r
(R� λr)(0)

and therefore Dmin = Deq + Dpf . In the CBR case, separate delay equalization is thus able to attain the
optimal playback delay.

5.8 LOSSLESS SMOOTHING OVER TWO NETWORKS

We now consider the more complex setting where two networks separate the video server from the client:
the first one is a backbone network, offering a service curve β1 to the flow, and the second one is a local
access network, offering a service curve β2 to the flow, as shown on Figure 5.10. This scenario models
intelligent, dynamic caching often done at local network head-ends. We will compute the requirements
on D, d, B and on the buffer X of this intermediate node in Subsection 5.8.1. Moreover, we will see in
Subsection 5.8.2 that for constant rate shaping curves and rate-latency service curves, the size of the client
buffer B can be reduced by implementing a particular smoothing strategy instead of FIFO scheduling at the
intermediate node.

Two flows need therefore to be computed: the first one x1(t) at the input of the backbone network, and the
second one x2(t) at the input of the local access network, as shown on Figure 5.10.

The constraints on both flows are now as follows:

5.8. LOSSLESS SMOOTHING OVER TWO NETWORKS 169

R(t-D)

display
video
Client

Client

buffer
playback

R(t+d)
B

σ1

x1(t)

Backbone
Network

Video
Server

Network
Access

Smoother

Node
storage

Intermediate

β1 β2

σ2

y2(t)x2(t)
Smoother

y1(t)
X

Figure 5.10: Smoothing over two networks with a local caching node.

• Causal flow x1: This constraint is the same as (5.1), but with x replaced by x1:

x1(t) ≤ δ0(t), (5.31)

• Smoothness constraint: Both flows x1 and x2 are constrained by two arrival curves σ1 and σ2:

x1(t) ≤ (x1 ⊗ σ1)(t) (5.32)

x2(t) ≤ (x2 ⊗ σ2)(t). (5.33)

• No playback and intermediate server buffers underflow: The data is read out from the playback
buffer after D unit of times at a rate given by R(t−D), which implies that y2(t) ≥ R(t−D). On the
other hand, the data is retrieved from the intermediate server at a rate given by x2(t), which implies
that y1(t) ≥ x2(t). As we do not know the expressions of the outputs of each network, but only a
service curve β1 and β2 for each of them, we can replace y1 by x1 ⊗ β1 and y2 by x2 ⊗ β2, and
reformulate these two constraints by

x2(t) ≤ (x1 ⊗ β1)(t) (5.34)

x2(t) ≥ (R� β2)(t−D). (5.35)

• No playback and intermediate server buffers overflow: The size of the playback and cache buffers
are limited to B and X , respectively, and to prevent any overflow of the buffer, we must impose that
y1(t) − x2(t) ≤ X and y2(t) −R(t−D) ≤ B for all t ≥ 0. Again, we do not know the exact value
of y1 and y2, but we know that they are bounded by x1 and x2, respectively, so that the constraints
becomes, for all t ≥ 0,

x1(t) ≤ x2(t) +X (5.36)

x2(t) ≤ R(t−D) +B. (5.37)

• Look-ahead delay constraint: this constraint is the same as in the single network case:

x1(t) ≤ R(t+ d). (5.38)

5.8.1 MINIMAL REQUIREMENTS ON THE DELAYS AND BUFFER SIZES FOR TWO NET-
WORKS

Inequalities (5.31) to (5.38) can be recast as three sets of inequalities as follows:

x1(t) ≤ δ0(t) ∧R(t+ d) ∧ (σ1 ⊗ x1)(t) ∧ (x2(t) +X) (5.39)

x2(t) ≤ {R(t−D) +B} ∧ (β1 ⊗ x1)(t) ∧ (σ2 ⊗ x2)(t) (5.40)

x2(t) ≥ (R� β2)(t−D). (5.41)

170 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

We use the same technique for solving this problem sa in Section 5.3, except that now the dimension of the
system J is 2 instead of 1.

With T denoting transposition, let us introduce the following notations:

�x(t) = [x1(t) x2(t)]T

�a(t) = [δ0(t) ∧R(t+ d) R(t−D) +B]T
�b(t) = [0 (R� β2)(t−D)]T

Σ(t) =
[
σ1(t) δ0(t) +X
β1(t) σ2(t)

]
.

With these notations, the set of inequalities (5.39), (5.40) and (5.41) can therefore be recast as

�x ≤ �a ∧ (Σ ⊗ �x) (5.42)

�x ≥ �b. (5.43)

We will follow the same approach as in Section 5.3: we first compute the maximal solution of (5.42) and
then derive the constraints on D, T (and hence d), X and B ensuring the existence of this solution. We
apply thus Theorem 4.3.1 again, but this time in the two-dimensional case, to obtain an explicit formulation
of the maximal solution of (5.42). We get

�xmax = CΣ(�a) = (Σ ⊗ �a) (5.44)

where Σ is the sub-additive closure of Σ, which is, as we know from Section 4.2,

Σ = inf
n∈N

{Σ(n)} (5.45)

where Σ(0) = D0 and Σ(n) denotes the nth self-convolution of Σ. Application of (5.45) to matrix Σ is
straightforward, but involves a few manipulations which are skipped. Denoting

α = σ1 ⊗ σ2 ⊗ inf
n∈N

{
β

(n+1)
1 + nX

}
(5.46)

= σ1 ⊗ σ2 ⊗ β1 ⊗ β1 +X,

we find that

Σ =
[
σ1∧(α+X) (σ1⊗σ2+X)∧(α+ 2X)

α σ2 ∧ (α+X)

]
and therefore the two coordinates of the maximal solution of (5.42) are

x1max(t) = σ1(t) ∧ {α(t) +X} ∧ (σ1 ⊗R)(t+ d) ∧ {(α⊗R)(t+ d) +X}
∧ {(σ1 ⊗ σ2 ⊗R)(t−D) +B +X}
∧ {(α⊗R)(t−D) +B + 2X} (5.47)

x2max(t) = α(t) ∧ (α⊗R)(t+ d) ∧ {(σ2 ⊗R)(t−D) +B}
∧ {(α⊗R)(t−D) +B +X} . (5.48)

Let us mention that an alternative (and computationally simpler) approach to obtain (5.47) and (5.48) would
have been to first compte the maximal solution of (5.40), as a function of x1, and next to replace x2 in (5.39)
by this latter value.

We can now express the constraints on X , B, D and d that will ensure that a solution exists by requiring
that (5.48) be larger than (5.41). The result is stated in the following theorem, whose proof is similar to that
of Theorem 5.3.1.

5.8. LOSSLESS SMOOTHING OVER TWO NETWORKS 171

THEOREM 5.8.1. The lossless smoothing of a flow to (sub-additive) curves σ1 and σ2, respectively, over
two networks offering service curves β1 and β2 has a solution if and only if the D, T , X and B verify the
following set of inequalities, with α defined by (5.46):

(R� (α⊗ β2)(−D) ≤ 0 (5.49)

((R�R) � (α⊗ β2)) (−T) ≤ 0 (5.50)

((R�R) � (σ2 ⊗ β2)) (0) ≤ B (5.51)

((R�R) � (α⊗ β2)) (0) ≤ B +X. (5.52)

5.8.2 OPTIMAL CONSTANT RATE SMOOTHING OVER TWO NETWORKS

Let us compute the values of Theorem 5.8.1 in the case of two constant rate (CBR) smoothing curves
σ1 = λr1 and σ2 = λr2 . We assume that each network offers a rate-latency service curve βi = βLi,Ci ,
i = 1, 2. We assume that ri ≤ Ci In this case the optimal values of D, T and B become the following ones,
depending on the value of X .

THEOREM 5.8.2. Let r = r1 ∧ r2. Then we have the following three cases depending on X:

(i) If X ≥ rL1, then Dmin, Tmin and Bmin are given by

Dmin = L1 + L2 +
1
r
(R� λr)(0) (5.53)

Tmin = L1 + L2 +
1
r
((R�R) � λr)(0) (5.54)

Bmin = ((R�R) � λr2)(L2) ∨ {((R�R) � λr)(L1 + L2) −X}
≤ ((R�R) � λr)(L2). (5.55)

(ii) If 0 < X < rL1 then Dmin, Tmin and Bmin are bounded by

X

r
+ L2 +

L1

X
(R� λ X

L1

)(0) ≤ Dmin

≤ L1 + L2 +
L1

X
(R� λ X

L1

)(0) (5.56)

X

r
+ L2 +

L1

X
((R�R) � λ X

L1

)(0) ≤ Tmin

≤ L1 + L2 +
L1

X
((R�R) � λ X

L1

)(0) (5.57)

((R�R) � λ X
L1

)(L1 + L2) − r2L1 ≤ Bmin

≤ ((R�R) � λ X
L1

)(L2) (5.58)

(iii) Let K be duration of the stream. If X = 0 < rL1 then Dmin = K.

Proof. One easily verifies that δ(n+1)
L1

= δ(n+1)L1
and that λ(n+1)

C1
= λC1 . Since β1 = βL1,C1 = δL1 ⊗ λC1 ,

and since r = r1 ∧ r2 ≤ C1, (5.46) becomes

α = λr ⊗ inf
n∈N

{
δ(n+1)L1

⊗ λC1 + nX
}

= δL1 ⊗ inf
n∈N

{δnL1 ⊗ λr + nX} . (5.59)

(i) If X ≥ rL1, then for t ≥ nL1

(δnL1 ⊗ λr)(t) + nX = λr(t− nL1) + nX = rt+ n(X − rL1) ≥ rt = λr(t)

172 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

whereas for 0 ≤ t < nL1

(δnL1 ⊗ λr)(t) + nX = λr(t− nL1) + nX = nX ≥ nrL1 > rt = λr(t).

Consequently, for all t ≥ 0, α(t) ≥ (δL1 ⊗λr)(t). On the other hand, taking n = 0 in the infimum in (5.59)
yields that α ≤ δL1 ⊗ λr. Combining these two inequalities, we get that

α = δL1 ⊗ λr

and hence that
α⊗ β2 = δL1 ⊗ λr ⊗ δL2 ⊗ λr2 = δL1+L2 ⊗ λr = βL1+L2,r. (5.60)

Inserting this last relation in (5.49) to (5.52), and using Lemma 5.5.1 we establish (5.53), (5.54) and the
equality in (5.55). The inequality in (5.55) is obtained by noticing that r2 ≥ r and that

((R�R) � λr)(L1 + L2) −X = sup
u≥0

{(R�R)(u+ L1 + L2) − ru} −X

= sup
v≥L1

{(R�R)(v + L2) − r(v − L1)} −X

≤ sup
v≥0

{(R�R)(v + L2) − rv} + (rL1 −X)

≤ ((R�R) � λr)(L2).

(ii) If 0 < X < rL1, the computation of α does not provide a rate-latency curve anymore, but a function
that can be bounded below and above by the two following rate-latency curves: βL1,X/L1

≤ α ≤ βX/r,X/L1
.

Therefore, replacing (5.60) by

δL1+L2 ⊗ λ X
L1

≤ α⊗ β2 ≤ δX
r

+L2
⊗ λ X

L1

,

and applying Lemma 5.5.1 to both bounding rate-latency curves βL1,X/L1
and βX/r,X/L1

, we get respec-
tively the lower and upper bounds (5.56) to (5.58).

(iii) If X = 0 and rL1 > 0 then (5.59) yields that α(t) = 0 for all t ≥ 0. In this case (5.49) becomes
supu≥0{R(u−D)} ≤ 0. This is possible only if D is equal to the duration of the stream.

It is interesting to examine these results for two particular values of X .

The first one is X = ∞. If the intermediate server is a greedy shaper whose output is x2(t) = (σ2 ⊗ y1)(t),
one could have applied Theorem 5.5.1 with σ2 = λr and β = β1 ⊗ σ2 ⊗ β2 = δL1+L2 ⊗ λr2 = βL1+L2,r2

to find out that D and T are still given by (5.53) and (5.54) but that B = ((R � R) � λr)(L1 + L2) is
larger than (5.55). Using the caching scheduling (5.48) instead of a greedy shaping one allows therefore to
decrease the playback buffer size, but not the delays. The buffer X of the intermediate node does not need
to be infinite, but can be limited to rL1.

The second one is X = 0. Then whatever the rate r > 0, if L1 > 0, the playback delay is the length of
the stream, which makes streaming impossible in practice. When L1 = L2 = 0 however (in which case we
have two null networks) X = rL1 = 0 is the optimal intermediate node buffer allocation. This was shown
in [69](Lemma 5.3) using another approach. We see that when L1 > 0, this is no longer the case.

5.9 BIBLIOGRAPHIC NOTES

The first application of network calculus to optimal smoohting is found in [54], for an unlimited value of
the look-ahead delay. The minimal solution (5.17) is shown to be an optimal smoothing scheme. The

5.9. BIBLIOGRAPHIC NOTES 173

computation of the minimum look-ahead delay, and of the maximal solution, is done in [79]. Network
calculus allows to retrieve some results found using other methods, such as the optimal buffer allocation of
the intermdiate node for two null networks computed in [69].

It also allows to extend these results, by computing the full set of optimal schedules and by taking into
account non null networks, as well as by using more complex shaping curves σ than constant rate service
curves. For example, with the Resource Reservation Protocol (RSVP), σ is derived from the T-SPEC field
in messages used for setting up the reservation, and is given by σ = γP,M ∧ γr,b, where M is the maximum
packet size, P the peak rate, r the sustainable rate and b the burst tolerance, as we have seen in Section 1.4.3.

The optimal T-SPEC field is computed in [54]. More precisely, the following problem is solved. As assumed
by the Intserv model, every node offers a service of the form βL,C for some latency L and rate C, with the
latency parameter L depending on the rate C according to L = C0

ρ +D0. The constants C0 and D0 depends
on the route taken by the flow throughout the network. Destinations choose a target admissible network
delay Dnet. The choice of a specific service curve βL,C (or equivalently, of a rate parameter C) is done
during the reservation phase and cannot be known exactly in advance. The algorithm developed in [54]
computes the admissible choices of σ = γP,M ∧ γr,b and of Dnet in order to guarantee that the reservation
that will subsequently be performed ensures a playback delay not exceeding a given value D.

174 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

CHAPTER 6

AGGREGATE SCHEDULING

6.1 INTRODUCTION

Aggregate scheduling arises naturally in many case. Let us just mention here the differentiated services
framework (Section 2.4 on Page 86) and high speed switches with optical switching matrix and FIFO out-
puts. The state of the art for aggregate multiplexing is not very rich. In this chapter, we give a panorama of
results, a number of which are new.

In a first step (Section 6.2), we evaluate how an arrival curve is transformed through aggregate multiplex-
ing; we give a catalog of results, when the multiplexing node is either a service curve element with FIFO
scheduling, or a Guaranteed Rate node (Section 2.1.3), or a service curve element with strict service curve
property. This provides many simple, explicit bounds which can be used in practice.

In a second step (Section 6.3), we consider a global network using aggregate multiplexing (see assumptions
below); given constraints at the inputs of the network, can we obtain some bounds for backlog and delay ?
Here, the story is complex. The question of delay bounds for a network with aggregate scheduling was first
raised by Chang [8]. For a given family of networks, we call critical load factor νcri a value of utilization
factor below which finite bounds exist, and above which there exist unstable networks, i.e., networks whose
backlog grow to infinity. For feed-forward networks with aggregate multiplexing, an iterative application
of Section 6.2 easily shows that νcri = 1. However, many networks are not feed-forward, and this result
does not hold in general. Indeed, and maybe contrary to intuition, Andrews [3] gave some examples of
FIFO networks with νcri < 1. Still, the iterative application of Section 6.2, augmented with a time-stopping
argument, provides lower bounds of νcri (which are less than 1).

In a third step (Section 6.4), we give a number of cases where we can say more. We recall the result in
Theorem 2.4.1 on Page 88, which says that, for a general network with either FIFO service curve elements,
or with GR nodes, we have νcri ≥ 1

h−1 where h is abound on the number of hops seen by any flow. Then,
in Section 6.4.1, we show that the unidirectional ring always always has νcri = 1; thus, and this may be
considered a surprise, the ring is not representative of non feed-forward topologies. This result is actually
true under the very general assumption that the nodes on the ring are service curve elements, with any values
of link speeds, and with any scheduling policy (even non FIFO) that satisfies a service curve property. As far
as we know, we do not really understand why the ring is always stable, and why other topologies may not be.
Last, and not least surprising, we present in Section 6.4.2 a particular case, originally found by Chlamtac,
Faragó, Zhang, and Fumagalli [15], and refined by Zhang [83] and Le Boudec and Hébuterne [52] which
shows that, for a homogeneous network of FIFO nodes with constant size packets, strong rate limitations at

175

176 CHAPTER 6. AGGREGATE SCHEDULING

all sources have the effect of providing simple, closed form bounds.

6.2 TRANSFORMATION OF ARRIVAL CURVE THROUGH AGGREGATE SCHEDUL-
ING

Consider a number of flows served as an aggregate in a common node. Without loss of generality, we
consider only the case of two flows. Within an aggregate, packets are served according to some unspecified
arbitration policy. In the following sub-sections, we consider three additional assumptions.

6.2.1 AGGREGATE MULTIPLEXING IN A STRICT SERVICE CURVE ELEMENT

The strict service curve property is defined in Definition 1.3.2 on Page 21. It applies to some isolated
schedulers, but not to complex nodes with delay elements.

THEOREM 6.2.1 (BLIND MULTIPLEXING). Consider a node serving two flows, 1 and 2, with some unknown
arbitration between the two flows. Assume that the node guarantees a strict service curve β to the aggregate
of the two flows. Assume that flow 2 is α2-smooth. Define β1(t) := [β(t) − α2(t)]+. If β1 is wide-sense
increasing, then it is a service curve for flow 1.

PROOF: The proof is a straightforward extension of that of Proposition 1.3.4 on Page 21.

We have seen an example in Section 1.3.2: if β(t) = Ct (constant rate server or GPS node) and α2 = γr,b

(constraint by one leaky bucket) then the service curve for flow 1 is the rate-latency service curve with rate
C−r and latency b

C−r . Note that the bound in Theorem 6.2.1 is actually for a preemptive priority scheduler
where flow 1 has low priority. It turns out that if we have no other information about the system, it is the
only bound we can find. For completeness, we give the following case.

COROLLARY 6.2.1 (NON PREEMPTIVE PRIORITY NODE). Consider a node serving two flows, H and L,
with non-preemptive priority given to flowH . Assume that the node guarantees a strict service curve β to the
aggregate of the two flows. Then the high priority flow is guaranteed a service curve βH(t) = [β(t)−lLmax]

+

where lLmax is the maximum packet size for the low priority flow.

If in addition the high priority flow is αH -smooth, then define βL by βL(t) = [β(t) − αH(t)]+. If βL is
wide-sense increasing, then it is a service curve for the low priority flow.

PROOF: The first part is an immediate consequence of Theorem 6.2.1. The second part is proven in the
same way as Proposition 1.3.4.

If the arrival curves are affine, then the following corollary of Theorem 6.2.1 expresses the burstiness in-
crease due to multiplexing.

COROLLARY 6.2.2 (BURSTINESS INCREASE DUE TO BLIND MULTIPLEXING). Consider a node serving
two flows in an aggregate manner. Assume the aggregate is guaranteed a strict service curve βR,T . Assume
also that flow i is constrained by one leaky bucket with parameters (ρi, σi). If ρ1 + ρ2 ≤ R the output of the
first flow is constrained by a leaky bucket with parameters (ρ1, b

∗
1) with

b∗1 = σ1 + ρ1T + ρ1
σ2 + ρ2T

R− ρ2

Note that the burstiness increase contains a term ρ1T that is found even if there is no multiplexing; the
second term ρ1

σ2+ρ2T
R−ρ2

comes from multiplexing with flow 2. Note also that if we further assume that the
node is FIFO, then we have a better bound (Section 6.2.2).

6.2. TRANSFORMATION OF ARRIVAL CURVE THROUGH AGGREGATE SCHEDULING 177

PROOF: From Theorem 6.2.1, the first flow is guaranteed a service curve βR′,T ′ with R′ = R − ρ2 and
T ′ = σ2+Tρ2

R−ρ2
. The result follows from a direct application of Theorem 1.4.3 on Page 23.

DO WE NEED THAT THE SERVICE CURVE PROPERTY BE STRICT ? If we relax the assumption that
the service curve property is strict, then the above results do not hold. A counter-example can be built as
follows. All packets have the same size, 1 data unit, and input flows have a peak rate equal to 1. Flow 1
sends one packet at time 0, and then stops. The node delays this packet forever. With an obvious notation,
we have, for t ≥ 0:

R1(t) = min(t, 1) and R′
1(t) = 0

Flow 2 sends one packet every time unit, starting at time t = 1. The output is a continuous stream of packets,
one per time unit, starting from time 1. Thus

R2(t) = (t− 1)+ and R′
2(t) = R2(t)

The aggregate flows are, for t ≥ 0:

R(t) = t and R′(t) = (t− 1)t

In other words, the node offers to the aggregate flow a service curve δ1. Obviously, Theorem 6.2.1 does
not apply to flow 1: if it would, flow 1 would receive a service curve (δ1 − λ1)+ = δ1, which is not true
since it receives 0 service. We can interpret this example in the light of Section 1.4.4 on Page 29: if the
service curve property would be strict, then we could bound the duration of the busy period, which would
give a minimum service guarantee to low priority traffic. We do not have such a bound on this example. In
Section 6.2.2 we see that if we assume FIFO scheduling, then we do have a service curve guarantee.

6.2.2 AGGREGATE MULTIPLEXING IN A FIFO SERVICE CURVE ELEMENT

Now we relax the strict service curve property; we assume that the node guarantees to the aggregate flow a
minimum service curve, and in addition assume that it handles packets in order of arrival at the node. We
find some explicit closed forms bounds for some simple cases.

PROPOSITION 6.2.1 (FIFO MINIMUM SERVICE CURVES [20]). Consider a lossless node serving two
flows, 1 and 2, in FIFO order. Assume that packet arrivals are instantaneous. Assume that the node
guarantees a minimum service curve β to the aggregate of the two flows. Assume that flow 2 is α2-smooth.
Define the family of functions β1

θ by

β1
θ (t) = [β(t) − α2(t− θ)]+1{t>θ}

Call R1(t), R′
1(t) the input and output for flow 1. Then for any θ ≥ 0

R′
1 ≥ R1 ⊗ β1

θ (6.1)

If β1
θ is wide-sense increasing, flow 1 is guaranteed the service curve β1

θ

The assumption that packet arrivals are instantaneous means that we are either in a fluid system (one packet
is one bit or one cell), or that the input to the node is packetized prior to being handled in FIFO order.

178 CHAPTER 6. AGGREGATE SCHEDULING

PROOF: We give the proof for continuous time and assume that flow functions are left-continuous. All
we need to show is Equation (6.1). Call Ri the flow i input, R = R1 + R2, and similarly R′

i, R
′ the output

flows.

Fix some arbitrary parameter θ and time t. Define

u := sup{v : R(v) ≤ R′(t)}
Note that u ≤ t and that

R(u) ≤ R′(t) and R(u+) ≥ R′(t) (6.2)

where Rr(u) = infv>u[R(v)] is the limit to the right of R at u.

(Case 1) consider the case where u = t. It follows from the above and from R′ ≤ R that R′
1(t) = R1(t).

Thus for any θ, we have R′
1(t) = R1(t) + β1

θ (0) which shows that R′
1(t) ≥ (R1 ⊗ β1

θ)(t) in that case.

(Case 2), assume now that u < t. We claim that

R1(u) ≤ R′
1(t) (6.3)

Indeed, if this is not true, namely, R1(u) > R′
1(t), it follows from the first part of Equation (6.2) that

R2(u) < R′
2(t). Thus some bits from flow 2 arrived after time u and departed by time t, whereas all bits of

flow 1 arrived up to time u have not yet departed at time t. This contradicts our assumption that the node is
FIFO and that packets arrive instantaneously.

Similarly, we claim that
(R2)r(u) ≥ R′

2(t) (6.4)

Indeed, otherwise x := R′
2(t) − (R2)r(u) > 0 and there is some v0 ∈ (u, t] such that for any v ∈ (u, v0]

we have R2(v) < R′
2(t) − x

2 . From Equation (6.2), we can find some v1 ∈ (u, v0] such that if v ∈ (u, v1]
then R1(v) +R2(v) ≥ R′(t) − x

4 . It follows that

R1(v) ≥ R′
1(t) +

x

4

Thus we can find some v with R1(v) > R′
1(t) whereas R2(v) < R′

2(t), which contradicts the FIFO
assumption.

Call s a time such that R′(t) ≥ R(s) + β(t− s). We have R(s) ≤ R′(t) thus s ≤ u.

(Case 2a) Assume that u < t− θ thus also t− s > θ. From Equation (6.4) we derive

R′
1(t) ≥ R1(s) + β(t− s) +R2(s) −R′

2(t) ≥ R1(s) + β(t− s) +R2(s) − (R2)r(u)

Now there exist some ε > 0 such that u+ ε ≤ t− θ, thus (R2)r(u) ≤ R2(t− θ) and

R′
1(t) ≥ R1(s) + β(t− s) − α2(t− s− θ)

It follows from Equation (6.3) that
R′

1(t) ≥ R1(s)

which shows that
R′

1(t) ≥ R1(s) + β1
θ (t− s)

(Case 2b) Assume that u ≥ t− θ. By Equation (6.3):

R′
1(t) ≥ R1(u) = R1(u) + β1

θ (t− u)

We cannot conclude from Proposition 6.2.1 that infθ β1
θ is a service curve. However, we can conclude

something for the output.

6.2. TRANSFORMATION OF ARRIVAL CURVE THROUGH AGGREGATE SCHEDULING 179

PROPOSITION 6.2.2 (BOUND FOR OUTPUT WITH FIFO). Consider a lossless node serving two flows, 1
and 2, in FIFO order. Assume that packet arrivals are instantaneous. Assume that the node guarantees to
the aggregate of the two flows a minimum service curve β. Assume that flow 2 is α2-smooth. Define the
family of functions as in Proposition 6.2.1. Then the output of flow 1 is α∗

1-smooth, with

α∗
1(t) = inf

θ≥0

(
α1 � β1

θ

)
(t)

PROOF: Observe first that the network calculus output bound holds even if β is not wide-sense increasing.
Thus, from Proposition 6.2.1, we can conclude that α1 �β1

θ is an arrival curve for the output of flow 1. This
is true for any θ.

We can apply the last proposition and obtain the following practical result.

THEOREM 6.2.2 (BURSTINESS INCREASE DUE TO FIFO, GENERAL CASE). Consider a node serving
two flows, 1 and 2, in FIFO order. Assume that flow 1 is constrained by one leaky bucket with rate ρ1 and
burstiness σ1, and flow 2 is constrained by a sub-additive arrival curve α2. Assume that the node guarantees
to the aggregate of the two flows a rate latency service curve βR,T . Call ρ2 := inft>0

1
tα2(t) the maximum

sustainable rate for flow 2.

If ρ1 + ρ2 < R, then at the output, flow 1 is constrained by one leaky bucket with rate ρ1 and burstiness b∗1
with

b∗1 = σ1 + ρ1

(
T +

B̂

R

)
and

B̂ = sup
t≥0

[α2(t) + ρ1t−Rt]

The bound is a worst case bound.

PROOF: (Step 1) Define β1
θ as in Proposition 6.2.1. Define B2 = supt≥0 [α2(t) −Rt]. Thus B2 is the

buffer that would be required if the latency T would be 0. We first show the following

if θ ≥ B2

R
+ T then for t ≥ θ : β1

θ (t) = Rt−RT − α2(t− θ) (6.5)

To prove this, call φ(t) the right hand-side in Equation (6.5), namely, for t ≥ θ define φ(t) = Rt− α2(t−
θ) −RT . We have

inf
t>θ

φ(t) = inf
v>0

[Rv − α2(v) −RT +Rθ]

From the definition of B2:
inf
t>θ

φ(t) = −B2 +Rθ −RT

If θ ≥ B2
R + T then φ(t) ≥ 0 for all t > θ. The rest follows from the definition of β1

θ .

(Step 2) We apply the second part of Proposition 6.2.1 with θ = B̂
R + T . An arrival curve for the output of

flow 1 is given by
α∗

1 = λρ1,σ1 � β1
θ

We now compute α∗
1. First note that obviously B̂ ≤ B2, and therefore β1

θ (t) = Rt − RT − α2(t − θ) for
t ≥ θ. α∗

1 is thus defined for t > 0 by

α∗
1(t) = sup

s≥0

[
ρ1t+ σ1 + ρ1s− β1

θ (s)
]

= ρ1t+ σ1 + sup
s≥0

[
ρ1s− β1

θ (s)
]

180 CHAPTER 6. AGGREGATE SCHEDULING

Define ψ(s) := ρ1s− β1
θ (s). Obviously:

sup
s∈[0,θ]

[ψ(s)] = ρ1θ

Now from Step 1, we have

sup
s>θ

[ψ(s)] = sup
s>θ

[ρ1s−Rs+RT + α2(s− θ)]

= sup
v>0

[ρ1v −Rvα2(v)] + (ρ1 −R)θ +RT

From the definition of B̂, the former is equal to

sup
s>θ

[ψ(s)] = B̂ + (ρ1 −R)θ +RT = ρ1θ

which shows the burstiness bound in the theorem.

(Step 3) We show that the bound is attained. There is a time a θ̂ such that B̂ = (α2)r(θ̂)−(R−ρ1)θ̂. Define
flow 2 to be greedy up to time θ̂ and stop from there on:{

R2(t) = α2(t) for t ≤ θ̂

R2(t) = (R2)r(θ̂) for t > θ̂

Flow 2 is α2-smooth because α2 is sub-additive. Define flow 1 by{
R1(t) = ρ1t for t ≤ θ̂

R1(t) = ρ1t+ σ1 for t > θ̂

Flow 1 is λρ1,σ1-smooth as required. Assume the server delays all bits by T at time 0, then after time T
operates with a constant rate R, until time θ̂ + θ, when it becomes infinitely fast. Thus the server satisfies
the required service curve property. The backlog just after time θ̂ is precisely B̂ + RT . Thus all flow-2
bits that arrive just after time θ̂ are delayed by B̂

R + T = θ. The output for flow 1 during the time interval

(θ̂+ θ, θ̂+ θ+ t] is made of the bits that have arrived in (θ̂, θ̂+ t], thus there are ρ1t+ b∗1 such bits, for any
t.

The following corollary is an immediate consequence.

COROLLARY 6.2.3 (BURSTINESS INCREASE DUE TO FIFO). Consider a node serving two flows, 1 and 2,
in FIFO order. Assume that flow i is constrained by one leaky bucket with rate ρi and burstiness σi. Assume
that the node guarantees to the aggregate of the two flows a rate latency service curve βR,T . If ρ1 +ρ2 < R,
then flow 1 has a service curve equal to the rate latency function with rate R − ρ2 and latency T + σ2

R and
at the output, flow 1 is constrained by one leaky bucket with rate ρ1 and burstiness b∗1 with

b∗1 = σ1 + ρ1

(
T +

σ2

R

)

Note that this bound is better than the one we used in Corollary 6.2.2 (but the assumptions are slightly
different). Indeed, in that case, we would obtain the rate-latency service curve with the same rate R − ρ2

but with a larger latency: T + σ2+ρ2T
R−ρ2

instead of T + σ2
R . The gain is due to the FIFO assumption.

6.3. STABILITY AND BOUNDS FOR A NETWORK WITH AGGREGATE SCHEDULING 181

6.2.3 AGGREGATE MULTIPLEXING IN A GR NODE

We assume now that the node is of the Guaranteed Rate type (Section 2.1.3 on Page 70). A FIFO ser-
vice curve element with rate-latency service curve satisfies this assumption, but the converse is not true
(Theorem 2.1.3 on Page 71).

THEOREM 6.2.3. Consider a node serving two flows, 1 and 2 in some aggregate manner. Arbitration
between flows is unspecified, but the node serves the aggregrate as a GR node with rate R and latency
T . Assume that flow 1 is constrained by one leaky bucket with rate ρ1 and burstiness σ1, and flow 2 is
constrained by a sub-additive arrival curve α2. Call ρ2 := inft>0

1
tα2(t) the maximum sustainable rate for

flow 2.

If ρ1 + ρ2 < R, then at the output, flow 1 is constrained by one leaky bucket with rate ρ1 and burstiness b∗1
with

b∗1 = σ1 + ρ1

(
T + D̂

)
and

D̂ = sup
t>0

[
α2(t) + ρ1t+ σ1

R
− t]

PROOF: From Theorem 2.1.4 on Page 71, the delay for any packet is bounded by D̂+T . Thus an arrival
curve at the output of flow 1 is α1(t+ D̂).

COROLLARY 6.2.4. Consider a node serving two flows, 1 and 2 in some aggregate manner. Arbitration
between flows is unspecified, but the node serves the aggregrate as a GR node with rate R and latency T .
Assume that flow i is constrained by one leaky bucket with rate ρi and burstiness σi. If ρ1 + ρ2 < R, then,
at the output, flow 1 is constrained by one leaky bucket with rate ρ1 and burstiness b∗1 with

b∗1 = σ1 + ρ1

(
T +

σ1 + σ2

R

)
We see that the bound in this section is less good than Corollary 6.2.3 (but the assumptions are more general).

6.3 STABILITY AND BOUNDS FOR A NETWORK WITH AGGREGATE SCHEDUL-
ING

6.3.1 THE ISSUE OF STABILITY

In this section we consider the following global problem: Given a network with aggregate scheduling and
arrival curve constraints at the input (as defined in the introduction) can we find good bounds for delay
and backlog ? Alternatively, when is a network with aggregate scheduling stable (i.e., the backlog remains
bounded) ? As it turns out today, this problem is open in many cases. In the rest of the chapter, we make the
following assumptions.

ASSUMPTION AND NOTATION

• Consider a network with a fixed number I of flows, following fixed paths. The collection of paths is
called the topology of the network. A network node is modeled as a collection of output buffers, with
no contention other than at the output buffers. Every buffer is associated with one unidirectional link
that it feeds.

182 CHAPTER 6. AGGREGATE SCHEDULING

• Flow i is constrained by one leaky bucket of rate ρi and burstiness σi at the input.
• Inside the network, flows are treated as an aggregate by the network; within an aggregate, packets

are served according to some unspecified arbitration policy. We assume that the node is such that
the aggregate of all flows receives a service curve at node m equal to the rate-latency function with
rate rm and latency em. This does not imply that the node is work-conserving. Also note that we do
not require, unless otherwise specified, that the service curve property be strict. In some parts of the
chapter, we make additional assumptions, as explained later.
em accounts for the latency on the link that exits nodem; it also account for delays due to the scheduler
at node m.

• We write i � m to express that node m is on the route of flow i. For any node m, define ρ(m) =∑
i�m ρi. The utilization factor of linkm is ρ(m)

rm
and the load factor of the network is ν = maxm

ρ(m)

rm
.

• The bit rate of the link feeding node m is Cm < +∞, with Cm ≥ rm.

In the context of the following definition, we call “network” N a system satisfying the assumptions above,
where all parameters except ρi, σi, rm, em are fixed. In some cases (Section 6.3.2), we may add additional
constraints on these parameters.

DEFINITION 6.3.1 (CRITICAL LOAD FACTOR). We say that νcri is the critical load factor for a network N
if

• for all values of ρi, σi, rm, em such that ν < νcri, N is stable
• there exists values of ρi, σi, rm, em with ν > νcri such that N is unstable.

It can easily be checked that νcri is unique for a given network N .

It is also easy to see that for all well defined networks, the critical load factor is ≤ 1. However, Andrews
gave in [3] an example of a FIFO network with νcri < 1. The problem of finding the critical load factor,
even for the simple case of a FIFO network of constant rate servers, seems to remain open. Hajek [37] shows
that, in this last case, the problem can be reduced to that where every source i sends a burst σi instantly at
time 0, then sends at a rate limited by ρi.

In the rest of this section and in Section 6.4, we give lower bounds on νcri for some well defined sub-classes.

FEED-FORWARD NETWORKS A feed-forward network is one in which the graph of unidirectional links
has no cycle. Examples are interconnection networks used inside routers or multiprocessor machines. For
a feed-forward network made of strict service curve element or GR nodes, νcri = 1. This derives from
applying the burstiness increase bounds given in Section 6.2 repeatedly, starting from network access points.
Indeed, since there is no loop in the topology, the process stops and all input flows have finite burstiness.

A LOWER BOUND ON THE CRITICAL LOAD FACTOR It follows immediately from Theorem 2.4.1 on
Page 88 that for a network of GR nodes (or FIFO service curve elements), we have νcri ≥ 1

h−1 , where h is
the maximum hop count for any flow. A slightly better bound can be found if we exploit the values of the
peak rates Cm (Theorem 2.4.2).

6.3.2 THE TIME STOPPING METHOD

For a non feed-forward network made of strict service curve element or GR nodes, we can find a lower bound
on νcri (together with bounds on backlog or delay), using the time stopping method. It was introduced by
Cruz in [22] together with bounds on backlog or delay. We illustrate the method on a specific example,
shown on Figure 6.1. All nodes are constant rate servers, with unspecified arbitration between the flows.

6.3. STABILITY AND BOUNDS FOR A NETWORK WITH AGGREGATE SCHEDULING 183

Thus we are in the case where all nodes are strict service curve elements, with service curves of the form
βm = λCm .

The method has two steps. First, we assume that there is a finite burstiness bound for all flows; using
Section 6.2 we obtain some equations for computing these bounds. Second, we use the same equations to
show that, under some conditions, finite bounds exist.

; � � 	 �

9 ' � 7 �
9 ' � 7 � �

; � � 	 � �; � � 	 � �

Figure 6.1: A simple example with aggregate scheduling, used to illustrate the bounding method. There are three
nodes numbered 0, 1, 2 and six flows, numbered 0, ..., 5. For i = 0, 1, 2, the path of flow i is i, (i+1) mod 3, (i+2) mod 3
and the path of flow i + 3 is i, (i + 2) mod 3, (i + 1) mod 3. The fresh arrival curve is the same for all flows, and is given
by αi = γρ,σ. All nodes are constant rate, work conserving servers, with rate C. The utilization factor at all nodes is 6 ρ

C
.

FIRST STEP: INEQUATIONS FOR THE BOUNDS For any flow i and any node m ∈ i, define σm
i as the

maximum backlog that this flow would generate in a constant rate server with rate ρi. By convention, the
fresh inputs are considered as the outputs of a virtual node numbered −1. In this first step, we assume that
σm

i is finite for all i and m ∈ i.

By applying Corollary 6.2.2 we find that for all i and m ∈ i:⎧⎨⎩
σ0

i ≤ σi

σm
i = σ

predi(m)
i + ρi

∑
j�m,j �=i σ

predj(m)

j

C−∑j�m,j �=i ρj

(6.6)

where predi(m) is the predecessor of node m. If m is the first node on the path of flow i, we set by
convention predi(m) = −1 and σ−1

i = σi.

Now put all the σm
i , for all (i,m) such that m ∈ i, into a vector �x with one column and n rows, for some

appropriate n. We can re-write Equation (6.6) as

�x ≤ A�x+ �a (6.7)

where A is an n × n, non-negative matrix and �a is a non-negative vector depending only on the known
quantities σi. The method now consists in assuming that the spectral radius of matrix A is less than 1. In
that case the power series I + A + A2 + A3 + ... converges and is equal to (I − A)−1, where I is the
n × n identity matrix. Since A is non-negative, (I − A)−1 is also non-negative; we can thus multiply
Equation (6.6) to the left by (I −A)−1 and obtain:

�x ≤ (I −A)−1�a (6.8)

which is the required result, since �x describes the burstiness of all flows at all nodes. From there we can
obtain bounds on delays and backlogs.

184 CHAPTER 6. AGGREGATE SCHEDULING

Let us apply this step to our network example. By symmetry, we have only two unknowns x and y, defined
as the burstiness after one and two hops:{

x = b00 = b11 = σ2
2 = b03 = b24 = b15

y = b10 = b21 = σ0
2 = b23 = b14 = b05

Equation (6.6) becomes {
x ≤ σ + ρ

C−5ρ(σ + 2x+ 2y)
y ≤ x+ ρ

C−5ρ(2σ + x+ 2y)

Define η = ρ
C−5ρ ; we assume that the utilization factor is less than 1, thus 0 ≤ η < 1. We can now write

Equation (6.7) with

�x =
(
x
y

)
, A =

(
2η 2η

1 + η 2η

)
, �a =

(
σ(1 + η)

2ση

)
Some remnant from linear algebra, or a symbolic computation software, tells us that

(I −A)−1 =

(
1−2η

1−6η+2η2
2η

1−6η+2η2

1+η
1−6η+2η2

1−2η
1−6η+2η2

)

If η < 1
2(3 −√

7) ≈ 0.177 then (I − A)−1 is positive. This is the condition for the spectral radius of A to
be less than 1. The corresponding condition on the utilization factor ν = 6ρ

C is

ν < 2
8 −√

7
19

≈ 0.564 (6.9)

Thus, for this specific example, if Equation (6.9) holds, and if the burstiness terms x and y are finite, then
they are bounded as given in Equation (6.8), with (I −A)−1 and �a given above.

SECOND STEP: TIME STOPPING We now prove that there is a finite bound if the spectral radius of A is
less than 1. For any time τ > 0, consider the virtual system made of the original network, where all sources
are stopped at time τ . For this network the total number of bits in finite, thus we can apply the conclusion
of step 1, and the burstiness terms are bounded by Equation (6.8). Since the right-handside Equation (6.8)
is independent of τ , letting τ tend to +∞ shows the following.

PROPOSITION 6.3.1. With the notation in this section, if the spectral radius of A is less than 1, then the
burstiness terms bmi are bounded by the corresponding terms in Equation (6.8).

Back to the example of Figure 6.1, we find that if the utilization factor ν is less than 0.564, then the burstiness
terms x and y are bounded by {

x ≤ 2σ 18−33ν+16ν2

36−96ν+57ν2

y ≤ 2σ 18−18ν+ν2

36−96ν+57ν2

The aggregate traffic at any of the three nodes is γ6ρ,b-smooth with b = 2(σ + x + y). Thus a bound on
delay is (see also Figure 6.2):

d =
b

C
= 2

σ

C

108 − 198ν + 91ν2

36 − 96ν + 57ν2

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 185

0.2 0.4 0.6 0.8 1

20

40

60

80

100

Figure 6.2: The bound d on delay at any node obtained by the method presented here for the network of Figure 6.1
(thin line). The graph shows d normalized by σ

C
(namely, dC

σ
), plotted as a function of the utilization factor. The thick

line is a delay bound obtained if every flow is re-shaped at every output.

THE CRITICAL LOAD FACTOR FOR THIS EXAMPLE For the network in this example, where we impose
the constraint that all ρi are equal, we find νcri ≥ ν0 ≈ 0.564, which is much less than 1. Does it mean that
no finite bound exists for ν0 ≤ ν < 1 ? The answer to this question is not clear.

First, the ν0 found with the method can be improved if we express more arrival constraints. Consider our
particular example: we have not exploited the fact that the fraction of input traffic to node i that originates
from another node has to be λC-smooth. If we do so, we will obtain better bounds. Second, if we know that
nodes have additional properties, such as FIFO, then we may be able to find better bounds. However, even
so, the value of νcri seems to be unknown.

THE PRICE FOR AGGREGATE SCHEDULING Consider again the example on Figure 6.1, but assume
now that every flow is reshaped at every output. This is not possible with differentiated services, since there
is no per-flow information at nodes other than access nodes. However, we use this scenario as a benchmark
that illustrates the price we pay for aggregate scheduling.

With this assumption, every flow has the same arrival curve at every node. Thus we can compute a service
curve β1 for flow 1 (and thus for any flow) at every node, using Theorem 6.2.1; we find that β1 is the rate-
latency function with rate (C − 5ρ) and latency 5σ

C−5ρ . Thus a delay bound for flow at any node, including

the re-shaper, is h(α1, α1 ⊗ β1) = h(α1, β1) = 6C
C−5ρ for ρ ≤ C

6 . Figure 6.2 shows this delay bound,
compared to the delay bound we found if no reshaper is used. As we already know, we see that with per-
flow information, we are able to guarantee a delay bound for any utilization factor ≤ 1. However, note also
that for relatively small utilization factors, the bounds are very close.

6.4 STABILITY RESULTS AND EXPLICIT BOUNDS

In this section we give strong results for two specific case. The former is for a unidirectional ring of aggre-
gate servers (of any type, not necessarily FIFO or strict service curve). We show that for all rings, νcri = 1.
The latter is for any topology, but with restrictions on the network type: packets are of fixed size and all
links have the same bit rate.

186 CHAPTER 6. AGGREGATE SCHEDULING

6.4.1 THE RING IS STABLE

The result was initially obtained in [77] for the case of a ring of constant rate servers, with all servers having
the same rate. We give here a more general, but simpler form.

ASSUMPTION AND NOTATION We take the same assumptions as in the beginning of Section 6.3 and
assume in addition that the network topology is a unidirectional ring. More precisely:

• The network is a unidirectional ring of M nodes, labelled 1, ...,M . We use the notation m ⊕ k =
(m + k − 1) mod M + 1 and m � k = (m − k − 1) mod M + 1, so that the successor of node m
on the ring is node m⊕ 1 and its predecessor is node m� 1.

• The route of flow i is (0, i.first, i.first⊕1, ..., i.first⊕ (hi−1)) where 0 is a virtual node representing
the source of flow i, i.first is the first hop of flow i, and hi is the number of hops of flow i. At its last
hop, flow i exits the network. We assume that a flow does not wrap, namely, hi ≤ M . If hi = M ,
then the flow goes around the all ring, exiting at the same node it has entered.

• Let bm = emrm and let b =
∑

m bm reflect the total latency of the ring.
• For any node m let σ(m) =

∑
i�m σi.

Let σmax = maxM
m=1 σ

(m) and σ =
∑

i σi. Note that σmax ≤ σ ≤Mσmax.
• Define η = minm(rm − ρ(m)).
• Let ρ(m)

0 =
∑

i.first=m ρi and µ = maxM
m=0

[
Cm − rm + ρ(m)

]+
. µ reflects the sum of the peak rate

of transit links and the rates of fresh sources, minus the rate guaranteed to the aggregate of microflows.
We expect high values of µ to give higher bounds.

THEOREM 6.4.1. If η > 0 (i.e. if the utilization factor is < 1) the backlog at any node of the unidirectional
ring is bounded by

M
µ

η
(Mσmax + b) + σ + b

PROOF: The proof relies on the concept of chain of busy periods, combined with the time stopping
method in Section 6.3.2.

For a node m and a flow i, define Rm
i (t) as the cumulative amount of data of flow i at the output of node m.

For m = 0, this defines the input function. Also define

xm(t) =
∑
i�m

(
R0

i (t) −Rm
i (t)

)
(6.10)

thus xm(t) is the total amount of data that is present in the network at time t and will go through node m at
some time > t.

We also define the backlog at node m by

qm(t) =
∑

i�m,i.first =m

Rm�1
i (t) +

∑
i.first=m

R0
i (t) −

∑
i�m

Rm
i (t)

Now obviously, for all time t and node m:

qm(t) ≤ xm(t) (6.11)

and

xm(t) ≤
M∑

n=1

qn(t) (6.12)

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 187

(Step 1) Assume that a finite bound X exists. Consider a time t and a node m that achieves the bound:
xm(t) = X . We fix m and apply Lemma 6.4.1 to all nodes n. Call sn the time called s in the lemma. Since
xn(sn) ≤ X , it follows from the first formula in the lemma that

(t− sn)η ≤Mσmax + b (6.13)

By combining this with the second formula in the lemma we obtain

qn(t) ≤ µ
Mσmax + b

η
+ bn + σ

(n)
0

Now we apply Equation (6.12) and note that
∑M

n=1 σ
(n)
0 = σ, from which we derive

X ≤M
µ

η
(Mσmax + b) + σ + b (6.14)

(Step 2) By applying the same reasoning as in Section 6.3.2, we find that Equation (6.14) is always true.
The theorem follows from Equation (6.11).

LEMMA 6.4.1. For any nodes m,n (possibly with m = n), and for any time t there is some s such that{
xm(t) ≤ xn(s) − (t− s)η +Mσmax + b

qn(t) ≤ (t− s)µ+ bn + σ
(n)
0

with σ(n)
0 =

∑
i.first=n σi.

PROOF: By definition of the service curve property at node m, there is some s1 such that∑
i�m

Rm
i (t) ≥

∑
i�m,i.first =m

Rm�1
i (s1) +

∑
i.first=m

R0
i (s1) + rm(t− s1) − bm

which we can rewrite as ∑
i�m

Rm
i (t) ≥ −A+

∑
i�m

R0
i (s1) + rm(t− s1) − bm

with
A =

∑
i�m,i.first =m

(
R0

i (s1) −Rm−1
i (s1)

)
Now the condition {i � m, i.first �= m} implies that flow i passes through nodem−1, namely, {i � (m− 1)}.
Furthermore, each element in the summation that constitutes A is nonnegative. Thus

A ≤
∑

i�(m−1)

(
R0

i (s1) −Rm−1
i (s1)

)
= xm�1(s1)

Thus ∑
i�m

Rm
i (t) ≥ −xm�1(s1) +

∑
i�m

R0
i (s1) + rm(t− s1) − bm (6.15)

Now combining this with the definition of xm(t) in Equation (6.10) gives:

xm(t) ≤ xm�1(s1) +
∑
i�m

(
R0

i (t) −R0
i (s1)

)− rm(t− s1) + bm

188 CHAPTER 6. AGGREGATE SCHEDULING

From the arrival curve property applied to all micro-flows i in the summation, we derive:

xm(t) ≤ xm�1(s1) − (rm − ρ(m))(t− s1) + σ(m) + bm

and since rm − ρ(m) ≥ η and σ(m) ≤ σmax by definition of η and σmax, we have

xm(t) ≤ xm�1(s1) − (t− s1)η + σmax + bm

We apply the same reasoning to node m � 1 and time s1, and so on iteratively until we reach node n
backwards from m. We thus build a sequence of times s0 = t, s1, s2, ..., sj , ..., sk such that

xm�j(sj) ≤ xm�(j+1)(sj+1) − (t− sj+1)η + σmax + bm�j (6.16)

until we have m � k = n. If n = m we reach the same node again by a complete backwards rotation and
k = M . In all cases, we have k ≤M . By summing Equation (6.16) for j = 0 to k − 1 we find the first part
of the lemma.

Now we prove the second part. s = sk is obtained by applying the service curve property to node n
and time sk−1. Apply the service curve property to node n and time t. Since t ≥ sk−1, we know from
Proposition 1.3.2 on Page 19 that we can find some s′ ≥ s such that∑

i�n

Rn
i (t) ≥

∑
i�n,i.first =n

Rn−1
i (s′) +

∑
i.first=n

R0
i (s

′) + rn(t− s′) − bn

Thus

qn(t) ≤
∑

i�n,i.first =n

(
Rn�1

i (t) −Rn�1
i (s′)

)
+

∑
i.first=n

(R0
i (t) −R0

i (s
′)) − rn(t− s′) + bn

≤ (Cn − rn + ρ
(n)
0)(t− s′) + bn + σ

(n)
0 ≤ (t− s′)µ+ bn + σ

(n)
0

the second part of the formula follows from s ≤ s′.

REMARK: A simpler, but weaker bound, is

M
µ

η
(Mσ + b) + σ + b

or
M
µ

η
(Mσmax + b) +Mσmax + b (6.17)

THE SPECIAL CASE IN [77]: Under the assumption that all nodes are constant rate servers of rate equal
to 1 (thus Cm = rm = 1 and bm is the latency of the link m), the following bound is found in [77]:

B1 =
Mb+M2σmax

η
+ b (6.18)

In that case, we have µ ≤ 1 − η. By applying Equation (6.17), we obtain the bound

B2 =
Mµb+

[
M2µ+Mη

]
σmax

η
+ b

since
µ ≤ 1 − η (6.19)

and 0 < η ≤ 1, M ≤ M2, we have B2 < B1, namely, our bound is better than that in [77]. If there is
equality in Equation (6.19) (namely, if there is a node that receives no transit traffic), then both bounds are
equivalent when η → 0.

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 189

6.4.2 EXPLICIT BOUNDS FOR A HOMOGENEOUS ATM NETWORK WITH STRONG SOURCE

RATE CONDITIONS

When analyzing a global network, we can use the bounds in Section 6.2.2, using the same method as in
Section 2.4. However, as illustrated in [41], the bounds so obtained are not optimal: indeed, even for a FIFO
ring, the method does not find a finite bound for all utilization factors less than 1 (although we know from
Section 6.4.1 that such finite bounds exist).

In this section we show in Theorem 6.4.2 some partial result that goes beyond the per-node bounds in
Section 6.2.2. The result was originally found in [15, 52, 83].

Consider an ATM network with the assumptions as in Section 6.3, with the following differences

• Every link has one origin node and one end node. We say that a link f is incident to link e if the origin
node of link e is the destination node of link f . In general, a link has several incident links.

• All packets have the same size (called cell). All arrivals and departures occur at integer times (syn-
chronized model). All links have the same bit rate, equal to 1 cell per time unit. The service time for
one cell is 1 time unit. The propagation times are constant per link and integer.

• All links are FIFO.

PROPOSITION 6.4.1. For a network with the above assumption, the delay for a cell c arriving at node e over
incident link i is bounded by the number of cells arriving on incident links j �= i during the busy period,
and that will depart before c.

PROOF: Call R′(t) (resp. Rj(t), R(t))the output flow (resp. input arriving on link j, total input flow).
Call d the delay for a tagged cell arriving at time t on link i. Call Aj the number of cells arriving on link j
up to time t that will depart before the tagged cell, and let A =

∑
j Aj . We have

d = A−R′(t) ≤ A−R(s) − (t− s)

where s is the last time instant before the busy period at t. We can rewrite the previous equation as

d ≤
∑
j =i

[Aj −Rj(s)] + [Ai(t) −Ri(s)] − (t− s)

Now the link rates are all equal to 1, thus Ai −Ri(s) ≤ t− s and

d ≤
∑
j =i

[Aj −Rj(s)]

An “Interference Unit” is defined as a set (e, {j, k}) where e is a link, {j, k} is a set of two distinct flows
that each have e on their paths, and that arrive at e over two different incident links (Figure 6.3). The Route
Interference Number (RIN) of flow j is the number of interference units that contain j. It is thus the number
of other flows that share a common sub-path, counted with multiplicity if some flows share several distinct
sub-paths along the same path. The RIN is used to define a sufficient condition, under which we prove a
strong bound.

DEFINITION 6.4.1 (SOURCE RATE CONDITION). The fresh arrival curve constraint (at network boundary)
for flow j is the stair function vR+1,R+1, where R is the RIN of flow j.

The source rate condition is equivalent to saying that a flow generates at most one cell in any time interval
of duration RIN + 1.

190 CHAPTER 6. AGGREGATE SCHEDULING

� ' � 7 � 6

$ � � 	 � � $ � � 	 � :

$ � � 	 � +

$ � � 	 � � $ � � 	 � 	

� ' � 7 � � �

� ' � 7 � � �

$ � � 	 � '

Figure 6.3: The network model and definition of an interference unit. Flows j and i2 have an interference unit at node
f . Flows j and i1 have an interference unit at node l and one at node g.

THEOREM 6.4.2. If the source rate condition holds at all sources, then

1. The backlog at any node is bounded by N − maxiNi, where Ni is the number of flows entering the
node via input link i, and N =

∑
iNi.

2. The end-to-end queuing delay for a given flow is bounded by its RIN.
3. There is at most one cell per flow present during any busy period.

The proof of item 3 involves a complex analysis of chained busy periods, as does the proof of Theorem 6.4.1.
It is given in a separate section. Item 3 gives an intuitive explanation of what happens: the source rate
condition forces sources to leave enough spacing between cells, so that two cells of the same flow do not
interfere, in some sense. The precise meaning of this is given in the proof. Items 1 and 2 derive from item 3
by a classical network calculus method (Figure 6.6).

PROOF OF THEOREM 6.4.2 As a simplification, we call “path of a cell“ the path of the flow of the cell.
Similarly, we use the phrase “interference unit of c” with the meaning of interference unit of the flow of c.

We define a busy period as a time interval during which the backlog for the flow at the node is always
positive. We now introduce a definition (super-chain) that will be central in the proof. First we use the
following relation:

DEFINITION 6.4.2 (“DELAY CHAIN” [15]). For two cells c and d, and for some link e, we say that c �e d
if c and d are in the same busy period at e and c leaves e before d.

Figure 6.4 illustrates the definition.

DEFINITION 6.4.3 (SUPER-CHAIN [15]). Consider a sequence of cells c = (c0, ..., ci, ..., ck) and a se-
quence of nodes f = (f1, ..., fk). We say that (c, f) is a super-chain if

• f1, ..., fk are all on the path P of cell c0 (but not necessarily consecutive)
• ci−1 �fi ci for i = 1 to k.
• the path of cell ci from fi to fi+1 is a sub-path of P

We say that the sub-path of c0 that spans from node f1 to node fk is the path of the super-chain.

DEFINITION 6.4.4 (SEGMENT INTERFERING WITH A SUPER-CHAIN). For a given super-chain, we call
“segment” a couple (d, P) where P is a sub-path of the path of the super-chain, d is a cell whose path also
has P as a sub-path, and P is maximal (namely, we cannot extend P to be a common sub-path of both d
and the super-chain). We say that the segment (d, P) is interfering with super-chain (c, f) if there is some i
on P such that d �fi ci.

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 191

� 	 ' ' � �

� 	 ' ' � � �

� 	 ' ' � � �' � :

�

	

� 	 ' ' � � �

� 	 ' ' � � �

� 	 ' ' � �

Figure 6.4: A time-space diagram illustrating the definitions of d �g c1 and c1 �f c2. Time flows downwards.
Rectangles illustrate busy periods.

LEMMA 6.4.2. Let (c, f) be a super-chain. Let s0 be the arrival time of cell c0 at link f1 and s′k the
departure time of cell ck from link fk. Then s′k − s0 ≤ R1,k + T1,k, where R1,k is the total number of
segments interfering with (c, f) and T1,k is the total transmission and propagation time on the path of the
super-chain.

PROOF: Consider first some node fj on the super-chain. Let sj−1 (resp. tj) be the arrival time of cell
cj−1 (resp. cj) at the node. Let t′j−1 (resp. s′j) be the departure time of cell cj−1 (resp. cj) (Figure 6.5). Let
vj be the last time slot before the busy period that tj is in. By hypothesis, vj + 1 ≤ sj−1. Also define Bj

� � � 	

2 6

� 6 � �

� 6

� � 6

� � 6 � �

# 	 ' ' � � 6 � �

# 	 ' ' � � 6

0
6

! 6

Figure 6.5: The notation used in the proof of Lemma 6.4.2.

(resp. B0
j) as the set of segments (d, P) where d is a cell arriving at the node after time vj on a link incident

192 CHAPTER 6. AGGREGATE SCHEDULING

to the path of the super-chain (resp. on the path of the super-chain) and that will depart no later than cell cj ,
and where P is the maximal common sub-path for d and the super-chain that fj is in. Also define A0

j as the
subset of those segments in B0

j for which the cell departs after cj−1. Let Bj (resp. B0
j , A

0
j) be the number

of elements in Bj (resp. B0
j ,A0

j), see Figure 6.5.

Since the rate of all incident links is 1, we have

B0
j −A0

j ≤ sj−1 − vj

Also, since the rate of the node is 1, we have:

s′j − vj = Bj +B0
j

Combining the two, we derive

s′j − sj−1 = Bj +B0
j − (sj−1 − vj) ≤ Bj +A0

j (6.20)

By iterative application of Equation (6.20) from j = 1 to k, we obtain

s′k − s0 ≤
k∑

j=1

(Bj +A0
j) + T1,k

Now we show that all sets in the collection {Bj ,A0
j , j = 1 to k} are two-by-two disjoint. Firstly, if

(d, P) ∈ Bj then fj is the first node of P thus (d, P) cannot be in some other Bj′ with j �= j′. Thus the Bj

are two-by-two disjoint. Second, assume (d, P) ∈ Bj and (d, P) ∈ A0
j′ . It is obvious from their definitions

that, for a fixed j, Bj and A0
j are disjoint; thus j �= j′. Since fj is the first node of P and j′ is on P ,

it follows that j < j′. Now d leaves fj before cj and leaves fj′ after cj′−1, which contradicts the FIFO
assumption. Thus the Bj and A0

j′ are two-by-two disjoint. The same reasoning shows that it is not possible
that (d, P) ∈ Aj

⋂Aj′ with j < j′.

Now, by definition, every segment in either Bj or A0
j is an interfering segment. Thus

k∑
j=1

(Bj +A0
j) ≤ R1,k

.

PROPOSITION 6.4.2. Assume the source rate condition holds. Let (c, f) be a super-chain.

1. For every interference unit of c0 there is at most one cell interfering with the super-chain.
2. ck does not belong to the same flow as c0.

PROOF: Define the time of a super-chain as the exit time for the last cell ck on the last node fk. We use
a recursion on the time t of the super-chain.

If t = 1, the proposition is true because any flow has at most one cell on a link in one time slot. Assume
now that the proposition holds for any super-chain with time ≤ t − 1 and consider a super-chain with time
t.

First, we associate an interference unit to any segment (d, P) interfering with the sub-chain, as follows. The
paths of d and c0 may share several non contiguous sub-paths, and P is one of them. Call f the first node of
P . To d we associate the interference unit (f, {j0, j}), where j0 (resp. j) is the flow of c0 (resp. d).

We now show that this mapping is injective. Assume that another segment (d′, P ′) �= (d, P) is associated
with the same interference unit (f, {j0, j}). Without loss of generality, we can assume that d was emitted

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 193

before d′. d and d′ belong to the same flow j, thus, since P and P ′ are maximal, we must have P = P ′. By
hypothesis, have an interference with the super-chain at a node on P . Let fl be a node on the super-chain
and on P such that d �fl

cl. If d′ leaves node fl before cl, then d �fl
d′, and thus ((d, d′), (fl)) is a

super-chain. Since d′ is an interfering cell, necessarily, it must leave node fl before t, thus the proposition
is true for super-chain ((d, d′), (fl)), which contradicts item 2. Thus d′ must leave node fl after cell cl. But
there is some other index m ≤ k such that d �fm cm, thus cell d′ leaves node fm before cell cm. Define
l′ as the smallest index with l < l′ ≤ m such that d′ leaves node fl′ after cell cl′−1 and before cl′ . Then
((d, cl, ..., cl′−1, d

′), (fl, .., fl′)) is a super-chain with time ≤ t − 1 which would again contradict item 2 in
the proposition. Thus, in all cases we have a contradiction, the mapping is injective, and item 1 is shown for
the super-chain.

Second, let us count a bound on the maximum queuing delay of cell c0. Call u0 its emission time, P0 the sub-
path of c0 from its source up to, but excluding, node f1, and T the total transmission and propagation time
for the flow of c0. The transmission and propagation time along P0 is thus T − T1,k. By Proposition 6.4.1,
the queuing delay of c0 at a node f on P0 is bounded by the number of cells d �f c0 that arrive on a link not
on P0. By the same reasoning as in the previous paragraph, there is at most one such cell d per interference
unit of c0 at f . Define R as the number of interference units of the flow of c0 on P1. We have thus

s0 ≤ u0 +R+ T − T1,k (6.21)

Similarly, from Lemma 6.4.2, we have

s′k ≤ s0 +R1,k + T1,k

Call R′ the number of interference units of the flow of c0 on the path of the super-chain. It follows from the
first part of the proof that R1,k ≤ R′, thus

s′k ≤ s0 +R′ + T1,k

Combining with Equation (6.21) gives

s′k ≤ u0 +R+R′ + T (6.22)

Now by the source condition, if ck belongs to the flow of c0, its emission time u′ must satisfy

u′ ≥ u0 +R+R′ + 1

and thus
s′k ≥ u0 +R+R′ + 1 + T

which contradicts Equation (6.22). This shows that the second item of the proposition must hold for the
super-chain.

PROOF OF THEOREM 6.4.2: Item 3 follows from Proposition 6.4.2, since if there would be two cells
d, d′ of the same flow in the same busy period, then ((d, d′), (e)) would be a super-chain.

Now we show how items 1 and 2 derive from item 3. Call α∗
i (t) the maximum number of cells that may

ever arrive on incident link i during t time units inside a busy period. Since λ1 is a service curve for node e,
the backlog B at node e is bounded by

B ≤ sup
t≥0

[
I∑

i=1

α∗
i (t) − t

]

194 CHAPTER 6. AGGREGATE SCHEDULING

Now by item 3, α∗
i (t) ≤ Ni and thus

α∗
i (t) ≤ αi(t) := min[Ni, t]

Thus

B ≤ sup
t≥0

[
I∑

i=1

αi(t) − t

]

Now define a renumbering of the Ni’s such that N(1) ≤ N(2) ≤ ... ≤ N(I). The function
∑

i αi(t) − t is
continuous and has a derivative at all points except the N(i)’s (Figure 6.6). The derivative changes its sign
at N(I) (=max1≤i≤I(Ni)) thus the maximum is at N(I) and its value is N −N(I), which shows item 1.

; � ; � ? �

; � � � ; � � � ; � ? �

;
� � � �

�

Figure 6.6: Derivation of a backlog bound.

From Item 1, the delay at a node is bounded by the number of interference units of the flow at this node.
This shows item 2.

6.5 BIBLIOGRAPHIC NOTES

In [52], a stronger property is shown than Theorem 6.4.2: Consider a given link e and a subset A of m con-
nections that use that link. Let n be a lower bound on the number of route interferences that any connection
in the subset will encounter after this link. Then over any time interval of duration m + n, the number of
cells belonging to A that leave link e is bounded by m.

It follows from item 1 in Theorem 6.4.2 that a better queuing delay bound for flow j is:

δ(j) =
∑

e such that e∈j

{
min

i such that 1≤i≤I(e)
(N(e) −Ni(e))

}

where I(e) is the number of incident links at node e, Ni(e) is the number of flows entering node e on link
i, and N =

∑
i = 1I(e)Ni(e). In other words, the end-to-end queuing delay is bounded by the sum of

the minimum numbers of route interference units for all flows at all nodes along the path of a flow. For
asymmetric cases, this is less than the RIN of the flow.

6.6. EXERCISES 195

6.6 EXERCISES

EXERCISE 6.1. Consider the same assumptions as in Section 6.4.1 but with a linear network instead of a
ring. Thus node m feeds node m + 1 for m = 1, ...,M − 1; node 1 receives only fresh traffic, whereas all
traffic exiting node M leaves the network. Assume that all service curves are strict. Find a bound which is
finite for ν ≤ 1. Compare to Theorem 6.4.1.

EXERCISE 6.2. Consider the same assumptions as in Theorem 6.4.2. Show that the busy period duration is
bounded by N .

EXERCISE 6.3. Consider the example of Figure 6.1. Apply the method of Section 6.3.2 but express now that
the fraction of input traffic to node i that originates from another node must have λC as an arrival curve .
What is the upper-bound on utilization factors for which a bound is obtained ?

EXERCISE 6.4. Can you conclude anything on νcri from Proposition 2.4.1 on Page 90 ?

196 CHAPTER 6. AGGREGATE SCHEDULING

CHAPTER 7

ADAPTIVE AND PACKET SCALE RATE

GUARANTEES

7.1 INTRODUCTION

In Chapter 1 we defined a number of service curve concepts: minimum service curve, maximum service
curve and strict service curves. In this chapter we go beyond and define some concepts that more closely
capture the properties of generalized processor sharing (GPS).

We start by a motivating section, in which we analyze some features of service curves or Guaranteed Rate
node that do not match GPS. Then we provide the theoretical framework of packet scale rate guarantee
(PSRG); it is a more complex node abstraction than Guaranteed Rate, which better captures some of the
properties of GPS. A major difference is the possibility to derive information on delay when the buffer size
is known – a property that is not possible with service curve or guaranteed rate. This is important for low
delay services in the internet. PSRG is used in the definition of the Internet Expedited Forwarding service.

Just like GR is the max-plus correspondant of the min-plus concept of service curve, PSRG is the max-plus
correspondant of adaptive service curves. These were first proposed in Okino’s dissertation in [62] and by
Agrawal, Cruz, Okino and Rajan in [1]. We explain the relationship between the two and give practical
applications to the concatenation of PSRG nodes.

In the context of differentiated services, a flow is an aggregate of a number of micro-flows that belong to the
same service class. Such an aggregate may join a router by different ports, and may follow different paths
inside the router. It follows that it can generally not be assumed that a router is FIFO per flow. This is why
the definition of PSRG (like GR) does not assume the FIFO property.

In all of this chapter, we assume that flow functions are left-continuous, unless stated otherwise.

7.2 LIMITATIONS OF THE SERVICE CURVE AND GR NODE ABSTRAC-
TIONS

The definition of service curve introduced in Section 1.3 is an abstraction of nodes such as GPS and its
practical implementations, as well as guaranteed delay nodes. This abstraction is used in many situations,
described all along this book. However, it is not always sufficient.

197

198 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

Firstly, it does not provide a guarantee over any interval. Consider for example a node offering to a flow
R(t) the service curve λC . AssumeR(t) = B for t > 0, so the flow has a very large burst at time 0 and then
stops. A possible output is illustrated on Figure 7.1. It is perfectly possible that there is no output during the
time interval (0, B−ε

C], even though there is a large backlog. This is because the server gave a higher service
than the minimum required during some interval of time, and the service property allows it to be lazy after
that.

!
! � � �

� � � �

� � � � �

�

Figure 7.1: The service curve property is not sufficient.

Secondly, there are case where we would like to deduce a bound on the delay that a packet will suffer given
the backlog that we can measure in the node. This is used for obtaining bounds in FIFO systems with
aggregate scheduling. In Chapter 6 we use such a property for a constant delay server with rate C: given
that the backlog at time t is Q, the last bit present at time t will depart before within a time of Q

C . If we
assume instead that the server has a service curve λC , then we cannot draw such a conclusion. Consider for
example Figure 7.1: at time t > 0, the backlog, ε, can be made arbitrily small, whereas the delay B−ε

C − t
can be made arbitrarily large.

The same limitation applies to the concept of Guaranteed Rate node. Indeed, the example in Figure 7.1
could very well be for GR node. The main issue here is that a GR node, like a service curve element, may
serve packets earlier than required.

A possible fix is the use of strict service curve, as defined in Definition 1.3.2 on Page 21. Indeed, it follows
from the next section (and can easily be shown independently) that if a FIFO node offers a strict service
curve β, then the delay at time t is bounded by β−1(Q(t)), where Q(t) is the backlog at time t, and β−1 is
the pseudo-inverse (Definition 3.1.7 on Page 108).

We know that the GPS node offers to a flow a strict service curve equal of the form λR. However, we cannot
model delay nodes with a strict service curve. Consider for example a node with input R(t) = εt, which
delays all bits by a constant time d. Any interval [s, t] with s ≥ d is within a busy period, thus if the node
offers a strict service curve β to the flow, we should have β(t − s)ε(t − s), and ε can be arbitrarily small.
Thus, the strict service curve does not make much sense for a constant delay node.

7.3 PACKET SCALE RATE GUARANTEE

7.3.1 DEFINITION OF PACKET SCALE RATE GUARANTEE

In Section 2.1.3 on Page 70 we have introduced the definition of guaranteed rate scheduler, which is the
practical application of rate latency service curves. Consider a node where packets arrive at times a1 ≥
0, a2, ... and leave at times d1, d2, A guaranteed rate scheduler, with rate r and latency e requires that

7.3. PACKET SCALE RATE GUARANTEE 199

di ≤ f ′i + e, where f ′i is defined iteratively by f ′0 = 0 and

f ′i = max{ai, f
′
i−1} +

li
r

where li is the length of the ith packet.

A packet scale rate guarantee is similar, but avoids the limitations of the service curve concept discussed
in Section 7.2. To that end, we would like that the deadline f ′i is reduced whenever a packet happens to
be served early. This is done by replacing f ′i−1 in the previous equation by min{f ′i , di}. This gives the
following definition.

DEFINITION 7.3.1 (PACKET SCALE RATE GUARANTEE). Consider a node that serves a flow of packets
numbered i = 1, 2, Call ai, di, li the arrival time, departure time, and length in bits for the ith packet, in
order of arrival. Assume a1 ≥ 0.We say that the node offers to the flow a packet scale rate guarantee with
rate r and latency e if the departure times satisfy

di ≤ fi + e

where fi is defined by: {
f0 = d0 = 0
fi = max {ai,min (di−1, fi−1)} + li

r for all i ≥ 1
(7.1)

See Figure 7.2 and Figure 7.3 for an illustration of the definition.

������ ����������

���� ����

	���
�

������ ������ ����

���� ����

	���
�

���������������� ���� ����

	���
�

��������������������������������������	���
���������������������������������������	���
�

Figure 7.2: Definition of PSRG.

THEOREM 7.3.1. A PSRG node with rate r and latency e is GR(r, e).

200 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

��������������������������	���
���������������������������	���
�

���������������� ���� ����

	���
�

��������������������������������������	���
���������������������������������������	���
�

���������������� ���� ����

	���
�

���������������

���������� ����������������

Figure 7.3: Difference between PSRG and GR when packet n − 1 leaves before fn.

PROOF: Follows immediately from the definition.

Comment. It follows that a PSRG node enjoys all the properties of a GR node. In particular:

• Delay bounds for input traffic with arrival curves can be obtained from Theorem 2.1.4.
• PSRG nodes have a rate latency service curve property (Theorem 2.1.3) that can be used for buffer

dimensioning.

We now obtain a characterization of packet scale rate guarantee that does not contain the virtual finish times
fn. It is the basis for many results in this chapter. We start with an expansion of the recursive definition of
packet scale rate guarantee,

LEMMA 7.3.1 (MIN-MAX EXPANSION OF PSRG). Consider three arbitrary sequences of non-negative
numbers (an)n≥1, (dn)n≥0, and (mn)n≥1, with d0 = 0. Define the sequence (fn)n≥0, by{

f0 = 0
fn = max [an,min (dn−1, fn−1)] +mn for n ≥ 1

Also define {
An

j = aj +mj + ...+mn for 1 ≤ j ≤ n

Dn
j = dj +mj+1 + ...+mn for 0 ≤ j ≤ n− 1

For all n ≥ 1, we have

fn = min [max(An
n, A

n
n−1, ..., A

n
1),

max(An
n, A

n
n−1..., A

n
2 , D

n
1),

...

max(An
n, A

n
n−1..., A

n
j+1, D

n
j),

7.3. PACKET SCALE RATE GUARANTEE 201

...

max(An
n, A

n
n−1, D

n
n−2),

max(An
n, D

n
n−1)

]

The proof is long and is given in a separate section (Section 7.7); it is based on min-max algebra.

Comment: The expansion in Lemma 7.3.1 can be interpreted as follows. The first term max(An
n, A

n
n−1, ..., A

n
1)

corresponds to the guaranteed rate clock recursion (see Theorem 2.1.2). The following terms have the effect
of reducing fn, depending on the values of dj .

We now apply the previous lemma to packet scale rate guarantee and obtain the required characterization
without the virtual finish times fn:

THEOREM 7.3.2. Consider a system where packets are numbered 1, 2, ... in order of arrival. Call an, dn

the arrival and departure times for packet n, and ln the size of packet n. Define by convention d0 = 0. The
packet scale rate guarantee with rate r and latency e is equivalent to: For all n and all 0 ≤ j ≤ n− 1, one
of the following holds

dn ≤ e+ dj +
lj+1 + ...+ ln

r
(7.2)

or there is some k ∈ {j + 1, ..., n} such that

dn ≤ e+ ak +
lk + ...+ ln

r
(7.3)

The proof is also given in Section 7.7. It is a straightforward application of Lemma 7.3.1.

Comment 1: The original definition of EF in [42] was based on the informal intuition that a node guarantees
to the EF aggregate a rate equal to r, at all time scales (this informal definition was replaced by PSRG).
Theorem 7.3.2 makes the link to the original intuition: a rate guarantee at all time scales means that either
Equation (7.2) or Equation (7.3) must hold. For a simple scheduler, the former means that dj , dn are in the
same backlogged period; the latter is for the opposite case, and here ak is the beginning of the backlogged
period. But note that we do not assume that the PSRG node is a simple scheduler; as mentioned earlier, it
may be any complex, non work conserving node. It is a merit of the abstract PSRG definition to avoid using
the concept of backlogged period, which is not meaningful for a composite node [13, 5].

Comment 2: In Theorem 2.1.2 we give a similar result for GR nodes. It is instructive to compare both in
the case of a simple scheduler, where the interpretation in terms of backlogged period can be made. Let us
assume the latency term is 0, to make the comparison simple. For such a simple scheduler, PSRG means
that during any backlogged period, the scheduler guarantees a rate at least equal to r. In contrast, and again
for such simple schedulers, GR means that during the backlogged period starting at the first packet arrival
that finds the system empty (this is called “busy period” in queuing theory), the average rate of service is
at least r. GR allows the scheduler to serve some packets more quickly than at rate r, and take advantage
of this to serve other packets at a rate smaller than r, as long as the overall average rate is at least r. PSRG
does not allow such a behaviour.

A special case of interest is when e = 0.

DEFINITION 7.3.2. We call minimum rate server, with rate r, a PSRG node for with latency e = 0.

For a minimum rate server we have{
d0 = 0
di ≤ max {ai, di−1} + li

r for all i ≥ 1
(7.4)

Thus, roughly speaking, a minimum rate server guarantees that during any busy period, the instantaneous
output rate is at least r. A GPS node with total rate C and weight wi for flow i is a minimum rate server for
flow i, with rate ri = φiC∑

j φj
.

202 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

7.3.2 PRACTICAL REALIZATION OF PACKET SCALE RATE GUARANTEE

We show in this section that a wide variety of schedulers provide the packet scale rate guarantee. More
schedulers can be obtained by using the concatenation theorem in the previous section.

A simple but important realization is the priority scheduler.

PROPOSITION 7.3.1. Consider a non-preemptive priority scheduler in which all packets share a single
FIFO queue with total output rate C. The high priority flow receives a packet scale rate guarantee with rate
C and latency e = lmax

C , where lmax is the maximum packet size of all low priority packets.

PROOF: By Proposition 1.3.7, the high priority traffic receives a strict service curve βr,c.

We have already introduced in Section 2.1.3 schedulers that can be thought of as derived from GPS and we
have modeled their behaviour with a rate-latency service curve. In order to give a PSRG for such schedulers,
we need to define more.

DEFINITION 7.3.3 (PSRG ACCURACY OF A SCHEDULER WITH RESPECT TO RATE r). Consider a sched-
uler S and call di the time of the i-th departure. We say that the PSRG accuracy of S with respect to rate r
is (e1, e2) if there is a minimum rate server with rate r and departure times gi such that for all i

gi − e1 ≤ di ≤ gi + e2 (7.5)

We interpret this definition as a comparison to a hypothetical GPS reference scheduler that would serve the
same flows. The term e2 determines the maximum per-hop delay bound, whereas e1 has an effect on the
jitter at the output of the scheduler. For example, it is shown in [6] that WF2Q satisfies e1(WF2Q) = lmax/r,
e2(WF2Q) = lmax/C, where lmax is maximum packet size and C is the total output rate. In contrast, for
PGPS [64] e2(PGPS) = e2(WF2Q), while e1(PGPS) is linear in the number of queues in the scheduler.
This illustrates that, while WF2Q and PGPS have the same delay bounds, PGPS may result in substantially
burstier departure patterns.

THEOREM 7.3.3. If a scheduler satisfies Equation (7.5), then it offers the packet scale rate guarantee with
rate r and latency e = e1 + e2.

The proof is in Section 7.7.

7.3.3 DELAY FROM BACKLOG

A main feature of the packet scale rate guarantee definition is that it allows to bound delay from backlog.
For a FIFO node, it could be derived from Theorem 7.4.3 and Theorem 7.4.5. But the important fact is that
the bound is the same, with or without FIFO assumption.

THEOREM 7.3.4. Consider a node offering the Packet Scale Rate Guarantee with rate r and latency e, not
necessarily FIFO. Call Q the backlog at time t. All packets that are in the system at time t will leave the
system no later than at time t+Q/r + e,

The proof is in Section 7.7.

Application to Differentiated Services Consider a network of nodes offering the EF service, as in Sec-
tion 2.4.1. Assume node m is a PSRG node with rate rm and latency em. Assume the buffer size at node m
is limited to Bm. A bound D on delay at node m follows directly

D =
Bm

rm
+ em

7.4. ADAPTIVE GUARANTEE 203

0.05 0.1 0.15 0.2 0.25

0.2

0.4

0.6

0.8

1

α

�� �!

��"#

$%&�"#
$%��"#

'�$
���(�")*
��
��+$�",
-�

.+�

Figure 7.4: End to end delay bound versus the utilization factor α for an infinite buffer (left curve) and buffers sizes of
1MB (top), 0.38MB (middle) and 0.1MB (bottom). There are h = 10 hops, em = 2 1500B

rm
, σi = 100B and ρi = 32kb/s for

all flows, rm = 149.760Mb/s.

Compare to the bound in Theorem 2.4.1: this bound is valid for all utilization levels and is independent of
traffic load. Figure 7.4 shows a numerical example.

However, forcing a small buffer size may cause some packet loss. The loss probability can be computed if
we assume in addition that the traffic at network edge is made of stationary, independent flows [58].

7.4 ADAPTIVE GUARANTEE

7.4.1 DEFINITION OF ADAPTIVE GUARANTEE

Much in the spirit of PSRG, we know introduce a stronger service curve concept, called adaptive guarantee,
that better captures the properties of GPS [62, 1], and helps finding concatenation properties for PSRG.
Before giving the formula, we motivate it on three examples.

Example 1. Consider a node offering a strict service curve β. Consider some fixed, but arbitrary times
s < t. Assume that β is continuous. If [s, t] is within a busy period, we must have

R∗(t) ≥ R∗(s) + β(t− s)

Else, call u the beginning of the busy period at t. We have

R∗(t) ≥ R(u) + β(t− u)

thus in all cases
R∗(t) ≥ (R∗(s) + β(t− s)) ∧ inf

u∈[s,t]
(R(u) + β(t− u)) (7.6)

Example 2. Consider a node that guarantees a virtual delay ≤ d. If t− s ≤ d then trivially

R∗(t) ≥ R∗(s) + δd(t− s)

and if t− s > d then the virtual delay property means that

R∗(t) ≥ R(t− d) = inf
u∈[s,t]

(R(u) + δd(t− u))

204 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

thus we have the same relation as in Equation (7.6) with β = δd.

Example 3. Consider a greedy shaper with shaping function σ (assumed to be a good function). Then

R∗(t) = inf
u≤t

[R(u) + σ(t− u)]

Breaking the inf into u < s and u ≥ s gives

R∗(t) = inf
u<s

[R(u) + σ(t− u)] ∧ inf
u∈[s,t]

[R(u) + σ(t− u)] (7.7)

Define σ̃ := σ�σ, namely,
σ̃(u) = inf

t
[σ(t+ u) − σ(u)] (7.8)

For example, for a piecewise linear concave arrival curve (conjunction of leaky buckets), σ(t) = mini(riu+
bi), we have σ̃(u) = mini riu. Back to Equation (7.7), we have

σ(t− u) ≥ σ(s− u) + σ̃(t− s)

and finally
R∗(t) ≥ (R∗(s) + σ̃(t− s)) ∧ inf

u∈[s,t]
(R(u) + σ(t− u)) (7.9)

We see that these three cases fall under a common model:

DEFINITION 7.4.1 (ADAPTIVE SERVICE CURVE). Let β̃, β be in F . Consider a system S and a flow
through S with input and output functions R and R∗. We say that S offers the adaptive guarantee (β̃, β) if
for any s ≤ t it holds:

R∗(t) ≥
(
R∗(s) + β̃(t− s)

)
∧ inf

u∈[s,t]
[R(u) + β(t− u)]

If β̃ = β we say that the node offers the adaptive guarantee β.

The following proposition summarizes the examples discussed above:

PROPOSITION 7.4.1. • If S offers to a flow a strict service curve β, then it also offers the adaptive
guarantee β.

• If S guarantees a virtual delay bounded by d, then it also offers the adaptive guarantee δd
• A greedy shaper with shaping curve σ, where σ is a good function, offers the adaptive guarantee

(σ̃, σ), with σ̃ defined in Equation (7.8).

Similar to [62], we use the notation R → (β̃, β) → R∗ to express that Definition 7.4.1 holds. If β̃ = β we
write R→ (β) → R∗.

Assume that R is left-continuous and β is continuous. It follows from Theorem 3.1.8 on Page 115 that the
adaptive guarantee is equivalent to saying that for all s ≤ t, we have either

R∗(t) −R∗(s) ≥ β̃(t− s)

or
R∗(t) ≥ R(u) + β(t− u)

for some u ∈ [s, t].

7.4.2 PROPERTIES OF ADAPTIVE GUARANTEES

THEOREM 7.4.1. Let R→ (β̃, β) → R∗. If β̃ ≤ β then β is a minimum service curve for the flow.

7.4. ADAPTIVE GUARANTEE 205

PROOF: Apply Definition 7.4.1 with s = 0 and use the fact that β̃ ≤ β.

THEOREM 7.4.2 (CONCATENATION). If R → (β̃1, β1) → R1 and R1 → (β̃2, β2) → R∗ then R →
(β̃, β) → R∗ with

β̃ =
(
β̃1 ⊗ β2

)
∧ β̃2

and
β = β1 ⊗ β2

The proof is in Section 7.7

COROLLARY 7.4.1. If Ri−1 → (β̃i, βi) → Ri for i = 1 to n then R0 → (β̃, β) → Rn with

β̃ =
(
β̃1 ⊗ β2 ⊗ ...⊗ βn

)
∧
(
β̃2 ⊗ β3 ⊗ ...⊗ βn

)
∧ ... ∧

(
β̃n−1 ⊗ βn

)
∧ β̃n

and
β = β1 ⊗ ...⊗ βn

PROOF: Apply Theorem 7.4.2 iteratively and use Rule 6 in Theorem 3.1.5 on Page 111.

THEOREM 7.4.3 (DELAY FROM BACKLOG). If R → (β̃, β) → R∗, then the virtual delay at time t is
bounded by β̃−1(Q(t)), where Q(t) is the backlog at time t, and β̃−1 is the pseudo-inverse of β̃ (see Defini-
tion 3.1.7 on Page 108).

The proof is in Section 7.7. Note that if the node is FIFO, then the virtual delay at time t is the real delay
for a bit arriving at time t.

Consider a system (bit-by-bit system) with L-packetized input R and bit-by-bit output R∗, which is then
L-packetized to produce a final packetized output R′. We call combined system the system that maps R
into R′. Assume both systems are first-in-first-out and lossless. Remember from Theorem 1.7.1 that the
per-packet delay for the combined system is equal the maximum virtual delay for the bit-by-bit system.

THEOREM 7.4.4 (PACKETIZER AND ADAPTIVE GUARANTEE). If the bit-by-bit system offers to the flow
the adaptive guarantee (β̃, β), then the combined system offers to the flow the adaptive guarantee (β̃′, β′)
with

β̃′(t) = [β̃(t) − lmax]+

and
β′(t) = [β(t) − lmax]+

where lmax is the maximum packet size for the flow.

The proof is in Section 7.7.

7.4.3 PSRG AND ADAPTIVE SERVICE CURVE

We now relate packet scale rate guarantee to an adaptive guarantee. We cannot expect an exact equivalence,
since a packet scale rate guarantee does not specify what happens to bits at a time other than a packet
departure or arrival. However, the concept of packetizer allows us to establish an equivalence.

206 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

THEOREM 7.4.5 (EQUIVALENCE WITH ADAPTIVE GUARANTEE). Consider a node S with L-packetized
input R and with output R∗.

1. If R → (β) → R∗, where β = βr,e is the rate-latency function with rate r and latency e, and if S is
FIFO, then S offers to the flow the packet scale rate guarantee with rate r and latency e.

2. Conversely, if S offers to the flow the packet scale rate guarantee with rate r and latency e and if R∗

is L-packetized, then S is the concatenation of a node S ′ offering the adaptive guarantee βr,e and the
L-packetizer. If S is FIFO, then so is S ′.

The proof is long and is given in a separate section (Section 7.7). Note that the packet scale rate guarantee
does not mandate that the node be FIFO; it is possible that di < di−1 in some cases. However, part 1 of the
theorem requires the FIFO assumption in order for a condition on R,R∗ to be translated into a condition on
delays.

7.5 CONCATENATION OF PSRG NODES

7.5.1 CONCATENATION OF FIFO PSRG NODES

We have a simple concatenation result for FIFO systems:

THEOREM 7.5.1. Consider a concatenation of FIFO systems numbered 1 to n. The output of system i − 1
is the input of system i, for i > 1. Assume system i offers the packet scale rate guarantee with rate ri and
latency ri. The global system offers the packet scale rate guarantee with rate r = mini=1,...,n ri and latency
e =

∑
i=1,...,n ei +

∑
i=1,...,n−1

Lmax
ri

.

PROOF: By Theorem 7.4.5–(2), we can decompose system i into a concatenation Si,Pi, where Si offers
the adaptive guarantee βri,ei and Pi is a packetizer.

Call S the concatenation
S1,P1,S2,P2, ...,Sn−1,Pn−1,Sn

By Theorem 7.4.5–(2), S is FIFO. By Theorem 7.4.4, it provides the adaptive guarantee βr,e. By Theo-
rem 7.4.5–(1), it also provides the packet scale rate guarantee with rate r and latency e. Now Pn does not
affect the finish time of the last bit of every packet.

A Composite Node We analyze in detail one specific example, which often arises in practice when mod-
elling a router. We consider a composite node, made of two components. The former (“variable delay
component”) imposes to packets a delay in the range [δmax − δ, δmax]. The latter is FIFO and offers to its
input the packet scale rate guarantee, with rate r and latency e. We show that, if the variable delay compo-
nent is known to be FIFO, then we have a simple result. We first give the following lemma, which has some
interest of its own.

LEMMA 7.5.1 (VARIABLE DELAY AS PSRG). Consider a node which is known to guarantee a delay
≤ δmax. The node need not be FIFO. Call lmin the minimum packet size. For any r > 0, the node offers the
packet scale rate guarantee with latency e = [δmax − lmin

r]+ and rate r.

Proof. With the standard notation in this section, the hypothesis implies that dn ≤ an + δmax for all n ≥ 1. Define fn by
Equation (7.1). We have fn ≥ an + ln

r
≥ an + lmin

r
, thus dn − fn ≤ δmax − lmin

r
≤ [δmax − lmin

r
]+. �

We will now apply known results on the concatenation of FIFO elements and solve the case where the
variable delay component is FIFO.

7.5. CONCATENATION OF PSRG NODES 207

THEOREM 7.5.2. (Composite Node with FIFO Variable Delay Component) Consider the concatenation of
two nodes. The former imposes to packets a delay ≤ δmax. The latter offers the packet scale rate guarantee
to its input, with rate r and latency e. Both nodes are FIFO. The concatenation of the two nodes, in any
order, offers the packet scale rate guarantee with rate r and latency e′ = e+ δmax.

Proof. Combine Theorem 7.4.2 with Lemma 7.5.1: for any r′ ≥ r, the combined node offers the packet scale guarantee with rate
r and latency e(r′) = e + δmax + lmax−lmin

r′ . Define fn for all n by Equation (7.1). Consider some fixed but arbitrary n. We have
dn − fn ≤ e(r′), and this is true for any r′ ≥ r. Let r′ → +∞ and obtain dn − fn ≤ infr′≥r e(r′) = e + δmax as required. �

7.5.2 CONCATENATION OF NON FIFO PSRG NODES

In general, we cannot say much about the concatenation of non FIFO PSRG nodes. We analyze in detail
composite node described above, but now the delay element is non FIFO. This is a frequent case in practice.
The results are of interest for modelling a router. The also serve the purpose of showing that the results in
Theorem 7.5.1 do not hold here.

To obtain a result, we need to an arrival curve for the incoming traffic. This is because some packets may
take over some other packets in the non-FIFO delay element (Figure 7.5); an arrival curve puts a bound on
this.

� �

� �
� .

� �

' �

� �
� �

� �

� .

 � -
 � � �

 � � -
 � � �

 . � -
 � � �

 � � -
 � . �

' �

' �

' .

� � - � � � �

� � � - � � � �

� . � - � � � �

� � � - � � . �

� �

� .
� �

� �

� �

$ � $ � 9 ? 9 @ & � � 	 ' � " � � 9 ? 9 @ & � � � � %
� +
 + � +

Figure 7.5: Composite Node with non-FIFO Variable Delay Component. Packet n arrives at times an at the first
component, at time bn at the second component, and leaves the system at time dn. Since the first component is not
FIFO, overtaking may occur; (k) is the packet number of the kth packet arriving at the second component.

THEOREM 7.5.3. (Composite Node with non-FIFO Variable Delay Component) Consider the concatena-
tion of two nodes. The first imposes to packets a delay in the range [δmax−δ, δmax]. The second is FIFO and
offers the packet scale rate guarantee to its input, with rate r and latency e. The first node is not assumed
to be FIFO, so the order of packet arrivals at the second node is not the order of packet arrivals at the first
one. Assume that the fresh input is constrained by a continuous arrival curve α(·). The concatenation of the

208 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

two nodes, in this order, satisfies the packet scale rate guarantee with rate r and latency

e′ = e+ δmax+
min{supt≥0[

α(t+δ)−lmin

r − t],
sup0≤t≤δ[

α(t)+α(δ)−2lmin

r − t]}
(7.10)

The proof is long, and is given in Section 7.7.

Figures 7.6 to 7.8 show numerical applications when the arrival curve includes both peak rate and mean rate
constraints.

Special Case : For α(t) = ρt+ σ, a direct computation of the suprema in Theorem 7.5.3 gives:

if ρ ≤ r then e′ = e+ δmax + ρδ+σ−lmin
r

else e′ = e+ δmax − δ + 2ρδ+σ−lmin
r

The latency of the composite node has a discontinuity equal to σ/r at ρ = r. It may seem irrelevant to
consider the case ρ > r. However, PSRG gives a delay from backlog bound; there may be cases where
the only information available on the aggregate input is a bound on sustainable rate ρ, with ρ > r. In such
cases, there are probably other mechanisms (such as window flow control [47]) to prevent buffer overflow;
here, it is useful to be able to bound e′ as in Theorem 7.5.3.

50 100 150 200
Mbps

0.01

0.02

0.03

0.04

0.05
sec

Figure 7.6: Numerical Application of Theorem 7.5.3 and Theorem 2.1.7, showing the additional latency e′ − e for a
composite node, made of a variable delay element (δ = δmax = 0.01s) followed by a PSRG or GR component with rate
r = 100Mb/s and latency e. The fresh traffic has arrival curve ρt + σ, with σ = 50KBytes. The figure shows e′ − e as a
function of ρ, for lmin = 0. Top graph: delay element is non-FIFO, second component is PSRG (Theorem 7.5.3); middle
graph: delay element is non-FIFO, second component is GR (Theorem 2.1.7); bottom line: delay element is FIFO, both
cases (Theorem 7.5.2 and Theorem 7.5.3). Top and middle graph coincide for ρ ≤ r.

50 100 150 200
Mbps

0.01

0.02

0.03

0.04

0.05
sec

50 100 150 200
Mbps

0.01

0.02

0.03

0.04

0.05
sec

Figure 7.7: Same as Figure 7.6, but the fresh traffis has a peak rate limit. The arrival curve for the fresh traffic is
min(pt + MTU, ρt + σ), with MTU = 500B, p = 200Mb/s (top picture) or p = 2ρ (bottom picture).

7.6. COMPARISON OF GR AND PSRG 209

0

50

100

150

200

Mean rate
0

2000

4000

6000

8000

10000

Peak Rate

0.01
0.02
0.03

0.04

0

50

100

150Mean rate

Figure 7.8: Latency increase as a function of peak rate and mean rate. The parameters are the same as for Figure 7.7.

Comment 1 : We now justify why Theorem 7.5.3 is needed, in other words: if we relax the FIFO as-
sumption for the variable delay component, then Theorem 7.5.2 does not hold any more. Intuitively, this is
because a tagged packet (say P3 on Figure 7.5) may be delayed at the second stage by packets (P4 on the
figure) that arrived later, but took over our tagged packet. Also, the service rate may appear to be reduced
by packets (P1 on the figure) that had a long delay in the variable delay component. Formally, we have:

PROPOSITION 7.5.1 (TIGHTNESS). The bound in Theorem 7.5.3 is tight in the case of an arrival curve of
the form α(t) = ρt+ σ and if lmax ≥ 2lmin.

The proof is in Section 7.7.

The proposition shows that the concatenation of non-FIFO PSRG nodes does not follow the rule as for
FIFO nodes, which is recalled in the proof of Theorem 7.5.2. Note that if the condition lmax ≥ 2lmin is not
satisfied then the bound in Theorem 7.5.3 is tight up to a tolerance of 2lmin/r.

Comment 2 : Equation (7.10) for the latency is the minimum of two terms. In the case α(t) = ρt+ σ, for
ρ ≤ r, the bound is equal to its former term, otherwise to its second term. For a general α however, such a
simplification does not occur.

Comment 3 : If α is not continuous (thus has jumps at some values), then it can be shown that Theorem 7.5.3
still holds, with Equation (7.10) replaced by

e′ = e+ δmax+
min{supt≥0[

α(t+δ)
r − t],

sup0≤t≤δ[
α0(t)+α0(δ)

r − t]}

with α0(u) = min[α(u+) − lmin, α(u)].

7.6 COMPARISON OF GR AND PSRG

First, we know that a PSRG node is GR with the same parameters. This can be used to obtain delay
and backlog bounds for arrival curve constrained input traffic. Compare however Theorem 2.1.1 to The-
orem 7.3.3: the PSRG characterization has a larger latency e than the GR characterization, so it is better

210 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

not to use the two characterizations separately: GR to obtain delay and backlog bounds, PSRG to obtain
delay-from-backlog bounds.

Second, we have shown that for GR there cannot exist a delay-from-backlog bound as in Theorem 7.3.4.

Third, there are similar concatenation results as for PSRG in Theorem 2.1.7. The value of latency increase
e′ for the composite node is the same for PSRG and GR when the total incoming rate ρ is less than the
scheduler rate r. However, the guarantee expressed by PSRG is stronger than that of GR. Thus the stronger
guarantee of PSRG comes at no cost, in that case.

7.7 PROOFS

7.7.1 PROOF OF LEMMA 7.3.1

In order to simplify the notation, we use, locally to this proof, the following convention: first, ∨ has prece-
dence over ∧; second, we denote A ∨B with AB. Thus, in this proof only, the expression

AB ∧ CD
means

(A ∨B) ∧ (C ∨D)

The reason for this convention is to simplify the use of the distributivity of ∨ with respect to ∧ [28], which
is here written as

A(B ∧ C) = AB ∧AC
Our convention is typical of “min-max” algebra, where min takes the role of addition and max the role of
multiplication. Armed with this facilitating notation, the proof becomes simple, but lengthy, calculus. In the
rest of the proof we consider some fixed n and drop superscript n.

For 0 ≤ j ≤ n− 1, define
Fj = fj +mj+1 + ...+mn

and let Fn = fn. Also let D0 = d0 +m1 + ...+mn = m1 + ...+mn

First note that for all j ≥ 1:

fj = (aj +mj) ∨ [(fj−1 +mj) ∧ (dj−1 +mj)]

then, by adding mj+1 + ...+mn to all terms of the right hand side of this equation, we find

Fj = Aj ∨ (Fj−1 ∧Dj−1)

or, with our notation:
Fj = Aj (Fj−1 ∧Dj−1)

and by distributivity:
Fj = AjFj−1 ∧AjDj−1 (7.11)

Now we show by downwards induction on j = n− 1, ..., 0 that

fn = AnAn−1...Aj+1Fj

∧ AnAn−1...Aj+1Dj

∧ ...

∧ AnAn−1...Ak+1Dk

∧ ...

∧ AnAn−1Dn−2

∧ AnDn−1 (7.12)

7.7. PROOFS 211

where k ranges from j to n−1. For j = n−1, the property follows from Equation (7.11) applied for j = n.
Assume now that Equation (7.12) holds for some j ∈ {1, ..., n− 1}. By Equation (7.11), we have

AnAn−1...Aj+1Fj =
AnAn−1...Aj+1(AjFj−1 ∧AjDj−1)

thus

AnAn−1...Aj+1Fj =
AnAn−1...Aj+1AjFj−1 ∧AnAn−1...Aj+1AjDj−1

which, combined with Equation (7.12) for j shows the property for j − 1.

Now we apply Equation (7.12) for j = 0 and find

fn = AnAn−1...A1F0 ∧AnAn−1...A1D0 ∧ ...
∧AnAn−1Dn−2 ∧AnDn−1

First note that F0 = D0 so we can remove the first term in the right hand side of the previous equation.
Second, it follows from a1 ≥ 0 that D0 ≤ A1 thus

AnAn−1...A1D0 = AnAn−1...A1

thus finally

fn = AnAn−1...A1 ∧AnAn−1...A2D1 ∧ ...
∧AnAn−1Dn−2 ∧AnDn−1

which is precisely the required formula.

7.7.2 PROOF OF THEOREM 7.3.2

First, assume that the packet scale rate guarantee holds. Apply Lemma 7.3.1 with mn = ln
r . It follows that,

for 1 ≤ j ≤ n− 1.
fn ≤ max

[
An

n, A
n
n−1, ..., A

n
j+1, D

n
j

]
thus fn is bounded by one of the terms in the right hand side of the previous equation. If it is the last term,
we have

fn ≤ Dn
j = dj +

lj+1 + ...+ ln
r

now dn ≤ fn + e, which shows Equation (7.2). Otherwise, there is some k ∈ {j + 1, ..., n} such that

fn ≤ An
k = ak +

lk + ...+ ln
r

which shows Equation (7.3). For j = 0, Lemma 7.3.1 implies that

fn ≤ max
[
An

n, A
n
n−1, ..., A

n
1

]
and the rest follows similarly.

Second, assume conversely that Equation (7.2) or Equation (7.3) holds. Consider some fixed n, and define
An

j , D
n
j , F

n
j as in Lemma 7.3.1, with mn = ln

r . For 1 ≤ j ≤ n− 1, we have

dn − e ≤ max
[
An

n, A
n
n−1, ..., A

n
j+1, D

n
j

]
and for j = 0:

dn − e ≤ max
[
An

n, A
n
n−1, ..., A

n
1

]
thus dn − e is bounded by the minimum of all right-handsides in the two equations above, which, by
Lemma 7.3.1, is precisely fn.

212 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

7.7.3 PROOF OF THEOREM 7.3.3

We first prove that for all i ≥ 0
fi ≥ gi − e1 (7.13)

where fi is defined by Equation (7.1). Indeed, if Equation (7.13) holds, then by Equation (7.5)):

di ≤ gi + e2 ≤ fi + e1 + e2

which means that the scheduler offers the packet scale rate guarantee with rate r and latency e = e1 + e2.

Now we prove Equation (7.13) by induction. Equation (7.13) trivially holds for i = 0.

Suppose now that it holds for i− 1, namely,

fi−1 ≥ gi−1 − e1

By hypothesis, Equation (7.5) holds:
di−1 ≥ gi−1 − e1

thus
min[fi−1, di−1] ≥ gi−1 − e1 (7.14)

Combining this with Equation (7.1), we obtain

fi ≥ gi−1 − e1 +
L(i)
R

(7.15)

Again from Equation (7.1) we have
fi ≥ ai + li

r

≥ ai − e1 + li)
r

(7.16)

Now by Equation (7.4)

gi ≤ max[ai, gi−1] +
li
r

(7.17)

Combining Equation (7.15)), Equation (7.16)) and (7.17) gives

fi ≥ gi − e1

7.7.4 PROOF OF THEOREM 7.3.4

Consider a fixed packet n which is present at time t. Call aj [resp. dj] the arrival [resp. departure] time of
packet j. Thus an ≤ t ≤ dn. Let B be the set of packet numbers that are present in the system at time t, in
other words:

B = {k ≥ 1|ak ≤ t ≤ dk}
The backlog at time t is Q =

∑
i∈B li. The absence of FIFO assumption means that B is not necessarily a

set of consecutive integers. However, define j as the minimum packet number such that the interval [j, n] is
included in B. There is such a j because n ∈ B. If j ≥ 2 then j − 1 is not in B and aj−1 ≤ an ≤ t thus
necessarily

dj−1 < t (7.18)

If j = 1, Equation (7.18) also holds with our convention d0 = 0. Now we apply the alternate characteriza-
tion of packet scale rate guarantee (Theorem 7.3.2) to n and j− 1. One of the two following equations must
hold:

dn ≤ e+ dj−1 +
lj + ...+ ln

r
(7.19)

7.7. PROOFS 213

or there exists a k ≥ j, k ≤ n with

dn ≤ e+ ak +
lk + ...+ ln

r
(7.20)

Assume that Equation (7.19) holds. Since [j, n] ⊂ B, we have Qn ≥ lj + ... + ln. By Equation (7.18) and
Equation (7.19) it follows that

dn ≤ e+ t+
Q

r

which shows the result in this case. Otherwise, use Equation (7.20); we have Q ≥ lk + ...+ ln and ak ≤ t
thus

dn ≤ e+ t+
Q

r

7.7.5 PROOF OF THEOREM 7.4.2

Consider some fixed but arbitrary times s ≤ t and let u ∈ [s, t]. We have

R1(u) ≥
[
R1(s) + β̃(u− s)

]
∧ inf

v∈[s,u]
[R(v) + β1(u− v)]

thus
R1(u) + β2(t− u) ≥

[
R1(s) + β̃(u− s) + β2(t− u)

]
∧

infv∈[s,u] [R(v) + β1(u− v) + β2(t− u)]

and

inf
u∈[s,t]

[R1(u) + β2(t− u)] ≥

inf
u∈[s,t]

[
R1(s) + β̃(u− s) + β2(t− u)

]
∧ inf

u∈[s,t],v∈[s,u]
[R(v) + β1(u− v) + β2(t− u)]

After re-arranging the infima, we find

inf
u∈[s,t]

[R1(u) + β2(t− u)] ≥(
R1(s) + inf

u∈[s,t]

[
β̃(u− s) + β2(t− u)

])
∧

inf
v∈[s,t]

(
R(v) + inf

u∈[v,t]
[β1(u− v) + β2(t− u)]

)
which can be rewritten as

inf
u∈[s,t]

[R1(u) + β2(t− u)] ≥(
R1(s) + (β̃1 ⊗ β2)(t− s)

)
∧

inf
v∈[s,t]

[R(v) + β(t− v)]

Now by hypothesis we have

R∗(t) ≥
(
R∗(s) + β̃2(t− s)

)
∧ inf

u∈[s,t]
[R(u) + β2(t− u)]

214 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

Combining the two gives

R∗(t) ≥(
R∗(s) + β̃2(t− s)

)
∧
(
R1(s) + (β̃1 ⊗ β2)(t− s)

)
∧ inf

v∈[s,t]
[R(v) + β(t− v)]

Now R1(s) ≥ R∗(s) thus

R∗(t) ≥(
R∗(s) + β̃2(t− s)

)
∧
(
R∗(s) + (β̃1 ⊗ β2)(t− s)

)
∧ inf

v∈[s,t]
[R(v) + β(t− v)]

7.7.6 PROOF OF THEOREM 7.4.3

If the virtual delay at time t is larger than t+ τ for some τ ≥ 0, then we must have

R∗(t+ τ) < R(t) (7.21)

By hypothesis

R∗(t+ τ) ≥
(
R∗(t) + β̃(τ)

)
∧ inf

[u∈[t,t+τ]
[R(u) + β(t+ τ − u)] (7.22)

now for u ∈ [t, t+ τ]
R(u) + β(t+ τ − u) ≥ R(t) + β(0) ≥ R∗(t+ τ)

thus Equation (7.22) implies that
R∗(t+ τ) ≥ R∗(t) + β̃(τ)

combining with Equation (7.21) gives

Q(t) = R(t) −R∗(t) ≥ β̃(τ)

thus the virtual delay is bounded by sup{τ : β̃(τ) > Q(t)} which is equal to β̃−1(Q(t)).

7.7.7 PROOF OF THEOREM 7.4.4

PROOF: Let s ≤ t. By hypothesis we have

R∗(t) ≥
(
R∗(s) + β̃(t− s)

)
∧ inf

u∈[s,t]
[R(u) + β(t− u)]

We do the proof when the inf in the above formula is a minimum, and leave it to the alert reader to extend
it to the general case. Thus assume that for some u0 ∈ [s, t]:

inf
u∈[s,t]

[R(u) + β(t− u)] = R(u0) + β(t− u0)

it follows that either
R∗(t) −R∗(s) ≥ β̃(t− s)

or
R∗(t) ≥ R(u0) + β(t− u0)

7.7. PROOFS 215

Consider the former case. We have R′(t) ≥ R∗(t) − lmax and R′(s) ≤ R∗(s) thus

R′(t) ≥ R∗(t) − lmax ≥ R′(s) + β̃(t− s) − lmax

Now also obviously R′(t) ≥ R′(s), thus finally

R′(t) ≥ R′(s) + max[0, β̃(t− s) − lmax] = R′(s) + β̃′(t− s)

Consider now the latter case. A similar reasoning shows that

R′(t) ≥ R(u0) + β(t− u0) − lmax

but also
R∗(t) ≥ R(u0)

now the input is L-packetized. Thus

R′(t) = PL(R∗(t)) ≥ PL(R(u0)) = R(u0)

from which we conclude that R′(t) ≥ R(u0) + β′(t− u0).

Combining the two cases provides the required adaptive guarantee.

7.7.8 PROOF OF THEOREM 7.4.5

The first part uses the min-max expansion of packet scale rate guarantee in Lemma 7.3.1. The second part
relies on the reduction to the minimum rate server.

We use the same notation as in Definition 7.3.1. L(i) =
∑i

j=1 lj is the cumulative packet length.

ITEM 1: Define the sequence of times fk by Equation (7.1). Consider now some fixed but arbitrary
packet index n ≥ 1. By the FIFO assumption, it is sufficient to show that

R∗(t) ≥ L(n) (7.23)

with t = fn + e. By Lemma 7.3.1, there is some index 1 ≤ j ≤ n such that

fn =
(
s+

L(n) − L(j − 1)
r

)∨ i
max

k=j+1

(
ak +

L(n) − L(k − 1)
r

)
(7.24)

with
s = aj ∨ dj−1

and with the convention that d0 = 0.

Let us now apply the definition of an adaptive guarantee to the time interval [s, t]:

R∗(t) ≥ A ∧B

with
A := R∗(s) + r(t− s− e)+ and B := inf

u∈[s,t]
B(u)

where
B(u) :=

(
R(u) + r(t− u− e)+

)

216 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

Firstly, since s ≥ dj−1, we have R∗(s) ≥ L(j − 1). By Equation (7.24), fn ≥ s + L(n)−L(j−1)
r thus

t ≥ s+ L(n)−L(j−1)
r + e. It follows that

t− s− e ≥ L(n) − L(j − 1)
r

and thus A ≥ L(n).

Secondly, we show that B ≥ L(n) as well. Consider some u ∈ [s, t]. If u ≥ an then R(u) ≥ L(n) thus
B(u) ≥ L(n). Otherwise, u < an; since s ≥ aj , it follows that ak−1 ≤ u < ak for some k ∈ {j + 1, ..., n}
and R(u) = L(k − 1). By Equation (7.24),

fn ≥ ak +
L(n) − L(k − 1)

r

thus

t− u− e ≥ L(n) − L(k − 1)
r

It follows that B(u) ≥ L(n) also in that case. Thus we have shown that B ≥ L(n).

Combining the two shows that R∗(t) ≥ L(n) as required.

ITEM 2: We use a reduction to a minimum rate server as follows. Let d′i := min(di, fi) for i ≥ 0. By
Equation (7.1) we have

ai ≤ d′i ≤ max(ai, d
′
i−1) +

li
r

(7.25)

and
d′i ≤ di ≤ d′i + e (7.26)

The idea of the proof is now to interpret d′i as the output time for packet i out of a virtual minimum rate
server.

Construct a virtual node R as follows. The input is the original input R(t). The output is defined as follows.
The number of bits of packet i that are output up to time t is ψi(t), defined by⎧⎨⎩

if t > d′(i) then ψi(t) = L(i)
else if a(i) < t ≤ d′(i) then ψi(t) = [L(i) − r(d′(i) − t)]+

else ψi(t) = 0

so that the total output of R is R1(t) =
∑

i≥1 ψi(t).

The start time for packet i is thus max[ai, d
′
i − li

r] and the finish time is d′i. Thus R is causal (but not
necessarily FIFO, even if the original system would be FIFO). We now show that during any busy period,
R has an output rate at least equal to r.

Let t be during a busy period. Consider now some time t during a busy period. There must exist some i
such that ai ≤ t ≤ d′i. Let i be the smallest index such that this is true. If ai ≥ d′i−1 then by Equation (7.25)
d′i − t ≤ li

r and thus ψ′
r(t) = r where ψ′

r is the derivative of ψi to the right. Thus the service rate at time t
is at least r.

Otherwise, ai < D′i− 1. Necessarily (because we number packets in order of increasing ai’s – this is not
a FIFO assumption) ai−1 ≤ ai; since i is the smallest index such that ai ≤ t < d′i, we must have t ≥ d′i−1.
But then d′i − t ≤ li

r and the service rate at time t is at least r. Thus, node R offers the strict service curve
λr and

R→ (λr) → R1 (7.27)

7.7. PROOFS 217

Now define node D. Let δ(i) := di − d′i, so that 0 ≤ δ(i) ≤ E. The input of D is the output of R. The
output is as follows; let a bit of packet i arrive at time t; we have t ≤ d′i ≤ di. The bit is output at time
t′ = max[min[di−1, di], t+ δi]. Thus all bits of packet i are delayed in D by at most δ(i), and if di−1 < di

they depart after di. It follows that the last bit of packet i leaves D at time di. Also, since t′ ≥ t, D is
causal. Lastly, if the original system is FIFO, then di−1 < di, all bits of packet i depart after di−1 and thus
the concatenation of R and D is FIFO. Note that R is not necessarily FIFO, even if the original system is
FIFO.

The aggregate output of D is
R2(t) ≥

∑
i≥1

ψi(t− δ(i)) ≥ R1(t− e)

thus the virtual delay for D is bounded by e and

R1 → (δe) → R2 (7.28)

Now we plug the output of D into an L-packetizer. Since the last bit of packet i leaves D at time di, the final
output is R∗. Now it follows from Equation (7.27), Equation (7.28) and Theorem 7.4.2 that

R→ (λr ⊗ δe) → R2

7.7.9 PROOF OF THEOREM 7.5.3

We first introduce some notation (see Figure 7.5). Call an ≥ 0 the arrival times for the fresh input. Packets
are numbered in order of arrival, so 0 ≤ a1 ≤ a2 ≤ Let ln be the size of packet n. Call bn the arrival
time for packet n at the second component; bn is not assumed to be monotonic with n, but for all n:

an ≤ bn ≤ an + δ (7.29)

Also call dn the departure time of packet n from the second component. By convention, a0 = d0 = 0.

Then, define

e1 = e+ δmax + sup
t≥0

[
α(t+ δ) − lmin

r
− t]

and

e2 = e+ δmax + sup
0≤t≤δ

[
α(t) + α(δ) − lmin

r
− t]

so that e′ = min[e1, e2]. It is sufficient to show that the combined node separately satisfies the packet
scale rate guarantee with rate r and with latencies e1 and e2. To see why, define fn by Equation (7.1). If
dn − fn ≤ e1 and dn − fn ≤ e2 for all n, then dn − fn ≤ e′.

Part 1: We show that the combined node satisfies the packet scale rate guarantee with rate r and latency e1.

An arrival curve for the input traffic to the second component is α2(t) = α(t+ δ). Thus, by Theorem 2.1.4,
dn ≤ bn +D2, with

dn ≤ bn + e+ sup
t≥0

[
α(t+ δ)

r
− t]

By Equation (7.29):

dn − an ≤ e+ δmax + sup
t≥0

[
α(t+ δ)

r
− t]

Now we apply Lemma 7.5.1 which ends the proof for this part.

218 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

Part 2: We show that the combined node satisfies the packet scale rate guarantee with rate r and latency e2.

Let δmin = δmax − δ the constant part of the delay. We do the proof for δmin = 0 since we can eliminate the
constant delay by observing packets δmin time units after their arrival, and adding δmin to the overall delay.

Part 2A:

We assume in this part that there cannot be two arrivals at the same instant; in part 2B, we will show how to
relax this assumption.

For a time interval (s, t] (resp. [s, t]), define A(s, t] as the total number of bits at the fresh input during the
interval (s, t] (resp. [s, t]); similarly, define B(s, t] and B[s, t] at the input of the second node. We have the
following relations:

A(s, t] =
∑
n≥1

1{s<an≤t]}ln , A[s, t] =
∑
n≥1

1{s≤an≤t]}ln

B(s, t] =
∑
n≥1

1{s<bn≤t]}ln , B[s, t] =
∑
n≥1

1{s≤bn≤t]}ln

Note that

A(aj , an] =
n∑

i=j+1

li

but, by lack of FIFO assumption, there is no such relation for B.

By definition of an arrival curve, we have A(s, t] ≤ α(t− s).

LEMMA 7.7.1. For 0 ≤ t, u and 0 ≤ v ≤ t, if there is an arrival at t, then A(t, t + u] ≤ α(u) − lmin and
A[t− v, t) ≤ α(v) − lmin

Proof. First note that A[t, t+u] ≤ infε>0 A(t− ε, t+u] ≤ infε>0 α(u+ ε) = α(u) (the last equality is because α is continuous).

Second, let l be the packet length for one packet arriving at time t. Then A(t, t + u] + l ≤ A[t, t + u] ≤ α(u) thus A(t, t + u] ≤
α(u) − l ≤ α(u) − lmin. The same reasoning shows the second inequality in the lemma. �

Now we apply Theorem 7.3.2. Consider some fixed packets numbers 0 ≤ j < n. We have to show that one
of the following holds:

dn ≤ e2 + dj +
A(aj , an]

r
(7.30)

or there is some k ∈ {j + 1, ..., n} such that

dn ≤ e2 + ak +
A[ak, an]

r
(7.31)

(Case 1:) Assume that bj ≥ bn. Since the second node is FIFO, we have

dn ≤ dj

and thus Equation (7.30) trivially holds.

(Case 2:) Assume that bj < bn. By Theorem 7.3.2 applied to the second node, we have

dn ≤ e+ dj +
1
r
B(bj , bn] (7.32)

or there exists some k such that bj ≤ bk ≤ bn and

dn ≤ e+ bk +
1
r
B[bk, bn] (7.33)

7.7. PROOFS 219

(Case 2a:) Assume that Equation (7.32) holds. By Equation (7.29), any packet that arrives at node 2 in the
interval (bj , bn] must have arrived at node 1 in the interval (aj − δ, bn] ⊂ (aj − δ, an + δ]. Thus

B(bj , bn] ≤ A(aj − δ, an + δ]
≤ A(aj , an] +A[aj − δ, aj) +A(an, an + δ]
≤ A(aj , an] + 2α(δ) − 2lmin

the last part being due to Lemma 7.7.1. Thus

dn ≤ e+ δ + α(δ)
r − δ + α(δ)

r + dj

+1
rA(aj , an] − 2lmin

≤ e2 + dj + 1
rA(aj , an]

which shows Equation (7.30).

(Case 2b:) Assume that Equation (7.33) holds. Note that we do not know the order of k with respect to j
and n. However, in all cases, by Equation (7.29):

B[bk, bn] ≤ A[bk − δ, an + δ] (7.34)

We further distinguish three cases.

(Case 2b1:) k ≤ j:

Define
u = aj − bk + δ (7.35)

By hypothesis, ak ≤ aj and bk − δ ≤ ak so that u ≥ 0. Note also that aj ≤ bj ≤ bk and thus u ≤ δ.

By Equation (7.34):
B[bk, bn] ≤ A[bk − δ, aj) +A[aj , an] +A(an, an + δ]

Now by Lemma 7.7.1 A(an, an + δ] ≤ α(δ) and A[bk − δ, aj) ≤ α(u) − lmin. Thus

B[bk, bn] ≤ A[aj , an] + α(u) + α(δ) − 2lmin

Combine with Equation (7.33), Equation (7.35) and obtain

dn ≤ aj +
A[aj , an]

r
+ e2

which shows that Equation (7.31) holds.

(Case 2b2:) j < k ≤ n:

Define u = δ − bk + ak. By Equation (7.34)

B[bk, bn] ≤ A[ak, an] + α(u) + α(δ) − 2lmin

which shows that

dn ≤ e2 + ak +
1
r
A[ak, an]

(Case 2b3:) k > n:

Define u = δ − bk + an. By bk ≤ bn and bn ≤ an + δ we have u ≥ 0. By bk ≥ ak and ak ≥ an we have
u ≤ δ.

Now by Equation (7.33):

dn ≤ e+ bk +
1
r
B[bk, bn] = e+ δ − u+ an +

1
r
B[bk, bn]

220 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

By Equation (7.34)
B[bk, bn] ≤ A[an − u, an + δ]
= A[an − u, an) + ln +A(an, an + δ]
≤ α(u) + ln + α(δ) − 2lmin

which shows that

dn ≤ e2 + an +
ln
r

Part 2B: Now it remains to handle the case where packet arrivals at either component may be simultaneous.
We assume that packets are ordered at component 2 in order of arrival, with some unspecified mechanism
for breaking ties. Packets also have a label which is their order of arrival at the first component; we call (k)
the label of the kth packet in this order (see Figure 7.5 for an illustration).

Call S the original system. Fix some arbitrary integer N . Consider the truncated system SN that is derived
from the original system by ignoring all packets that arrive at the first component after time aN + δ. Call
aN

n , b
N
n , d

N
n , f

N
n the values of arrival, departure, and virtual finish times in the truncated system (virtual

finish times are defined by Equation (7.1)). Packets with numbers ≤ N are not affected by our truncation,
thus aN

n = an, b
N
n = bn, d

N
n = dn, f

N
n = fn for n ≤ N . Now the number of arrival events at either

component 1 or 2 in the truncated system is finite; thus we can find a positive number η which separates
arrival events. Formally: for any m,n ≤ N :

am = an or |am − an| > η

and
bm = bn or |bm − bn| > η

Let ε < η
2 . We define a new system, called SN,ε, which is derived from SN as follows.

• We can find some sequence of numbers xn ∈ (0, ε), n ≤ N such that: (1) they are all distinct; (2)
if the packet labeled m is ordered before the packet labeled n in the order of arrival at the second
component, then xm < xn. Building such a sequence is easy, and any sequence satisfying (1) and (2)
will do. For example, take xn = k

N+1ε where k is the order of arrival of packet n (in other words,
(k) = n).

• Define the new arrival and departure times by

aε
n = an + xn , b

ε
n = bn + xn , d

ε
n = dn + xn

It follows from our construction that all aε
n are distinct for n ≤ N , and the same holds for bεn. Also,

the arrival order of packets at the second component is the same as in the original system.

Thus we have built a new system SN,ε where all arrivals times are distinct, the order of packets at the second
component is the same as in SN , arrival and departure times are no earlier than in SN , and differ by at most
ε.

For k ≤ N , call F ε
(k) the virtual finish times at the second component. By definition:⎧⎪⎪⎨⎪⎪⎩

F ε
(0) = 0

F ε
(k) = max

[
bε(k),min

(
dε

(k−1), F
ε
(k−1)

)]
+ l(k)

r for k ≥ 1

and a similar definition holds for F(k) by dropping ε. It follows by induction that

F ε
(k) ≥ F(k)

7.8. BIBLIOGRAPHIC NOTES 221

thus

dε
(k) ≤ dk + ε ≤ e+ F(k) ≤ e+ F ε

(k) + ε

Similarly, bεk ≤ aε
k + δ. This shows that SN,ε satisfies the assumptions of the theorem, with e replaced by

e+ ε

Thus the conclusion of Part 2A holds for SN,ε. Define now f ε
n by Equation (7.1) applied to aε

n and dε
n. We

have:

dε
n ≤ f ε

n + e2 + ε (7.36)

It also follows by induction that

f ε
n ≤ fn + ε

Now dn ≤ dε
n thus

dn − fn ≤ dε
n − f ε

n + ε

Combining with Equation (7.36) gives:

dn − fn ≤ e2 + 2ε

Now ε can be arbitrarily small, thus we have shown that for all n ≤ N :

dn − fn ≤ e2

Since N is arbitrary, the above is true for all n.

7.7.10 PROOF OF PROPOSITION 7.5.2

Proof. Case ρ ≤ r: Assume that the source is greedy from time 0, with packet n = 1, of size l1 = lmin, a1 = 0, b1 = δmax.
Assume all subsequent packets have a delay in the first component equal to δmax − δ. We can build an example where packet 1 is
overtaken by packets n = 2, ..., n1 that arrive in the interval (0, δ], with l2+...+ln1 = ρδ+σ−l1. Assume that packet 1 undergoes
the maximum delay allowed by PSRG at the second component. It follows after some algebra that d1 = e + δmax + ρδ+σ

r
. Now

f1 = lmin
r

thus d1 − f1 = e′ and the characterization is tight.

Case ρ > r: We build a worst case scenario as follows. We let e = 0, without loss of generality (add a delay element to this
example and obtain the general case). The principle is to first build a maximum size burst which is overtaken by a tagged packet
j. Later, a tagged packet n is overtaken by a second maximum size burst. Between the two, packets arrive at a data rate r; the
second burst is possible because r < ρ and an − aj is long enough. Details are in Figure 7.9 and Table 7.1. We find finally
dn − fn = 2(ρδ + σ − lmin)/r which shows that the bound is achieved.

�

7.8 BIBLIOGRAPHIC NOTES

The concept of adaptive service curve was introduced in Okino’s dissertation in [62] and was published
by Agrawal, Cruz, Okino and Rajan in [1], which contains most results in Section 7.4.2, as well as an
application to a window flow control problem that extends Section 4.3.2 on Page 147. They call β̃ an
“adaptive service curve” and β a “partial service curve”.

The packet scale rate guarantee was first defined independently of adaptive service guarantees in [4]. It
serves as a basis for the definition of the Expedited Forwarding capability of the Internet.

222 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

� �

� 6

� $

� �
� 6

� $� $ � �

� $ � �

� 6 � � � 6 � �

� +
 +

� �

� 6

� 6 � �

� +

� �

$ � $ � 9 ? 9 @ & � � 	 ' � " � � 9 ? 9 @ & � � � � %
� +
 + � +

�

� $

� $ � � �

�

� $

� $ � � �

Figure 7.9: Worst-case example for Theorem 7.5.3. All packets have 0 delay through the first component except
packets 1...j − 1 and n.

k ak lk bk fk dk

1 0 σ − lmin δ+ not relevant dj + l1/r
2 l2/ρ l2 δ+ not relevant dj + (l1 + l2)/r
...

j − 1 δ lj−1 δ+ not relevant dj +A

j δ lmin δ ≥ δ + lmin/r δ + lmin/r

j + 1 δ + lmin/r lmin aj+1 δ + 2lmin/r fj+1 +A
...

n− 1 δ + (n− j − 1)lmin/r lmin an−1 δ + (n− j)lmin/r fn−1 +A

n δ + (n− j)lmin/r lmin an + δ δ + (n− j + 1)lmin/r fn + 2A
n+ 1 a+

n σ − lmin an+1 not relevant fn−1 +A+ (σ − lmin)/r
n+ 2 an + a2 l2 an+2 not relevant fn−1 +A+ (σ − lmin + l2)/r
...

n+ j − 1 (an + δ)− lj−1 (an + δ)− not relevant fn−1 + 2A
Notes: A = (ρδ + σ − lmin)/r
(j, l2, ..., lj−1) is a solution to l2 + ...+ lj−1 = ρδ, sc l2, ..., lj−1 ∈ [lmin, lmax]. For example, let j = 2 + � ρδ

lmin
�,

l2 = ρδ − (j − 3)lmin, l3 = ... = lj−1 = lmin. We have l2 ≤ lmax because lmax ≥ 2lmin

Table 7.1: Details for Figure 7.9. Assume for this table that σ − lmin ≤ lmax, otherwise replace packets 1 and n + 1 by
a number of smaller packets arriving in batch.

7.9. EXERCISES 223

7.9 EXERCISES

EXERCISE 7.1. Assume that R→ (β̃, β) → R∗.

1. Show that the node offers to the flow a strict service curve equal to β̃⊗ β, where β is the sub-additive
closure of β.

2. If β̃ = β is a rate-latency function, what is the value obtained for the strict service curve ?

EXERCISE 7.2. Consider a system with input R and output R∗. We call “input flow restarted at time t” the
flow Rt defined for u ≥ 0 by

Rt(u) = R(t+ u) −R∗(t) = R(t, u] +Q(t)

where Q(t) := R(t) − R∗(t) is the backlog at time t. Similarly, let the“output flow restarted at time t” be
the flow R∗

t defined for u ≥ 0 by
R∗

t (u) = R∗(t+ u) −R∗(t)

Assume that the node guarantees a service curve β to all couples of input, output flows (Rt, R
∗
t). Show that

R→ (β) → R∗.

224 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

CHAPTER 8

TIME VARYING SHAPERS

8.1 INTRODUCTION

Throughout the book we usually assume that systems are idle at time 0. This is not a limitation for systems
that have a renewal property, namely, which visit the idle state infinitely often – for such systems we choose
the time origin as one such instant.

There are cases however where we are interested in the effect at time t of non zero initial conditions. This
occurs for example for re-negotiable services, where the traffic contract is changed at periodic renegotiation
moments. An example for this service is the Integrated Service of the IETF with the Resource reSerVation
Protocol (RSVP), where the negotiated contract may be modified periodically [33]. A similar service is the
ATM Available Bit Rate service (ABR). With a renegotiable service, the shaper employed by the source
is time-varying. With ATM, this corresponds to the concept of Dynamic Generic Cell Rate Algorithm
(DGCRA).. At renegotiation moments, the system cannot generally be assumed to be idle. This motivates
the need for explicit formulae that describe the transient effect of non-zero initial condition.

In Section 8.2 we define time varying shapers. In general, there is not much we can say apart from a
direct application of the fundamental min-plus theorems in Section 4.3. In contrast, for shapers made of a
conjunction of leaky buckets, we can find some explicit formulas. In Section 8.3.1 we derive the equations
describing a shaper with non-zero initial buffer. In Section 8.3.2 we add the constraint that the shaper has
some history. Lastly, in Section 8.4, we apply this to analyze the case where the parameters of a shaper are
periodically modified.

This chapter also provides an example of the use of time shifting.

8.2 TIME VARYING SHAPERS

We define a time varying shaper as follows.

DEFINITION 8.2.1. Consider a flow R(t). Given a function of two time variables H(t, s), a time varying
shaper forces the output R∗(t) to satisfy the condition

R∗(t) ≤ H(t, s) +R∗(s)

for all s ≤ t, possibly at the expense of buffering some data. An optimal time varying shaper, or greedy time
varying shaper, is one that maximizes its output among all possible shapers.

225

226 CHAPTER 8. TIME VARYING SHAPERS

The existence of a greedy time varying shaper follows from the following proposition.

PROPOSITION 8.2.1. For an input flow R(t) and a function of two time variables H(t, s), among all flows
R∗ ≤ R satisfying

R∗(t) ≤ H(t, s) +R∗(s)

there is one flow that upper bounds all. It is given by

R∗(t) = inf
s≥0

[
H(t, s) +R(s)

]
(8.1)

where H is the min-plus closure of H , defined in Equation (4.10) on Page 142.

PROOF: The condition defining a shaper can be expressed as{
R∗ ≤ LH(R∗)
R∗ ≤ R

where LH is the min-plus linear operator whose impulse response is H (Theorem 4.1.1). The existence
of a maximum solution follows from Theorem 4.3.1 and from the fact that, being min-plus linear, LH is
upper-semi-continuous. The rest of the proposition follows from Theorem 4.2.1 and Theorem 4.3.1.

The output of the greedy shaper is given by Equation (8.1). A time invariant shaper is a special case; it
corresponds to H(s, t) = σ(t− s), where σ is the shaping curve. In that case we find the well-known result
in Theorem 1.5.1.

In general, Proposition 8.2.1 does not help much. In the rest of this chapter, we specialize to the class of
concave piecewise linear time varying shapers.

PROPOSITION 8.2.2. Consider a set of J leaky buckets with time varying rates rj(t) and bucket sizes bj(t).
At time 0, all buckets are empty. A flow R(t) satisfies the conjunction of the J leaky bucket constraints if
and only if for all 0 ≤ s ≤ t:

R(t) ≤ H(t, s) +R(s)

with

H(t, s) = min
1≤j≤J

{bj(t) +
∫ t

s
rj(u)du} (8.2)

PROOF: Consider the level of the jth bucket. It is the backlog of the variable capacity node (Sec-
tion 1.3.2) with cumulative function

Mj(t) =
∫ t

0
rj(u)du

We know from Chapter 4 that the output of the variable capacity node is given by

R′
j(t) = inf

0≤s≤t
{Mj(t) −Mj(s) +R(s)}

The jth leaky bucket constraint is
R(t) −R′

j(t) ≤ bj(t)

Combining the two expresses the jth constraint as

R(t) −R(s) ≤Mj(t) −Mj(s) + bj(t)

for all 0 ≤ s ≤ t. The conjunction of all these constraints gives Equation (8.2).

In the rest of this chapter, we give a practical and explicit computation of H for H given in Equation (8.2),
when the functions rj(t) and bj(t) are piecewise constant.

8.3. TIME INVARIANT SHAPER WITH INITIAL CONDITIONS 227

8.3 TIME INVARIANT SHAPER WITH NON-ZERO INITIAL CONDITIONS

We consider in this section some time invariant shapers. We start with a general shaper with shaping curve
σ, whose buffer is not assumed to be initially empty. Then we will apply this to analyze leaky bucket shapers
with non-empty initial buckets.

8.3.1 SHAPER WITH NON-EMPTY INITIAL BUFFER

PROPOSITION 8.3.1 (SHAPER WITH NON-ZERO INITIAL BUFFER). Consider a shaper system with shaping
curve σ. Assume that σ is a good function. Assume that the initial buffer content is w0. Then the output R∗

for a given input R is

R∗(t) = σ(t) ∧ inf
0≤s≤t

{R(s) + w0 + σ(t− s)} for all t ≥ 0 (8.3)

PROOF: First we derive the constraints on the output of the shaper. σ is the shaping function thus, for all
t ≥ s ≥ 0

R∗(t) ≤ R∗(s) + σ(t− s)

and given that the bucket at time zero is not empty, for any t ≥ 0, we have that

R∗(t) ≤ R(t) + w0

At time s = 0, no data has left the system; this is expressed with

R∗(t) ≤ δ0(t)

The output is thus constrained by

R∗ ≤ (σ ⊗R∗) ∧ (R+ w0) ∧ δ0

where ⊗ is the min-plus convolution operation, defined by (f ⊗ g)(t) = infs f(s) + g(t − s). Since the
shaper is an optimal shaper, the output is the maximum function satisfying this inequality. We know from
Lemma 1.5.1 that

R∗ = σ ⊗ [(R+ w0) ∧ δ0]
= [σ ⊗ (R+ w0)] ∧ [σ ⊗ δ0]
= [σ ⊗ (R+ w0)] ∧ σ

which after some expansion gives the formula in the proposition. .

Another way to look at the proposition consists in saying that the initial buffer content is represented by an
instantaneous burst at time 0.

The following is an immediate consequence.

COROLLARY 8.3.1 (BACKLOG FOR A SHAPER WITH NON-ZERO INITIAL BUFFER). The backlog of the
shaper buffer with the initial buffer content w0 is given by

w(t) = (R(t) − σ(t) + w0) ∨ sup
0<s≤t

{R(t) −R(s) − σ(t− s)} (8.4)

228 CHAPTER 8. TIME VARYING SHAPERS

8.3.2 LEAKY BUCKET SHAPERS WITH NON-ZERO INITIAL BUCKET LEVEL

Now we characterize a leaky-bucket shaper system with non-zero initial bucket levels.

PROPOSITION 8.3.2 (COMPLIANCE WITH J LEAKY BUCKETS WITH NON-ZERO INITIAL BUCKET LEV-
ELS). A flow S(t) is compliant with J leaky buckets with leaky bucket specifications (rj , bj), j = 1, 2 . . . J
and initial bucket level q0j if and only if

S(t) − S(s) ≤ min
1≤j≤J

[rj · (t− s) + bj] for all 0 < s ≤ t

S(t) ≤ min
1≤j≤J

[rj · t+ bj − q0j] for all t ≥ 0

PROOF: Apply Section 8.3.1 to each of the buckets.

PROPOSITION 8.3.3 (LEAKY-BUCKET SHAPER WITH NON-ZERO INITIAL BUCKET LEVELS). Consider
a greedy shaper system defined by the conjunction of J leaky buckets (rj , bj), with j = 1, 2 . . . J . Assume
that the initial bucket level of the j-th bucket is q0j . The initial level of the shaping buffer is zero. The output
R∗ for a given input R is

R∗(t) = min[σ0(t), (σ ⊗R)(t)] for all t ≥ 0 (8.5)

where σ is the shaping function

σ(u) = min
1≤j≤J

{σj(u)} = min
1≤j≤J

{rj · u+ bj}

and σ0 is defined as
σ0(u) = min

1≤j≤J
{rj · u+ bj − q0j }

PROOF: By Corollary 8.3.2 applied to S = R∗, the condition that the output is compliant with the J
leaky buckets is

R∗(t) −R∗(s) ≤ σ(t− s) for all 0 < s ≤ t
R∗(t) ≤ σ0(t) for all t ≥ 0

Since σ0(u) ≤ σ(u) we can extend the validity of the first equation to s = 0. Thus we have the following
constraint:

R∗(t) ≤ [(σ ⊗R∗) ∧ (R ∧ σ0)](t)

Given that the system is a greedy shaper, R∗(·) is the maximal solution satisfying those constraints. Using
the same min-plus result as in Proposition 8.3.1, we obtain:

R∗ = σ ⊗ (R ∧ σ0) = (σ ⊗R) ∧ (σ ⊗ σ0)

As σ0 ≤ σ, we obtain
R∗ = (σ ⊗R) ∧ σ0

We can now obtain the characterization of a leaky-bucket shaper with non-zero initial conditions.

THEOREM 8.3.1 (LEAKY-BUCKET SHAPER WITH NON-ZERO INITIAL CONDITIONS). Consider a shaper
defined by J leaky buckets (rj , bj), with j = 1, 2 . . . J (leaky-bucket shaper). Assume that the initial buffer
level of is w0 and the initial level of the jth bucket is q0j . The output R∗ for a given input R is

R∗(t) = min{σ0(t), w0 + inf
u>0

{R(u) + σ(t− u)}} for all t ≥ 0 (8.6)

with
σ0(u) = min

1≤j≤J
(rj · u+ bj − q0j)

8.4. TIME VARYING LEAKY-BUCKET SHAPER 229

PROOF: Apply Proposition 8.3.3 to the input R′ = (R+ w0) ∧ δ0 and observe that σ0 ≤ σ.

An interpretation of Equation (8.6) is that the output of the shaper with non-zero initial conditions is either
the output of the ordinary leaky-bucket shaper, taking into account the initial level of the buffer, or, if smaller,
the output imposed by the initial conditions, independent of the input.

8.4 TIME VARYING LEAKY-BUCKET SHAPER

We consider now time varying leaky-bucket shapers that are piecewise constant. The shaper is defined by
a fixed number J of leaky buckets, whose parameters change at times ti. For t ∈ [ti, ti+1) := Ii, we have
thus

rj(t) = ri
j and bj(t) = bij

At times ti, where the leaky bucket parameters are changed, we keep the leaky bucket level qj(ti) unchanged.

We say that σi(u) := min1≤jJ{ri
ju+ bij} is the value of the time varying shaping curve during interval Ii.

With the notation in Section 8.2, we have

H(t, ti) = σi(t− ti) if t ∈ Ii

We can now use the results in the previous section.

PROPOSITION 8.4.1 (BUCKET LEVEL). Consider a piecewise constant time varying leaky-bucket shaper
with output R∗. The bucket level qj(t) of the j-th bucket is, for t ∈ Ii:

qj(t) =
[
R∗(t) −R∗(ti) − ri

j · (t− ti) + qj(ti)
]
∨

supti<s≤t{R∗(t) −R∗(s) − ri
j · (t− s)}

(8.7)

PROOF: We use a time shift, defined as follows. Consider a fixed interval Ii and define

x∗(τ) := R∗(ti + τ) −R∗(ti)

Observe that qj(ti + τ) is the backlog at time τ (call it w(τ) at the shaper with shaping curve σ(τ) = ri
j · t,

fed with flow x∗, and with an initial buffer level qj(ti). By Chapter 8.3.1 we have

w(τ) =
[
x∗(τ) − ri

j · τ + qj(ti)
] ∨ sup

0<s′≤τ
{x∗(τ) − x∗(s′) − ri

j · (τ − s′)}

which after re-introducing R∗ gives Equation (8.7)

THEOREM 8.4.1 (TIME VARYING LEAKY-BUCKET SHAPERS). Consider a piecewise constant time vary-
ing leaky-bucket shaper with time varying shaping curve σi in the interval Ii. The output R∗ for a given
input R is

R∗(t) = min
[
σ0

i (t− ti) +R∗(ti), inf
ti<s≤t

{σi(t− s) +R(s)}
]

(8.8)

with σ0
i is defined by

σ0
i (u) = min

1≤j≤J

[
ri
j · u+ bji − qj(ti)

]
and qj(ti) is defined recursively by Equation (8.7). The backlog at time t is defined recursively by

w(t) = max

[
sup

ti<s≤t
{R(t) −R(s) − σi(t− s)},

R(t) −R(ti) − σ0
i (t− ti) + w(ti)

]
t ∈ Ii (8.9)

230 CHAPTER 8. TIME VARYING SHAPERS

PROOF: Use the same notation as in the proof of Proposition 8.4.1 and define in addition

x(τ) := R(ti + τ) −R(ti)

We can now apply Theorem 8.3.1, with initial bucket levels equal to qj(ti) as given in Equation (8.7) and
with an initial buffer level equal to w(ti). The input-output characterization of this system is given by
Equation (8.6), thus

x∗(τ) = σ0
i (τ) ∧ [σi ⊗ x′](τ)

where

x′(τ) =
{
x(τ) + w(ti) τ > 0
x(τ) τ ≤ 0

Hence, re-introducing the original notation, we obtain

R∗(t) −R∗(ti) =
[
σ0

i (t− ti) ∧ inf
ti<s≤t

{σi(t− s) +R(s) −R(ti) + w(ti)}
]

which gives Equation (8.8).

The backlog at time t follows immediately.

Note that Theorem 8.4.1 provides a representation of H . However, the representation is recursive: in order
to compute R∗(t), we need to compute R∗(ti) for all ti < t.

8.5 BIBLIOGRAPHIC NOTES

[71] illustrates how the formulas in Section 8.4 form the basis for defining a renegotiable VBR service.
It also illustrates that, if some inconsistency exists between network and user sides whether leaky buckets
should be reset or not at every renegotiation step, then this may result in inacceptable losses (or service
degradation) due to policing.

[12] analyzes the general concept of time varying shapers.

CHAPTER 9

SYSTEMS WITH LOSSES

All chapters have dealt up to now with lossless systems. This chapter shows that network calculus can also
be applied to lossy systems, if we model them as a lossless system preceded by a ‘clipper’ [17, 18], which
is a controller dropping some data when a buffer is full, or when a delay constraint would otherwise be
violated. By applying once again Theorem 4.3.1, we obtain a representation formula for losses. We use this
formula to compute various bounds. The first one is a bound on the loss rate in an element when both an
arrival curve of the incoming traffic and a minimum service curve of the element are known. We use it next
to bound losses in a complex with a complex service curve (e.g., VBR shapers) by means of losses with
simpler service curves (e.g., CBR shapers). Finally, we extend the clipper, which models data drops due to
buffer overflow, to a ‘compensator’, which models data accrual to prevent buffer underflow, and use it to
compute explicit solutions to Skorokhod reflection mapping problem with two boundaries.

9.1 A REPRESENTATION FORMULA FOR LOSSES

9.1.1 LOSSES IN A FINITE STORAGE ELEMENT

We consider a network element offering a service curve β, and having a finite storage capacity (buffer) X .
We denote by a the incoming traffic.

We suppose that the buffer is not large enough to avoid losses for all possible input traffic patterns, and we
would like to compute the amount of data lost at time t, with the convention that the system is empty at time
t = 0. We model losses as shown in Figure 9.1, where x(t) is the data that has actually entered the system
in the time interval [0, t]. The amount of data lost during the same period is therefore L(t) = a(t) − x(t).

The model of Figure 9.1 replaces the original lossy element, by an equivalent concatenation a controller
or regulator that separates the incoming flow a in two separate flows, x and L, and that we call clipper,
following the denomination introduced in [18], together with the original system, which is now lossless for
flow x.

The amount of data (x(t) − x(s)) that actually entered the system in any time interval (s, t] is always
bounded above by the total amount of data (a(t) − a(s)) that has arrived in the system during the same
period. Therefore, for any 0 ≤ s ≤ t, x(t) ≤ x(s)+a(t)−a(s) or equivalently, using the linear idempotent
operator introduced by Definition 4.1.5,

x(t) ≤ inf
0≤s≤t

{a(t) − a(s) + x(s)} = ha(x)(t). (9.1)

231

232 CHAPTER 9. SYSTEMS WITH LOSSES

Clipp er

a(t)

L(t)

x(t)
X y(t)

Figure 9.1: System with losses

On the other hand, x is the part of a that does actually enter the system. If y denotes its output, there is
no loss for x if x(t) − y(t) ≤ X for any t. We do not know the exact mapping y = Π(x) realized by the
system, but we assume that Π is isotone. So at any time t

x(t) ≤ y(t) +X = Π(x)(t) +X (9.2)

The data x that actually enters the system is therefore the maximum solution to (9.1) and (9.2), which we
can recast as

x ≤ a ∧ {Π(x) +X} ∧ ha(x), (9.3)

and which is precisely the same equation as (4.33) with W = X and M = a. Its maximal solution is given
by

x = ({Π +X} ∧ ha)(a),

or equivalently, after applying Corollary 4.2.1, by

x =
(
(ha ◦ (Π +X)) ◦ ha

)
(a) =

(
(ha ◦ (Π +X))

)
(a) (9.4)

where the last equality follows from ha(a) = a.

We do not know the exact mapping Π, but we know that Π ≥ Cβ . We have thus that

x ≥ (ha ◦ Cβ+X)(a). (9.5)

The amount of lost data in the interval [0, t] is therefore given by

L(t) = a(t) − x(t)

= a(t) − ha ◦ {Cβ+X}(a)(t) = a(t) − inf
n∈N

{
(ha ◦ Cβ+X)(n)

}
(a)(t)

= sup
n∈N

{
a(t) − (ha ◦ Cβ+X)(n) (a)(t)

}
= sup

n≥0
{a(t) − inf

0≤s2n≤...≤s2≤s1≤t
{a(t) − a(s1) + β(s1 − s2) +X

+a(s2) − . . .+ a(s2n)}}
= sup

n∈N

{ sup
0≤s2n≤...≤s2≤s1≤t

{a(s1) − β(s1 − s2) − a(s2)

+ . . .− a(s2n) − nX}}.

Consequently, the loss process can be represented by the following formula:

L(t) ≤

9.1. A REPRESENTATION FORMULA FOR LOSSES 233

sup
n∈N

{
sup

0≤s2n≤...≤s2≤s1≤t

{
n∑

i=1

[a(s2i−1) − a(s2i) − β(s2i−1 − s2i) −X]

}}
(9.6)

If the network element is a greedy shaper, with shaping curve β, then Π(x) = Cβ , and the inequalities in
(9.5) and (9.6) become equalities.

What the formula says is that losses up to time t are obtained by summing the losses over all intervals
[s2i−1, s2i], where s2i marks the end of an overflow period, and where s2i−1 is the last time before s2i when
the buffer was empty. These intervals are therefore larger then the congestion intervals, and their number n
is smaller or eqaul to the number of congestion intervals. Figure 9.2 shows an example where n = 2 and
where there are three congestion periods.

β(t) = Ct

t

x(t)

X

a(t)

y(t)

X

1s 2s 3s 4s

Figure 9.2: Losses in a constant rate shaper (β = λC). Fresh traffic a is represented with a thin, solid line; accepted
traffic x is represented by a bold, solid line; the output process y is represented by a bold, dashed line.

We will see in the next sections how the losses representation formula (9.6), can help us to obtain determin-
istic bounds on the loss process in some systems.

9.1.2 LOSSES IN A BOUNDED DELAY ELEMENT

Before moving to these applications, we first derive a representation formula for a similar problem, where
data are discarded not because of a finite buffer limit, but because of a delay constraint: any entering data
must have exited the system after at most d unit of time, otherwise it is discarded. Such discarded data are
called losses due to a delay constraint of d time units.

As above, let x be the part of a that does actually enter the system, and let y be its output. All the data
x(t) that has entered the system during [0, t] must therefore have left at time t + d at the latest, so that
x(t) − y(t+ d) ≤ 0 for any t. Thus

x(t) ≤ y(t+ d) = Π(x)(t+ d) = (S−d ◦ Π)(x)(t), (9.7)

where S−d is the shift operator (with forward shift of d time units) given by Definition 4.1.7.

234 CHAPTER 9. SYSTEMS WITH LOSSES

On the other hand, as in the previous example, the amount of data (x(t) − x(s)) that actually entered the
system in any time interval (s, t] is always bounded above by the total amount of data (a(t) − a(s)) that
has arrived in the system during the same period. Therefore the data x that actually enters the system is
therefore the maximum solution to

x ≤ a ∧ (S−d ◦ Π)(x) ∧ ha(x), (9.8)

which is
x = ({S−d ◦ Π} ∧ ha)(a),

or equivalently, after applying Corollary 4.2.1, by

x =
(
ha ◦ ({S−d ◦ Π}) ◦ ha

)
(a) =

(
ha ◦ S−d ◦ Π

)
(a). (9.9)

Since Π ≥ Cβ , we also have,
x ≥ (

ha ◦ S−d ◦ Cβ

)
(a). (9.10)

The amount of lost data in the interval [0, t] is therefore given by

L(t) ≤ sup
n∈N

{
a(t) − (ha ◦ S−d ◦ Cβ)(n) (a)(t)

}
which can be developed as

L(t) ≤

sup
n∈N

{
sup

0≤s2n≤...≤s2≤s1≤t

{
n∑

i=1

[a(s2i−1) − a(s2i) − β(s2i−1 + d− s2i)]

}}
(9.11)

Once again, if Π = Cβ , then (9.11) becomes an equality.

We can also combine a delay constraint with a buffer constraint, and repeat the same reasoning, starting
from

x ≤ a ∧ {Π(x) +X} ∧ (S−d ◦ Π)(x) ∧ ha(x). (9.12)

to obtain

L(t) ≤ sup
n∈N

{ sup
0≤s2n≤...≤s2≤s1≤t

{
n∑

i=1

[a(s2i−1) − a(s2i)

−(β(s2i−1 + d− s2i) ∧ {β(s2i−1 − s2i) +X})]}}. (9.13)

This can be recast as a recursion on time if t ∈ N, following the time method to solve (9.12) instead of the
space method. This recurstion is established in [17].

9.2 APPLICATION 1: BOUND ON LOSS RATE

Let us return to the case of losses due to buffer overflow, and suppose that in this section fresh traffic a is
constrained by an arrival curve α.

The following theorem provide a bound on the loss rate l(t) = L(t)/a(t), and is a direct consequence of the
loss representation (9.6).

THEOREM 9.2.1 (BOUND ON LOSS RATE). Consider a system with storage capacity X , offering a service
curve β to a flow constrained by an arrival curve α. Then the loss rate l(t) = L(t)/a(t) is bounded above
by

l̂(t) =
[
1 − inf

0<s≤t

β(s) +X

α(s)

]+

. (9.14)

9.3. APPLICATION 2: BOUND ON LOSSES IN COMPLEX SYSTEMS 235

PROOF: With l̂(t) defined by (9.14), we have that for any 0 ≤ u < v ≤ t,

1 − l̂(t) = inf
0<s≤t

β(s) +X

α(s)
≤ β(v − u) +X

α(v − u)
≤ β(v − u) +X

a(v) − a(u)

because a(v) − a(u) ≤ α(v − u) by definition of an arrival curve. Therefore, for any 0 ≤ u ≤ v ≤ t,

a(v) − a(u) − β(v − u) −X ≤ l̂(t) · [a(v) − a(u)].

For any n ∈ N0 = {1, 2, 3, ...}, and any sequence {sk}1≤k≤2n, with 0 ≤ s2n ≤ . . . ≤ s1 ≤ t, setting
v = s2i−1 and u = s2i in the previous equation, and summing over i, we obtain

n∑
i=1

[a(s2i−1) − a(s2i) − β(s2i−1 − s2i) −X] ≤ l̂(t) ·
n∑

i=1

[a(s2i−1) − a(s2i)] .

Because the sk are increasing with k, the right hand side of this inequality is always less than, or equal to,
l̂(t) · a(t). Therefore we have

L(t) ≤ sup
n∈N

{
sup

0≤s2n≤...≤s1≤t

{
n∑

i=1

[a(s2i−1) − a(s2i) − β(s2i−1 − s2i) −X]

}}
≤ l̂(t) · a(t),

which shows that l̂(t) ≥ l(t) = L(t)/a(t).

To have a bound independent of time t, we take the sup over all t of (9.14), to get

l̂ = sup
t≥0

l̂(t) =
[
1 − inf

t>0

β(t) +X

α(t)

]+

, (9.15)

and retrieve the result of Chuang [16].

A similar result for losses due to delay constraint d, instead of finite buffer X , can beeasily obtained too:

l̂(t) =
[
1 − inf

0<s≤t

β(s+ d)
α(s)

]+

(9.16)

l̂ =
[
1 − inf

t>0

β(t+ d)
α(t)

]+

. (9.17)

9.3 APPLICATION 2: BOUND ON LOSSES IN COMPLEX SYSTEMS

As a particular application of the loss representation formula (9.6), we show how it is possible to bound
the losses in a system offering a somewhat complex service curve β, by losses in simpler systems. The
first application is the bound on the losses in a shaper by a system that segregates the resources (buffer,
bandwidth) between a storage system and a policer. The second application deals with a VBR shaper, which
is compared with two CBR shapers. For both applications, the losses in the original system are bounded
along every sample path by the losses in the simpler systems. For congestion times however, the same
conclusion does not always hold.

9.3.1 BOUND ON LOSSES BY SEGREGATION BETWEEN BUFFER AND POLICER

We will first compare the losses in two systems, having the same input flow a(t).

236 CHAPTER 9. SYSTEMS WITH LOSSES

The first system is the one of Figure 9.1 with service curve β and buffer X , whose losses L(t) are therefore
given by (9.6).

The second system is made of two parts, as shown in Figure 9.3(a). The first part is a system with storage
capacity X , that realizes some mapping Π′ of the input that is not explicitly given, but that is assumed to be
isotone, and not smaller than Π (Π′ ≥ Π). We also know that a first clipper discards data as soon as the total
backlogged data in this system exceeds X . This operation is called buffer discard. The amount of buffer
discarded data in [0, t] is denoted by LBuf(t). The second part is a policer without buffer, whose output is
the min-plus convolution of the accepted input traffic by the policer by β. A second clipper discards data
as soon as the total output flow of the storage system exceeds the maximum input allowed by the policer.
This operation is called policing discard. The amount of discarded data by policing in [0, t] is denoted by
LPol(t).

LPol(t)

σ
a(t) y(t)

LBuf(t)

x(t)

Buffer
Cli pper

Policer
Cli pper

LPol(t)

C

a2(t) y2(t)C2
v

X2
v

LBuf(t)

x2(t)

a1(t)

y1(t)
C1
v

X1
v

x1(t)

Buffer
Cli pper

Policer
Cli pper

(a)

(b)

Virtual segregated system

System with
buffer X

Figure 9.3: A storage/policer system with separation between losses due to buffer discard and to policing discard (a)
A virtual segregated system for 2 classes of traffic, with buffer discard and policing discard, as used by Lo Presti et al
[56] (b)

THEOREM 9.3.1. Let L(t) be the amount of lost data in the original system, with service curve β and
buffer X .

Let LBuf(t) (resp. LPol(t)) be the amount of data lost in the time interval [0, t] by buffer (resp. policing)
discard, as defined above.

Then L(t) ≤ LBuf(t) + LPol(t).

9.3. APPLICATION 2: BOUND ON LOSSES IN COMPLEX SYSTEMS 237

PROOF: Let x and y denote respectively the admitted and output flows of the buffered part of the second
system. Then the policer implies that y = β ⊗ x, and any time s we have

a(s) − LBuf(s) −X = x(s) −X ≤ y(s) ≤ x(s) = a(s) − LBuf(s).

which implies that for any 0 ≤ u ≤ v ≤ t,

y(v) − y(u) − β(v − u)
≥ (a(v) − LBuf(v) −X) − (a(u) − LBuf(u)) − β(v − u)
= a(v) − a(u) − β(v − u) −X − (LBuf(v) − LBuf(u)).

We use the same reasoning as in the proof of Theorem 9.2.1: we pick any n ∈ N0 and any increasing
sequence {sk}1≤k≤2n, with 0 ≤ s2n ≤ . . . ≤ s1 ≤ t. Then we set v = s2i−1 and u = s2i in the previous
inequality, and we sum over i, to obtain

n∑
i=1

[y(s2i−1) − y(s2i) − β(s2i−1 − s2i)] ≥
n∑

i=1

[a(s2i−1) − a(s2i) − β(s2i−1 − s2i) −X]

−
n∑

i=1

[(LBuf(s2i−1) − LBuf(s2i))] .

By taking the supremum over all n and all sequences {sk}1≤k≤2n, the left hand side is equal to LPol(t),
because of (9.6) (we can replace the inequality in (9.6) by an equality, because the output of the policer is
y = β ⊗ x). Since {sk} is a wide-sense increasing sequence, and since LBuf is a wide-sense increasing
function, we obtain therefore

LPol(t) ≥
sup
n∈N

{
sup

0≤s2n≤...≤s1≤t
[a(s2i−1) − a(s2i) − β(s2i−1 − s2i) −X]

}
− LBuf(t)

= L(t) − LBuf(t),

which completes the proof.

Such a separation of resources between the “buffered system” and “policing system” is used in the estimation
of loss probability for devising statistical CAC (Call Acceptance Control) algorithms as proposed by Elwalid
et al [27], Lo Presti et al. [56]. The incoming traffic is separated in two classes. All variables relating to
the first (resp. second) class are marked with an index 1 (resp. 2), so that a(t) = a1(t) + a2(t). The
original system is a CBR shaper (β = λC) and the storage system is a virtually segregated system as in
Figure 9.3(b), made of 2 shapers with rates Cv

1 and Cv
2 and buffers Xv

1 and Xv
2 . The virtual shapers are

large enough to ensure that no loss occurs for all possible arrival functions a1(t) and a2(t). The total
buffer space (resp. bandwidth) is larger than the original buffer space (resp. bandwidth): Xv

1 + Xv
2 ≥ X

(Cv
1 + Cv

2 ≥ C). However, the buffer controller discards data as soon as the total backlogged data in the
virtual system exceeds X and the policer controller discards data as soon as the total output rate of the
virtual system exceeds C.

9.3.2 BOUND ON LOSSES IN A VBR SHAPER

In this second example, we consider of a “buffered leaky bucket” shaper [50] with buffer X , whose output
must conform to a VBR shaping curve with peak rate P , sustainable rate M and burst tolerance B so that

238 CHAPTER 9. SYSTEMS WITH LOSSES

(a)

(b)

LCBR’(t)

xCBR’(t) X

Clipper

P

a(t)

LCBR’(t)

xCBR’(t)
X

Clipper

P

LCBR’’’(t)

B
yCBR’(t)

Clipper

M

a(t)

LCBR’’(t)

xCBR’’(t)
X+B

Clipper

Ma(t)

Figure 9.4: Two CBR shapers in parallel (a) and in tandem (b).

here the mapping of the element is Π = Cβ with β = λP ∧ γM,B . We will consider two systems to bound
these losses: first two CBR shapers in parallel (Figure 9.4(a)) and second two CBR shapers in tandem
(Figure 9.4(b)). Similar results also holds for losses due to a delay constraint [53].

We will first show that the amount of losses during [0, t] in this system is bounded by the sum of losses
in two CBR shapers in parallel, as shown in Figure 9.4(a): the first one has buffer of size X and rate P ,
whereas the second one has buffer of size X +B and rate M . Both receive the same arriving traffic a as the
original VBR shaper.

THEOREM 9.3.2. Let LVBR(t) be the amount of lost data in the time interval [0, t] in a VBR shaper with
buffer X and shaping curve β = λP ∧ γM,B , when the data that has arrived in [0, t] is a(t).

Let LCBR′(t) (resp. LCBR′′(t)) be the amount of lost data during [0, t] in a CBR shaper with buffer X (resp.
(X +B)) and shaping curve λP (resp. λM) with the same incoming traffic a(t).

Then LVBR(t) ≤ LCBR′(t) + LCBR′′(t).

PROOF: The proof is again a direct application of (9.6). Pick any 0 ≤ u ≤ v ≤ t. Since β = λP ∧γM,B ,

a(v) − a(u) − β(v − u) −X =
{a(v) − a(u) − P (v − u) −X} ∨ {a(v) − a(u) −M(v − u) −B −X}

Pick any n ∈ N0 and any increasing sequence {sk}1≤k≤2n, with 0 ≤ s2n ≤ . . . ≤ s1 ≤ t. Set v = s2i−1

and u = s2i in the previous equation, and sum over i, to obtain

n∑
i=1

[a(s2i−1) − a(s2i) − β(s2i−1 − s2i) −X]

9.4. SKOHORKHOD’S REFLECTION PROBLEM 239

=
n∑

i=1

[{a(s2i−1) − a(s2i) − P (s2i−1 − s2i) −X}

∨{a(s2i−1) − a(s2i) −M(s2i−1 − s2i) −B −X}

≤
n∑

i=1

[a(s2i−1) − a(s2i) − P (s2i−1 − s2i) −X]

+
n∑

i=1

[a(s2i−1) − a(s2i) −M(s2i−1 − s2i) −B −X]

≤ LCBR′(t) + LCBR′′(t),

because of (9.6). By taking the supremum over all n and all sequences {sk}1≤k≤2n in the previous inequal-
ity, we get the desired result.

A similar exercise shows that the amount of losses during [0, t] in the VBR system is also bounded above by
the sum of losses in two CBR shapers in cascade as shown in Figure 9.4(b): the first one has buffer of size
X and rate P , and receives the same arriving traffic a as the original VBR shaper, whereas its output is fed
into the second one with buffer of size B and rate M .

THEOREM 9.3.3. Let LVBR(t) be the amount of lost data in the time interval [0, t] in a VBR shaper with
buffer X and shaping curve β = λP ∧ γM,B , when the data that has arrived in [0, t] is a(t).

Let LCBR′(t) (resp. LCBR′′(t)) be the amount of lost data during [0, t] in a CBR shaper with buffer X (resp.
B) and shaping curve λP (resp. λM) with the same incoming traffic a(t) (resp. the output traffic of the first
CBR shaper).

Then LVBR(t) ≤ LCBR′(t) + LCBR′′(t).

The proof is left as an exercise.

Neither of the two systems in Figure 9.4 gives the better bound for any arbitrary traffic pattern. For example,
suppose that the VBR system parameters are P = 4, M = 1, B = 12 and X = 4, and that the traffic is a
single burst of data sent at rate R during four time units, so that

a(t) =
{
R · t if 0 ≤ t ≤ 4
4R if t ≥ 4

If R = 5, both the VBR system and the parallel set of the two CBR′ and CBR′′ systems are lossless,
whereas the amount of lost data after five units of time in the tandem of the two CBR′ and CBR′′′ systems
is equal to three.

On the other hand, if R = 6, the amount of lost data after five units of time in the VBR system, the parallel
system (CBR′ and CBR′′) and the tandem system (CBR′ and CBR′′′) are respectively equal to four, eight
and seven.

Interestingly enough, whereas both systems of Figure 9.4 will bound the amount of losses in the original
system, it is no longer so for the congestion periods, i.e. the time intervals during which losses occur. The
tandem system does not offer a bound on the congestion periods, contrary to the parallel system [53].

9.4 SOLUTION TO SKOHORKHOD’S REFLECTION PROBLEM WITH TWO

BOUNDARIES

To obtain the model of Figure 9.1, we have added a regulator – called clipper – before the system itself,
whose input x is the maximal input ensuring a lossless service, given a finite storage capacityX . The clipper

240 CHAPTER 9. SYSTEMS WITH LOSSES

eliminates the fraction of fresh traffic a that exceeds x. We now generalize this model by adding a second
regulator after the lossless system, whose output is denoted with y, as shown on Figure 9.5. This regulator
complements y, so that the output of the full process is now a given function b ∈ F . The resulting process
N = y − b is the amount of traffic that needs to be fed to prevent the storage system to enter in starvation.
N compensates for possible buffer underflows, hence we name this second regulator compensator.

a(t) Storage
system

y(t)

L(t)

x(t)
Cl ipper

N(t)

b(t)

Compensator

Figure 9.5: A storage system representing the variables used to solve Skorokhod’s reflection problem with two bound-
aries

We can explicitly compute the loss process L and the “compensation” process N , from the arrival process
a and the departure process b, using, once again, Theorem 4.3.1. We are looking for the maximal solution

�x(t) = [x(t) y(t)]T ,

where T denotes transposition, to the set of inequalities

x(t) ≤ inf
0≤s≤t

{a(t) − a(s) + x(s)} (9.18)

x(t) ≤ y(t) +X (9.19)

y(t) ≤ x(t) (9.20)

y(t) ≤ inf
0≤s≤t

{b(t) − b(s) + y(s)}. (9.21)

The two first inequalities are identical to (9.1) and to (9.2). The two last inequalities are the dual constraints
on y. We can therefore recast this system as

x ≤ a ∧ ha(x) ∧ {y +X} (9.22)

y ≤ b ∧ x ∧ hb(x). (9.23)

This is a system of min-plus linear inequalities, whose solution is

�x = LH(�a) = LH(�a),

where H and �a are defined as

�a(t) = [a(t) b(t)]T

H(t, s) =
[
a(t) − a(s) δ0(t− s) +X
δ0(t− s) b(t) − b(s)

]
.

for all 0 ≤ s ≤ t. Instead of computing H , we go faster by first computing the maximal solution of (9.23).
Using properties of the linear idempotent operator, we get

y = hb(x ∧ b) = hb(x ∧ b) = hb(x) ∧ hb(b) = hb(x).

9.4. SKOHORKHOD’S REFLECTION PROBLEM 241

Next we replace y by hb(x) in (9.22), and we compute its maximal solution, which is

x = ha ∧ {hb +X}(a).
We work out the sub-additive closure using Corollary 4.2.1, and we obtain

x = (ha ◦ {hb +X})(a) (9.24)

and thus
y =

(
hb ◦ ha ◦ {hb +X}

)
(a). (9.25)

After some manipulations, we get
N(t) = b(t) − y(t) =

sup
n∈N

{
sup

0≤s2n+1≤...≤s2≤s1≤t

{
2n+1∑
i=1

(−1)i(a(si) − b(si))

}
− nX

}
(9.26)

L(t) = a(t) − x(t) =

sup
n∈N

{
sup

0≤s2n≤...≤s2≤s1≤t

{
2n∑
i=1

(−1)i+1(a(si) − b(si))

}
− nX

}
. (9.27)

Interestingly enough, these two functions are the solution of the so-called Skorokhod reflection problem
with two fixed boundaries [74, 38].

Let us describe this reflection mapping problem following the exposition of [46]. We are given a lower
boundary that will be taken here as the origin, an upper boundary X > 0, and a free process z(t) ∈ R such
that 0 ≤ z(0−) ≤ X . Skorokhod’s reflection problem looks for functions N(t) (lower boundary process)
and L(t) (upper boundary process) such that

1. The reflected process
W (t) = z(t) +N(t) − L(t) (9.28)

is in [0, X] for all t ≥ 0.
2. Both N(t) and L(t) are non decreasing with N(0−) = L(0−) = 0, and N(t) (resp. L(t)) increases

only when W (t) = 0 (resp. W (t) = X), i.e., with 1A denoting the indicator function of A∫ ∞

0
1{W (t)>0}dN(t) = 0 (9.29)∫ ∞

0
1{W (t)<X}dL(t) = 0 (9.30)

The solution to this problem exists and is unique [38]. When only one boundary is present, explicit formulas
are available. For instance, if X → ∞, then there is only one lower boundary, and the solution is easily
found to be

N(t) = − inf
0≤s≤t

{z(s)}
L(t) = 0.

If X < ∞, then the solution can be constructed by successive approximations but, to our knowledge, no
solution has been explicitly obtained. The following theorem gives such explicit solutions for a continuous
VF function z(t). A VF function (VF standing for Variation Finie [38, 70]) z(t) on R+ is a function such
that for all t > 0

sup
n∈N0

sup
0=sn<sn−1<...<s1<s0=t

{
n−1∑
i=0

|z(si) − z(si+1)|
}
<∞.

VF functions have the following property [70]: z(t) is a VF function on R+ if and only if it can be written
as the difference of two wide-sense increasing functions on R+.

242 CHAPTER 9. SYSTEMS WITH LOSSES

THEOREM 9.4.1 (SKOROKHOD’S REFLECTION MAPPING). Let the free process z(t) be a continuous VF
function on R+. Then the solution to Skorokhod’s reflection problem on [0, X] is

N(t) = sup
n∈N

{
sup

0≤s2n+1≤...≤s2≤s1≤t

{
2n+1∑
i=1

(−1)iz(si)

}
− nX

}
(9.31)

L(t) = sup
n∈N

{
sup

0≤s2n≤...≤s2≤s1≤t

{
2n∑
i=1

(−1)i+1z(si)

}
− nX

}
. (9.32)

PROOF: As z(t) is a VF function on [0,∞), there exist two increasing functions a(t) and b(t) such that
z(t) = a(t) − b(t) for all t ≥ 0. As z(0) ≥ 0, we can take b(0) = 0 and a(0) = z(0). Note that a, b ∈ F .

We will show now that L = a − x and N = b − y, where x and y are the maximal solutions of (9.22) and
(9.23), are the solutions of Skorokhod’s reflection problem.

First note that

W (t) = z(t) +N(t) − L(t) = (a(t) − b(t)) + (b(t) − y(t)) − (a(t) − x(t)) = x(t) − y(t)

is in [0, X] for all t ≥ 0 because of (9.19) and (9.20).

Second, because of (9.21), note that N(0) = b(0) − y(0) = 0 and that for any t > 0 and 0 ≤ s < t,
N(t) − N(s) = b(t) − b(s) + y(s) − y(t) ≥ 0, which shows that N(t) is non decreasing. The same
properties can be deduced for L(t) from (9.18).

Finally, if W (t) = x(t) − y(t) > 0, there is some s� ∈ [0, t] such that y(t) = y(s�) + b(t) − b(s�) because
y is the maximal solution satisfying (9.20) and (9.21). Therefore for all s ∈ [s�, t],

0 ≤ N(t) −N(s) ≤ N(t) −N(s�) = b(t) − b(s�) + y(s�) − y(t) = 0

which shows that N(t) − N(s) = 0 and so that N(t) is non increasing if W (t) > 0. A similar reasoning
shows that L(t) is non increasing if W (t) < X .

Consequently, N(t) and L(t) are the lower and upper reflected processes that we are looking for. We have
already computed them: they are given by (9.26) and (9.27). Replacing a(si)−b(si) in these two expressions
by z(si), we establish (9.31) and (9.32).

9.5 BIBLIOGRAPHIC NOTES

The clipper was introduced by Cruz and Tenaja, and was extended to get the loss representation formula
presented in this chapter in [17, 53]. Explicit expressions when operator Π is a general, time-varying oper-
ator, can be found in [17]. We expect results of this chapter to form a starting point for obtaining bounds
on probabilities of loss or congestion for lossy shapers with complex shaping functions; the method would
consist in applying known bounds to virtual systems and take the minimum over a set of virtual systems.

Bibliography

[1] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. A framework for adapative service guarantees. In
Proc. Allerton Conf on Comm, Control and Comp, Monticello, IL, Sept 1998.

[2] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. Performance bounds for flow control protocols.
IEEE/ACM Transactions on Networking (7) 3, pages 310–323, June 1999.

[3] M. Andrews. Instability of fifo in session-oriented networks. In Eleventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2000), pages 440–447, January 2000.

[4] J. C. R. Bennett, Benson K., Charny A., Courtney W. F., and J.-Y. Le Boudec. Delay jitter bounds and
packet scale rate guarantee for expedited forwarding. In Proceedings of Infocom, April 2001.

[5] J. C. R. Bennett, Benson K., Charny A., Courtney W. F., and J.-Y. Le Boudec. Delay jitter bounds and
packet scale rate guarantee for expedited forwarding. ACM/IEEE Transactions on Networking, 2002.

[6] J.C.R. Bennett and H. Zhang. Wf2q: Worst-case fair weighted fair queuing. In Proceedings of Infocom,
volume 1, pages 120–128, Mar 1996.

[7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for differentiated
services, December 1998. RFC 2475, IETF.

[8] C. S. Chang. Stability, queue length and delay, part i: Deterministic queuing networks. Technical
Report Technical Report RC 17708, IBM, 1992.

[9] C.-S. Chang, W.-J. Chen, and H.-Y. Hunag. On service guarantees for input buffered crossbar switches:
A capacity decomposition approach by birkhoff and von neumann. In Proc of IWQOS 99, March 1999.

[10] C.S. Chang. On deterministic traffic regulation and service guarantee: A systematic approach by
filtering. IEEE Transactions on Information Theory, 44:1096–1107, August 1998.

[11] C.S. Chang. Performance Guarantees in Communication Networks. Springer-Verlag, New York, 2000.

[12] C.S. Chang and R. L. Cruz. A time varying filtering theory for constrained traffic regulation and
dynamic service guarantees. In Preprint, July 1998.

[13] A. Charny, J.C.R. Bennett, K. Benson, J. Y. Le Boudec, A. Chiu, W. Courtney, S. Davari, V. Firoiu,
C. Kalmanek, and K.K. Ramakrishnan. Supplemental information for the new definition of the ef phb
(expedited forwarding per-hop behavior). RFC 3247, March 2002.

[14] A. Charny and J.-Y. Le Boudec. Delay bounds in a network with aggregate scheduling. In First Inter-
national Workshop on Quality of future Internet Services, volume 1922 of Lecture Notes in Computer
Science, pages 1–13, Berlin, Germany, September 2000. Springer.

243

244 BIBLIOGRAPHY

[15] I. Chlamtac, A. Faragó, H. Zhang, and A. Fumagalli. A deterministic approach to the end-to-end
analysis of packet flows in connection oriented networks. IEEE/ACM transactions on networking,
(6)4:422–431, 08 1998.

[16] J.-F. Chuang, C.-M.and Chang. Deterministic loss ratio quality of service guarantees for high speed
networks. IEEE Communications Letters, 4:236–238, July 2000.

[17] R. Cruz, C.-S. Chang, J.-Y. Le Boudec, and P. Thiran. A min-plus system theory for constrained traffic
regulation and dynamic service guarantees. Technical Report SSC/1999/024, EPFL, July 1999.

[18] R. Cruz and M. Taneja. An analysis of traffic clipping. In Proc 1998 Conf on Information Science &
Systems, Princeton University, 1998.

[19] R. L. Cruz. Lecture notes on quality of service guarantees, 1998.

[20] R. L. Cruz. Sced+ : Efficient management of quality of service guarantees. In IEEE Infocom’98, San
Francisco, March 1998.

[21] R.L. Cruz. A calculus for network delay, part i: Network elements in isolation. IEEE Trans. Inform.
Theory, vol 37-1, pages 114–131, January 1991.

[22] R.L. Cruz. A calculus for network delay, part ii: Network analysis. IEEE Trans. Inform. Theory, vol
37-1, pages 132–141, January 1991.

[23] B. Davie, A. Charny, F. Baker, J. Bennett, K. Benson, J.-Y. Le Boudec, A. Chiu,
W. Courtney, S. Davari, V. Firoiu, C. Kalmanek, K. K. Ramakrishnam, and D. Stil-
iadis. An expedited forwarding phb, April 2001. Work in Progress, Internet Draft,
ftp://ds.internic.net/internet-drafts/draft-ietf-diffserv-rfc2598bis-02.txt.

[24] G. De Veciana, July 1996. Private Communication.

[25] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queuing algorithm. Journal
of Internetworking Research and Experience, pages 3–26, Oct 1990.

[26] N. G. Duffield, K. K. Ramakrishan, and A. R. Reibman. Save: An algorithm for smoothed adaptative
video over explicit rate networks. IEEE/ACM Transactions on Networking, 6:717–728, Dec 1998.

[27] A. Elwalid, Mitra D., and R. Wenworth. A new approach for allocating buffers and bandwidth to
heterogeneous, regulated traffic in ATM node. IEEE Journal of Selected Areas in Communications,
13:1048–1056, August 1995.

[28] Baccelli F., Cohen G., Olsder G. J., , and Quadrat J.-P. Synchronization and Linearity, An Algebra for
Discrete Event Systems. John Wiley and Sons, 1992.

[29] W.-C. Feng and J. Rexford. Performance evaluation of smoothing algorithms for transmitting variable-
bit-rate video. IEEE Transactions on Multimedia, 1:302–312, Sept 1999.

[30] L. Georgiadis, R. Guérin, V. Peris, and R. Rajan. Efficient support of delay and rate guarantees in an
internet. In Proceedings of Sigcomm’96, pages 106–116, August 1996.

[31] L. Georgiadis, Gurin R., and Peris V. Efficient network provisioning based on per node traffic shaping.
IEEE/ACM Transactions on Networking, 4:482–501, 1996.

[32] P. Goyal, S. S. Lam, and H. Vin. Determining end-to-end delay bounds in heterogeneous networks.
In 5th Int Workshop on Network and Op. Sys support for Digital Audio and Video, Durham NH, April
1995.

BIBLIOGRAPHY 245

[33] R. Guérin and V. Peris. Quality-of-service in packet networks - basic mechanisms and directions. Com-
puter Networks and ISDN, Special issue on multimedia communications over packet-based networks,
1998.

[34] R. Guérin and V. Pla. Aggregation and conformance in differentiated ser-
vice networks – a case study. Technical Report Research Report, U Penn,
http://www.seas.upenn.edu:8080/ guerin/publications/aggreg.pdf, August 2000.

[35] Jeremy Gunawardena. From max-plus algebra to nonexpansive mappings: a nonlinear theory for
discrete event systems. pre-print, 1999.

[36] Sariowan H., Cruz R. L., and Polyzos G. C. Scheduling for quality of service guarantees via service
curves. In Proceedings ICCCN’95, pages 512–520, Sept 1995.

[37] B. Hajek. Large bursts do not cause instability. IEEE Trans on Aut Control, 45:116–118, Jan 2000.

[38] J. M. Harrison. Brownian Motion and Stochastic Flow Systems. Wiley, New-York, 1985.

[39] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured forwarding phb group, June 1999. RFC
2597, IETF.

[40] Golestani S. J. A self clocked fair queuing scheme for high speed applications. In Proceedings of
Infocom ’94, 1994.

[41] F. Farkas J. Y. Le Boudec. A delay bound for a network with aggregate scheduling. In Proceedings
of the Sixteenth UK Teletraffic Symposium on Management of Quality of Service, page 5, Harlow, UK,
May 2000.

[42] V. Jacobson, K. Nichols, and K. Poduri. An expedited forwarding phb, June 1999. RFC 2598, IETF.

[43] Y. Jiang. Delay bounds for a network of guaranteed rate servers with fifo aggregation. Pre-print,
National University of Singapore, 2001.

[44] C Kalmanek, H. Kanakia, and R. Restrick. Rate controlled servers for very high speed networks. In
IEEE Globecom’90, vol 1, pages 12–20, 1990.

[45] Keshav. Computer Networking: An Engineering Approach. Prentice Hall, Englewood Cliffs, New
Jersey 07632, 1996.

[46] T. Konstantopoulos and V. Anantharam. Optimal flow control schemes that regulate the burstiness of
traffic. IEEE/ACM Transactions on Networking, 3:423–432, August 1995.

[47] Cruz R. L. and Okino C. M. Service guarantees for window flow control. In 34th Allerton Conf of
Comm., Cont., and Comp. Monticello, IL, Oct 1996.

[48] Gun L. and R. Guérin. Bandwidth management and congestion control framework of the broadband
network architecture. Bandwidth management and congestion control framework of the broadband
network architecture, vol 26, pages 61–78, 1993.

[49] Zhang L. A new traffic control algorithm for packet switching networks. In Proceedings of ACM
Sigcomm ’90, 1990.

[50] J.-Y. Le Boudec. Application of network calculus to guaranteed service networks. IEEE Transactions
on Information Theory, 44:1087–1096, May 1998.

[51] J.-Y. Le Boudec. Some properties of variable length packet shapers. In Proc ACM Sigmetrics / Perfor-
mance ’01, pages 175–183, 2001.

246 BIBLIOGRAPHY

[52] J.-Y. Le Boudec and G. Hebuterne. Comment on a deterministic approach to the end-to-end analysis
of packet flows in connection oriented network. IEEE/ACM Transactions on Networking, 8:121–124,
february 2000.

[53] J.-Y. Le Boudec and P. Thiran. Network calculus viewed as a min-plus system theory applied to
communication networks. Technical Report SSC/1998/016, EPFL, April 1998.

[54] J.-Y. Le Boudec and O. Verscheure. Optimal smoothing for guaranteed service. Technical Report
DSC2000/014, EPFL, March 2000.

[55] J. Liebeherr, D.E. Wrege, and Ferrari D. Exact admission control for networks with bounded delay
services. ACM/IEEE transactions on networking, 4:885–901, 1996.

[56] F. Lo Presti, Z.-L. Zhang, D. Towsley, and J. Kurose. Source time scale and optimal buffer/bandwidth
trade-off for regulated traffic in a traffic node. IEEE/ACM Transactions on Networking, 7:490–501,
August 1999.

[57] S. H. Low and P. P. Varaiya. A simple theory of traffic and resource allocation in atm. In Globecom’91,
pages 1633–1637, December 1991.

[58] J. Y. Le Boudec M. Vojnovic. Stochastic analysis of some expedited forwarding networks. In Pro-
ceedings of Infocom 2002, New-York, June 2002.

[59] J. M. McManus and K.W. Ross. Video-on-demand over ATM: Constant-rate transmission and trans-
port. IEEE Journal on Selected Areas in Communications, 7:1087–1098, Aug 1996.

[60] J. Naudts. A Scheme for Multiplexing ATM Sources. Chapman Hill, 1996.

[61] J. Naudts. Towards real-time measurement of traffic control parameters. Computer networks, 34:157–
167, 2000.

[62] Clayton M. Okino. A framework for performance guarantees in communication networks, 1998. Ph.D.
Dissertation, UCSD.

[63] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow control in integrated
services networks: The single node case. IEEE/ACM Trans. Networking, vol 1-3, pages 344–357, June
1993.

[64] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow control in integrated
services networks: The multiple node case. IEEE/ACM Trans. Networking, vol 2-2, pages 137–150,
April 1994.

[65] Vinod Peris. Architecture for guaranteed delay service in high speed networks, 1997. Ph.D. Disserta-
tion, University of Maryland, http://www.isr.umd.edu.

[66] Fabrice P. Guillemin Pierre E. Boyer, Michel J. Servel. The spacer-controller: an efficient upc/npc for
atm networks. In ISS ’92, Session A9.3, volume 2, October 1992.

[67] Agrawal R. and Rajan R. A general framework for analyzing schedulers and regulators in integrated
services network. In 34th Allerton Conf of Comm., Cont., and Comp. Monticello, IL, pages 239–248,
Oct 1996.

[68] Agrawal R. and Rajan R. Performance bounds for guaranteed and adaptive services, December 1996.
IBM Technical Report RC 20649.

[69] J. Rexford and D. Towsley. Smoothing variable-bit-rate video in an internetwork. IEEE/ACM Trans-
actions on Networking, 7:202–215, April 1999.

BIBLIOGRAPHY 247

[70] H. L. Royden. Real Analysis. Mc-Millan, New-York, 2 edition, 1968.

[71] J. Y. Le Boudec S. Giordano. On a class of time varying shapers with application to the renegotiable
variable bit rate service. Journal on High Speed Networks, 9(2):101–138, June 2000.

[72] J. D. Salehi, Z.-L. Zhang, J. F. Kurose, and D. Towsley. Supporting stored video: Reducing rate
variability and end-to-end resource requirements through optimal smoothing. IEEE/ACM Transactions
on Networking, 6:397–410, Dec 1998.

[73] H. Sariowan. A service curve approach to performance guarantees in integrated service networks,
1996. Ph.D. Dissertation, UCSD.

[74] A. Skorokhod. Stochastic equations for diffusion processes in a bounded region. Theory of Probability
and its Applications, 6:264–274, 1961.

[75] D. Stiliadis and A. Varma. Rate latency servers: a general model for analysis of traffic scheduling
algorithms. In IEEE Infocom ’96, pages 647–654, 1991.

[76] Rockafellar R. T. Convex Analysis. Princeton University Press, Princeton, 1970.

[77] L. Tassiulas and L. Georgiadis. Any work conserving policy stabilizes the ring with spatial reuse.
IEEE/ACM Transactions on Networking, pages 205–208, April 1996.

[78] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for scheduling hard
real-time systems. In ISCAS, Geneva, May 2000.

[79] P. Thiran, J.-Y. Le Boudec, and F. Worm. Network calculus applied to optimal multimedia smoothing.
In Proc of Infocom 2001, April 2001.

[80] D Verma, H. Zhang, and D. Ferrari. Guaranteeing delay jitter bounds in packet switching networks. In
Proceedings of Tricomm ’91, Chapel Hill, pages 35–46, April 1991.

[81] H. Zhang. Service disciplines for guaranteed performance service in packet switching networks. Pro-
ceedings of the IEEE, 83:1374–1396, October 1995.

[82] H. Zhang and D. Ferrari. Rate controlled service disciplines. Journal of High Speed Networks, 3 No
4:389–412, August 1994.

[83] Hongbiao Zhang. A note on deterministic end-to-end delay analysis in connection oriented networks.
In Proc of IEEE ICC’99, Vancouver, pp 1223–1227, 1999.

[84] Z.-L. Zhang and Duan Z. Fundamental trade-offs in aggregate packet scheduling. In SPIE Vol. 4526,
August 2001.

Index

CA (Vector min-plus convolution), 134
Cσ (Min-plus convolution), 133
Dσ (Min-plus deconvolution), 133
PL (Packetization), 133
LH (Min-plus linear operator), 136
N, 4
N0, 235
Π (Max-plus operator), 133
Π (Min-plus operator), 133
R+, 4
βR,T (rate-latency function), 106
F (set of wide-sense increasing functions that are

zero for negative arguments), 105
G (set of wide-sense increasing functions), 105
δT (burst delay function), 105
γr,b (affine function), 106
h (horizontal deviation), 128
hσ (Linear idempotent operator), 134
λR (peak rate function), 105
νcri, 182
� (min-plus deconvolution), 122
� (min-plus deconvolution), 129
⊗ (min-plus convolution), 110
⊗ (max-plus convolution), 129
f (sub-additive closure of f), 118
F̃ (Set of wide-sense increasing bivariate func-

tions), 132
uT,τ (staircase function), 106
vT (step function), 106
v (vertical deviation), 128
∨ (max or sup), 122
∧ (min or inf), 103

1{expr}(Indicator function), 40

ABR, 225
adaptive guarantee, 204
AF, 87
affine function, 106
arrival curve, 7
Assured Forwarding, 87
Available Bit Rate, 225

bivariate function, 132
burst delay function, 105

caching, 168
causal, 139
CDVT (cell delay variation tolerance), 13
concave function, 109
controlled load service, 75
convex function, 109
convex set, 109
Critical Load Factor, 182
Cumulative Packet Length, 41

damper, 93
damping tolerance, 93
Delay Based Scheduler, 80
DGCRA, 225
dioid, 104

Earliest Deadline First (EDF) scheduler, 80
EDF see Earliest Deadline First, 80
EF, 87
epigraph, 110
Expedited Forwarding, 87

Finite lifetime, 125

GCRA (Generic Cell Rate Algorithm
definition, 11

Good function, 14
GPS (generalized processor sharing, 18
GR, 70
greedy shaper, 30
greedy source, 16
guaranteed delay node, 20
Guaranteed Rate node, 70
guaranteed service, 75

horizontal deviation, 128

idempotent, 141
impulse response, 136, 139
infimum, 103
Intserv, 3

248

INDEX 249

isotone, 135

limit to the left, 9
limit to the right, 6
linear idempotent operator, 134
look ahead delay, 155
lower semi-continuous, 135

max-plus convolution, 129
max-plus deconvolution, 129
maximum, 129
min-plus convolution, 110
min-plus deconvolution, 122
Min-plus linear, 136, 139
minimum, 103
minimum rate server, 201

Packet Scale Rate Guarantee, 199
Packetizer, 41
peak rate function, 105
PGPS: packet generalized processor sharing, 68
PL, 41
playback buffer, 155
playback delay, 155
policer, 30
Priority Node, 20, 176
pseudo-inverse function, 108

rate-latency function, 106
Re-negotiable service, 225
RSVP, 76

SCED, 80
shaper, 30
shaping curve, 30
shift invariant, 140
Shift matrix, 136
smooth (α-smooth for some function α(t), 7
smoothing, 155
staircase function, 106
star-shaped function, 110
step function, 106
strict service curve, 22
sub-additive closure, 118
sub-additive fucntion, 116
supremum, 129

T-SPEC (traffic specification), 13
time varying shaper, 225

upper semi-continuous, 134

variable capacity node, 22

vertical deviation, 128
Very good function, 16

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e0020004d006f0064006900690066006500640020004c0045004200200074006f00200061006c006c006f007700200066006f006e007400200073007500620073007400690074007500740069006f006e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

