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Plan for Today
• MAC Layer Techniques

– Contention-based Rendezvous – Bootstrapping: LPL/LPP
– Dedicated acknowledgements, multiple channels: A-MAC
– Arbitration using controlled collisions: StrawMan
– Distributed scheduling: DOZER
– Constructive interference: A-MAC
– Network Flooding: GLOSSY

• Present metrics used for performance analysis
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MAC LAYER TECHNIQUES –
CONTENTION-BASED RENDEZVOUS

Networked Embedded Systems
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Simple Sender-Initiated MAC
• Sender triggers communications by transmitting data
• Receiver is listening
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Simple Receiver-Initiated MAC
• Receiver triggers exchange by transmitting a probe
• Sender receives probe and sends data
• Low-power probing (LPP)
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MAC Layer Decision:
Stay awake or go to sleep?
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Optimizing LPL: Shorter Preamble Sampling

• Bookkeeping to avoid sending out long preambles
– Maintaining the phase offset (clock) to selected neighbors
– Start transmitting a message just before receiver wakes
– Synchronized transmit/receive
– Piggybacking of local phase offset on ACKs of the underlying CSMA protocol

• Benefits
– WiseMAC is able to squeeze out up to 80% (20 out of 25 ms) of TX cost and up 

to 67% (10 out of 15ms) of RX costs
– Shortening the preambles also reduces overhearing by nodes other than the 

sender/receiver pair
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Receiver vs. Sender-initiated Tradeoff

• Receiver-initiated Pro’s
– Handle hidden terminals better than sender-initiated ones
– Support asynchronous communication w/o long-preambles
– Support extremely low duty cycles or high data rates

• Receiver-initiated Con’s
– Probe (LPP) is more expensive than channel sample (LPL)

• Baseline power is higher

– Frequent probe transmissions
• Could congest channel & increase latency
• Could disrupt ongoing communications
• Channel usage scales with node density rather than traffic
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Scaling to Larger Networks
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Example Receiver-Initiated: Channel Probing



MAC LAYER TECHNIQUES – DEDICATED 
ACKNOWLEDGEMENTS, MULTIPLE 
CHANNELS

Networked Embedded Systems
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802.15.4 Receiver-Initiated Link Layer

Is it possible to design a general-purpose, yet efficient, receiver-
initiated link layer?
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Dutta, P., Dawson-Haggerty, S., Chen, Y., Liang, C.-J. M., 
& Terzis, A.. Design and evaluation of a versatile and 
efficient receiver-initiated link layer for low-power 
wireless. Proceedings of the 8th ACM Conference on 
Embedded Networked Sensor Systems - SenSys ’10.



A-Mac Parallel Multichannel Data Transfers

• Arbitration using signaling in preambles (like Dozer!)
• Selective scheduling of data-senders
• Use control, data (1), and data (2) channels

P ASender 1

Receiver 1 P A

DATA

DATA

P

P

Listen

P ASender 2

Receiver 2 P A

DATA

DATA

P

P

Listen

12



A-MAC Offers Modest Incast Performance
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A-MAC Network Wakeup
• Wakes up the network faster and more efficiently than LPL 

(Flash) flooding
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A-MAC Works Well at Low Duty Cycles

Tprobe = 4,000 ms
Pavg = 63 µW
Iavg = 21 µA

N = 59
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A-MAC Beats LPL/CTP Combinations
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MAC LAYER TECHNIQUES –
ARBITRATION USING CONTROLLED 
COLLISIONS

Networked Embedded Systems
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Collision Arbitration with StrawMan

• Multi-channel operation
– Initial probe at pre-determined channel
– Rest of communication at the other channel

Send Collision 
request

Random length Packet
7 bytes granularity 
(224us)

Reply longest 
length

Winner 
send data

Another 
request

Until every 
sender sent 
its data

Österlind, F., Mottola, L., Voigt, T., Tsiftes, N., & 
Dunkels, A. (2012). Strawman: Resolving Collisions in 
Bursty Low-Power Wireless Networks. In IPSN ’12 (p. 
161). New York, New York, USA: ACM Press.
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StrawMan Performance
• Contiki + Tmote Sky 
• RI-MAC

– Version 1: Strawman + multi-channel operation
– Version 2: random backoff (geometric distribution)

• Transmissions of COLLISION packets are synchronized
– Receiver knows exactly when they occur

• Max COLLISION packets length is fixed
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StrawMan: Goodput and Fairness
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StrawMan: Reacting to Sudden Traffic Bursts

• 1-hop network with 8 nodes
– Measuring the resulting goodput
– Always contend

• Vary number of active contenders every 10s
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StrawMan: Multi-hop Data Collection
• 82 nodes in the TWIST testbed

– Multi-hop topologies (at least 4 hops)
– Contiki Collect protocol

• Traffic patterns
– No traffic (NT)
– Periodic traffic (PT): 1 pkt every 5 minutes
– Bursty traffic (BT): 

• Instantaneously generate 1 pkt on 8 randomly-selected nodes
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MAC LAYER TECHNIQUES –
DISTRIBUTED SCHEDULING

Networked Embedded Systems
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Hybrid Protocol Schemes
• Dozer ultra low-power data gathering system

– Beacon based, 1-hop synchronized TDMA
– Tree-based routing towards a sink
– Optimized for ultra-low duty cycles
– 0.167% duty-cycle, 0.032mA (@ 30sec beacons)

• Application is integrated with the protocol
– Dynamic adaptation
– Back-off randomization for diversity
– Jitter adaptation over multiple hops
– Adaptive duty-cycle accounts for long-term 

loss of connectivity
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[Burri, N., von Rickenbach, P., & 
Wattenhofer, R. (2007). Dozer: Ultra-
Low Power Data Gathering in Sensor 
Networks. 2007 6th International 
Symposium on Information Processing 
in Sensor Networks, 450–459.]
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parent
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Dozer System
• Tree based routing towards data sink

– No energy wastage due to multiple paths
– Current strategy: SPT

• TDMA based link scheduling
– Each node has two independent schedules 
– No global time synchronization

• The parent initiates each TDMA round with a beacon
– Enables integration of disconnected nodes
– Children tune in to their parent’s schedule

time

beacon

beacon

activation frame
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Dozer System
• Parent decides on its children data upload times

– Each interval is divided into upload slots of equal length
– Upon connecting each child gets its own slot
– Data transmissions are always ack’ed

• No traditional MAC layer
– Transmissions happen at exactly predetermined point in time 
– Collisions are explicitly accepted
– Random jitter resolves schedule collisions

time

jitter

slot 1 slot 2 slot n

data transfer

Clock drift, queuing, 
bootstrap, etc.
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Dozer Scheduled Data Transfers
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Graceful Degradation & Effective Retries

• Configurable beacon synchronization timeouts
– Typically 3-5 retries

• Adaptive scanning activity
– Reduction on intermittent loss of connectivity
– Energy savings on bootstrapping and longer network failures 
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MAC LAYER TECHNIQUES –
CONSTRUCTIVE INTERFERENCE

Low-Power System Design
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Wireless Interference
• Spatially close wireless stations transmit signals at the same time

and with the same frequency

• Destructive interference
– Interference generally reduces the probability that a receiver correctly 

detects the information

• Constructive interference
– A receiver detects with high probability the superposition of the signals 

generated by multiple transmitters
30
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IEEE 802.15.4 Uses DSSS Modulation
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• 1 Byte is divided into 2x 4-Bit Symbols
• Each Symbol is mapped to a pseudo-random noise (PN) 

sequence with 32 chips (2 MChips/sec)
• Offset-Quadrature Phase Shift Keying (O-QPSK) with half-sine 

chip shaping (equivalent to MSK modulation)

• PN sequences introduce randomization and redundancy

IEEE 802.15.4 Modulation
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IEEE 802.15.4 Modulation Scheme
• IEEE 802.15.4: standard for 2,450 MHz wireless radios
• A 3-step process converts binary data to a baseband signal

• In-phase and quadrature-phase components of the baseband 
signal determine the phase of the transmitted RF signal
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Half-Sine O-QPSK Modulation: Example

• Data rate: 1/Tc chip/s = 2 Mchip/s = 62.5 ksymbol/s = 250 kbps
• The information carried by each chip generates a complete 

phase change of the RF signal every 0.5 µs
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Synchronous Transmissions
• Multiple nodes transmit same packet 

at same time

• R receives packet with high probability if Δ ≤ 0.5 µs

• Property exploited also in A-MAC [Dutta et al., SenSys ’10]
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Ferrari, F. and Zimmerling, M. and Thiele, L. and 
Saukh, O. (2011). Efficient Network Flooding and 
Time Synchronization with Glossy. In 10th 
International Conference on Information Processing 
in Sensor Networks (IPSN 2011) (pp. 73–84). 



Synchronized Transmission with Backcast
• A link-layer frame exchange in which:

– A single radio PROBE frame transmission
– Triggers zero or more identical ACK frames
– Transmitted with tight timing tolerance
– So there is minimum inter-symbol interference
– And ACKs collide non-destructively at the receiver

P A
TX

RX
P A

P A
TX

P. Dutta, R. Musaloiu-E., I. Stoica, A. Terzis, 
“Wireless ACK Collisions Not Considered 
Harmful”, HotNets-VII, October, 2008, 
Alberta, BC, Canada
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A-MAC’s Contention Mechanism
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ALL-TO-ALL NETWORK FLOODING: 
GLOSSY 

Networked Embedded Systems
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Increasing Reliability: Glossy Floods
• Main objectives

– Fast and reliable flooding of messages
– Accurate global time synchronization
– Hide complexity of multi-hop networks

• Challenge in multi-hop wireless networks
– Uncoordinated transmissions, packet loss, retransmission delays

• Glossy: Flooding architecture for wireless sensor networks
– Fastest possible propagation, by design
– Highly reliable (> 99.99 %)
– Requires no network state information
– Efficient also in dense networks
– Time synchronization at no additional cost
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Ferrari, F. and Zimmerling, M. and Thiele, L. and 
Saukh, O. (2011). Efficient Network Flooding and 
Time Synchronization with Glossy. In 10th 
International Conference on Information Processing 
in Sensor Networks (IPSN 2011) (pp. 73–84). 



Glossy Glossy

Application Application
t

Flooding FloodingFlooding

Glossy

Glossy: Key Techniques

• Temporally decouple network flooding from application tasks

• Exploit synchronous transmissions for fast network flooding
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Synchronous Transmissions
• Multiple nodes transmit same packet at same time

• R receives packet with high probability if Δ ≤ 0.5 µs

• Property exploited also in A-MAC [Dutta et al., SenSys ’10]
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Challenges for Efficient Flooding

How to relay packets efficiently and reliably?
• Avoid aggressive, uncoordinated broadcasts

• Typical approach:
Coordinate packet transmissions
– CF [Zhu et al., NSDI 2010]

– RBP [Stann et al., SenSys 2006] 

– Maintain topology-dependent state

42
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Glossy Flooding Architecture
• All receiving nodes relay packets synchronously

– Simple, but radically different solution
– No explicit routing
– No topology-dependent state

• Key Glossy mechanisms
– Start execution at the same time
– Compensate for hardware variations
– Ensure deterministic execution timing
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Receivers

Glossy Example Flood Propagation

Initiator
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Glossy Example Flood Propagation

Receivers

Initiator
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Glossy Example Flood Propagation

Receivers

Initiator
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Glossy Example Flood Propagation

Receivers

Initiator
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Glossy Fast Packet Propagation Details

48



Glossy Fast Packet Propagation Details
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Glossy Fast Packet Propagation Details

50



Glossy Fast Packet Propagation Details
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Glossy Fast Packet Propagation Details

52



Glossy Fast Packet Propagation Details
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Propagation in Glossy
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Time synchronization in Glossy
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Glossy: Main Evaluation Findings

• A few ms to flood packets to hundreds of nodes

• Reliability > 99.99 % in most scenarios

• Synchronization error < 1 µs even after 8 hops
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Evaluation of Glossy on FlockLab
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• Multi-modal monitoring at 
network scale

• Flooding protocol (Glossy)
– Packet transmissions overlap

• Power
– Find current consumption for 

each state
– Expected behavior?

• Activity
– Packet exchange
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Today’s Hot Researcher & Paper
• David Culler

– Faculty at UC Berkeley

• (Distributed) systems background
– Many well-known systems implementations
– Founder of TinyOS initiative
– Drove first large-scale WSN applications

(habitat monitoring)

• Now focusing on sustainable energy use (buildings)
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J Hill, R Szewczyk, A Woo, S Hollar, D Culler, K Pister: System 
architecture directions for networked sensors. ACM SIGOPS 
operating systems review 34 (5), 93-104



Recap of Today
• Networked Embedded Systems focus on cross-layer solutions

– No strict division across interfaces (like OSI model)

• (Temporal) Co-ordination helps a lot
• Most protocols employ a mix of stochastic elements 

(contention) and schedule based elements

• State-of-the-Art protocols allow reliable communication at 
very little energy cost
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