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Plan for Today

* Network Time Synchronization
— Basics, Fundamental Effects
— Algorithm Examples
— Time-of-Flight Aware Time Sync

Slides contain material from R. Wattenhofer and R. Lim



NETWORK TIME SYNCHRONIZATION
BASICS



Clock Synchronization in Networks?

* Time, Clocks, and the Ordering of Events in a Distributed
System. L. Lamport, Communications of the ACM, 1978.

* Internet Time Synchronization: The Network Time Protocol
(NTP). D. Mills, IEEE Transactions on Communications, 1991

* Reference Broadcast Synchronization (RBS). J. Elson, L. Girod
and D. Estrin, OSDI 2002

* Timing-sync Protocol for Sensor Networks (TPSN). S. Ganeriwal,
R. Kumar and M. Srivastava, SenSys 2003

* Flooding Time Synchronization Protocol (FTSP). M. Maréti, B.
Kusy, G. Simon and A. Lédeczi, SenSys 2004

 and many more ...



Time in Sensor Networks

* Synchronizing time is essential for many applications
— Coordination of wake-up and sleeping times (energy efficiency)
— TDMA schedules
— Ordering of collected sensor data/events
— Co-operation of multiple sensor nodes
— Estimation of position information (e.g. shooter detection)

* Goals of clock synchronization

— Compensate offset* between clocks
— Compensate drift* between clocks

*terms are explained on following slides

Time Synchronization
(RBS, TPSN, FTSP, PulseSync...)
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Properties of Clock Synchronization Algorithms

External versus internal synchronization
— External sync: Nodes synchronize with an external clock source (UTC)
— Internal sync: Nodes synchronize to a common time

— to a leader, to an averaged time, or to anything else

* One-shot versus continuous synchronization
— Periodic synchronization required to compensate clock drift

* A-priori versus a-posteriori

— A-posteriori clock synchronization triggered by an event

* Global versus local synchronization

e Accuracy versus convergence time, Byzantine nodes, ...



Global Clock Sources

* Radio Clock Signal

— Clock signal from a reference source (atomic clock) is
transmitted over a long wave radio signal

— DCF77 station near Frankfurt, Germany transmits at i
77.5 kHz with a transmission range of up to 2000 km

— Accuracy limited by the distance to the sender,
Frankfurt-Zurich is about 1ms.

— Special antenna/receiver hardware required

* Global Positioning System (GPS)

— Satellites continuously transmit own position and
time code

— Line of sight between satellite and receiver required
— Special antenna/receiver hardware required




Global Clock Sources (2)

 AC power lines
— Use the magnetic field radiating from electric AC power Imes

— AC power line oscillations are extremely stable
(10" ppm)

— Power efficient, consumes only 58 uW

— Single communication round required to correct
phase offset after initialization

e Sensor Signals (Sunlight)
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Global vs. Local Time Sync

* In cases where no network-wide time synchronization is
available

— Global time sync not available for network protocol control
— Implications on data usage

e Solution: Elapsed time on arrival

— Sensor nodes measure/accumulate packet sojourn time
— Base station annotates packets with UTC timestamps

— Generation time is calculated as difference l‘g =t, — s

[ 7 sec | 2011/04/14 10:03:31 — 7 sec
10 = 2011/04/14 10:03:24




Network Time Synchronization

Goal

Send time information (beacons) across network to synchronize clocks

Problems

—Network ensemble interactions

— Hardware clocks exhibit drift

— Jitter in the message delay

10



Hardware Clocks Experience Drift

e Hardware clock

e Counter register of the microcontroller
* Sourced by an external crystal (32kHz, 7.37 MHz)

. This is a drift of
e Clock drift up to 50 ps per

second
 Random deviation from the nominal rate dependent on | or0.18s per hour

ambient temperature, power supply, etc. (30-100 ppm)
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Example Glossy and Timing
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R receives packet with high probability if A < 0.5 ps

32.768 kHz @ 10/20/50ppm -> = 30.5 usec

32768 kHz

+/-20 ppm results in 32.7673 to 32.7687 kHz
32768 1+ 20 ppm is x 0.999980 to x 1.000020

1 Month = 60x60*24*30 = 2.6 million seconds
20 ppm crystal for wakeup results in error 1 min per month



Hardware Clocks

* Microcontrollers usually have different clock sources with varying
* frequency (relates to precision)
* energy consumption

» stability, e.g., crystal-controlled clock vs. digitally controlled oscillator

* Asan example, the MSP432 has the following clock sources:

________|frequency _lprecision __|current | comment __

LFXTCLK 32 kHz 0.0001% / °C 150 nA external
...0.005% / °C crystal
HFXTCLK 48 MHz 0.0001% / °C 550 pA external
...0.005% / °C crystal
DCOCLK 3 MHz 0.025% / °C N/A internal
VLOCLK 9.4 kHz 0.1%/°C 50 nA internal
REFOCLK 32 kHz 0.012% / °C 0.6 A internal
MODCLK 25 MHz 0.02% / °C 50 pA internal

SYSOSC 5 MHz 0.03%/°C 30 pA internal



Clocks and Timers MSP432
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Clocks and Timers MSP432
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Best-in-class Real-time Clocks

@ em microelectronic

s e € O
ACOMPANY OF THE SWATCH GROUP

DATASHEET | EM3028

EXTREME LOW POWER RTC WITH I2C,
32-bit UNIX time counter, 43 bytes EEPROM, Battery Switchover and Trickle Charger

DESCRIPTION

The EM3028 engineered using the in-house analog low
power ( ALP ) technology provides unmatched true ultra-low
current consumption of typically 40nA while running on a
standard 32’768 Hz tuning fork crystal. Thus allowing several
hours of backup supply using cost effective MLCC capacitors.

It provides full RTC function with programmable counters,
alarm, selectable interrupt and clock output functions and
also a 32-bit UNIX Time counter.

The internal EEPROM memory hosts all configuration
settinas and allows for additional 43 bvtes of user memorv.

FEATURES

| Extreme low power consumption: 45 nA @ 3 V.

| Wide operating voltage range: 1.2V to 55 V.

| Built-in tuning Fork crystal at 32’768 Hz

| Time accuracy: possible to calibrate to +1 ppm @ 25°C

| Non-volatile configuration settings with user
programmable offset value.

| Configuration stored in EEPROM and mirrored in RAM

| Password protection to secure configuration registers

| Backup Switch and Trickle Charger function.

| Provides year, month, date, weekday, hours, minutes
and seconds.

| Automatic leap year correction; 2000 to 2099

| 32 bit UNIX time counter.

| Timer, alarm and external event functions with time stamp

| Clock output: 32.768 kHz, 8192 Hz, 1024 Hz, 64 Hz,

32Hz,1 Hz.

| 43 bytes non-volatile user memory, 2 bytes user RAM.

| I2C-bus interface: 400 kHz.

| Package: TSSOP14, 100% Pb-free, RoHS-compliant

| Also available in ultra-small SMD C7 package, factory

calibrated and including the 32kHz crystal, part number

EM3028-C7

16



Best-in-class Real-time Clocks
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Messages Delays Experience Jitter

* Problem: Jitter in the message delay

— Various sources of errors (deterministic and non-deterministic)
0-100 ms 0-500 ms 1-10 ms

Iy % Q
" Send |GG ansmission

0-100 ms

° —{

e Solution: Timestamping packets at the MAC layer
— litter in the message delay is reduced to a few clock ticks

frequency (%
—

time

18



Messaging Delays Influence Factors

sender

receiver

-

cpu:

radio:

antenna:

antenna:

radio:

radio:

cpu:

v

Table 1. The sources of delays in message transmissions

<—> interrupt handling
-9

Y

<——> encoding

|

@
<> propagation

Y

®
decoding <——>

Time Magnitude Distribution

Send and 0—100ms nondeterministic,

Receive depends on the
processor load

Access 10 — 500 ms nondeterministic,
depends on the
channel contention

Transmission / | 10 — 20 ms deterministic,

L
(byte alignment) €—>

Y

L
interrupt handling <>

A

Y

Reception depends on message
length
Propagation < lus for distances | deterministic,
up to 300 meters depends on the
distance between
sender and receiver
Interrupt < 5us in most nondeterministic,
Handling cases, but can be as | depends on interrupts
high as 30ps being disabled
Encoding plus | 100 —200ps, deterministic,
Decoding < 2us variance depends on radio
chipset and settings
Byte 0 —400us deterministic, can be

Alignment

calculated




MAC LAYER TIMESTAMPING



Details — MAC Layer Timestamping
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1-hop receivers

3-hop receivers
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CC1101 radio module integrated into CC430



CC430 Implementation Details

e 7y: time distance from when the sync word pin goes high at a transmitter (i.e., beginning of
the transmission) until when the sync word pin goes high at a receiver (i.e., beginning of the
reception).

e 75: time distance from when the sync word pin goes low at a transmitter (i.e., end of the
transmission) until when the sync word pin goes high at a receiver (i.e., end of the reception).

Slot 0 Slot 1 Slot 2
1
X RX TX
| | | |
T;t.r } T{Er : Trz : Trt T:‘..7: :
1 T ! 1 ! 1 ey
T I 1T I T : IT- : T I :T !
relg o ! o I o
[ o oo ™ o
R : T':J: : T;"t :E::r : ‘]—;31 : T;.v: } Tr‘t
RX X RX
Iﬂslot TSIOI Tsfot

1 = 13.54 us 7 =Ty =T — Tys Toiot = Tre + Trt + 71
7o = 11.86 s n+7e =Ty — T =T+ Ter — 71
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Interrupt Handling Causes lJitter

* Different radio chips use different paradigms
— Leftis a CC1000 radio chip which generates an interrupt with each byte

— Rightis a CC2420 radio chip that generates a single interrupt for the
packet after the start frame delimiter is received

( ( (

i’

)

BYTE 1 BYTE 2 BYTE 3 BYTE 4 \1 SFD BYTE 1 BYTE 2 BYTE 3 | '\
) |

4 4 4 4
| Y | : - ¥

1
by 4 b; tz Dy 1 by 4y by 4
BYTE_TIME

1e+06

e Still there is quite some variance ..
in transmission delay because of ...

k]

latencies in interrupt handling = ..

@
5]
=

100

| ||| |II.|I||||||.I||||| IRy
0 10 20 30 40 50 [§]
Ticks

1
0



Radio Architectures Offer Sync Points

[ _ T r
sender: | preamble 'sync'  data | CIC
-4 g -y |- gy} — 4 —a

propagation delay X

N S S S . - - .- 1_-—_r -------- T_--_
1 I

receiver: | 1 preamble ' sync ! data | CIC |
L P N S [y ) M ey Jueny Ny wpr g

—>| L— byte alignment




Symmetric Errors

Many protocols don’t even handle single-hop clock synchronization
well. On the left figures we see the absolute synchronization errors
of TPSN and RBS, respectively. The figure on the right presents a
single-hop synchronization protocol minimizing systematic errors

RBS

Percentage
Percentage

5 10 15 20 25 30 35 40 45 o 20 40 60 80 100 - - -
Synchronization error (microseconds) Synchronization error (microseconds) Error (ticks)

Even perfectly symmetric errors will sum up over multiple hops

— In a chain of n nodes with a standard deviation o on each hop, the
expected error between head and tail of the chain is in the order of
cumulative error = a\/ n



NETWORK TIME SYNCHRONIZATION
ALGORITHMS



Sender/Receiver Synchronization

* Round-Trip Time (RTT) based synchronization

Time accor-
B t 2 dingto B t

3
Request Answer
from A from B

Time accor-
A t 1 *~—  dingtoA ~— t

4

* Receiver synchronizes to the sender’s clock
* Propagation delay 0 and clock offset @ can be calculated

5= (t4 _tl)_(t3 _tz)
2
0= (tz _(tl +5))_(t4 _(t3 +9)) _ (tz _t1)+(t3 _t4)
2 2




Synchronizing Nodes

* Sending periodic beacon messages to synchronize nodes
* Payload contains local time information

Beacon interval B
I
{ \

100 130
\ ; . : t ‘ reference clock

t=100 | |

|
jitter jitter
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How Accurately Can We Synchronize?

= Message delay jitter affects clock synchronization quality

Ay

/&

Beacon interval B

y(x) = F-x + Ay

L clock offset

relative clock rate
(estimated)

29



Clock Skew between two Nodes

"= Lower Bound on the clock skew between two neighbors

Beacon interval B

Error in the rate estimation:
— Jitter in the message delay
— Beacon interval

— Number of beacons k

(g
BkVk
Synchronization error:
J

@—y|"”\/—E

30



Multi-hop Clock Skew

= Nodes forward their current estimate of the reference clock
Each synchronization beacon is affected by a random jitter J

J, J, /s J, Js J,

= Sum of the jitter grows with the square-root of the distance
stddev(J, + J, + Js + J, + Je + ... Jd) = Vd x stddev())

Single-hop: Multi-hop:

) J ) Jvd
y—yIN\/—E :> y—y!wﬁ




Error Mitigation: Linear Regression

= FTSP uses linear regression to compensate for clock drift
Jitter is amplified before it is sent to the next hop

Ay

__________________________

v(x) = TX + Ay

|

|

|

|

|

|

|

|

|

|

i T
i clock offset
|

|

|

|

|

relative clock rate
(estimated)

Beacon interval B
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FTSP Time Message Handling

1 event Radio.receive (TimeSyncMsg *msqg)

[~

3 if( msg->rootID < myRootID )

4 myRootID = msg->rootID;

5 else 1f( msg->rootID > myRootID

6 | | msg->segNum <= highestSegNum )
7 return;

8

9 highestSeglum = msg->segNum;

10 if( myRootID < myID )

11 heartBeats = 0;

13 if( numEntries >= NUMENTRIES LIMIT

14 && getError (msg) > TIME ERROR LIMIT )
15 clearRegressionTable () :

16 else

17 addEntryAndEstimateDrift (msg) s

18 1

34
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Clock Synchronization Algorithms

Tree-like Algorithms Distributed Algorithms
e.g. FTSP e.g. GTSP

root

35



nization Error (us)

Network Synchro

FTSP vs. GTSP: Global Skew

 Network synchronization error (global skew)
— Pair-wise synchronization error between any two nodes in the network

FTSP (avg: 7.7 us) GTSP (avg: 14.0 us)

100 100

80

60

nization Error (us)

40

Network Synchro

b ""\h,““‘ I
20 I rlirh 1

0 5000 10000 15000 20000 0 5000 10000 15000 20000
Time (s) Time (s)



Neighbor Synchronization Error (us)

FTSP vs. GTSP: Local Skew

* Neighbor Synchronization error (local skew)

— Pair-wise synchronization error between neighboring nodes

* Synchronization error between two direct neighbors:

FTSP (avg: 15.0 us) GTSP (avg: 2.8 us)
100 100
80 8
60 _g 60
40 ] ‘ | [ ;C,; 40
20 I (R i \l ' \\ 2
[k ‘H;H il \' b | i | “
0 ! * ‘ ) ‘ !'! i ‘ Il A A Y Ll BT N 2l R i BT PR L DR
0 10000 0 5000 10000 15000 20000

Time (s) Time (s)



The PulseSync Protocol

* Send fast synchronization pulses through the network
— Speed-up the initialization phase
— Faster adaptation to changes in temperature or network topology

Beacon time B

\

5 ]
FTSP @ - - - -
Expected time 3 - -
= D-B/2 @ [ ] . t
BeaconAtime B
o -
PulseSync % - -
Expected time @ -
= Dtpuse @ . t

pulse



The PulseSync Protocol (2)

 Remove self-amplification of synchronization error
— Fast flooding cannot completely eliminate amplification

v(x) = Pox + Ay

L clock offset

relative clock rate
(estimated)

Beacon interval B

ETH:zurich 39



300

250 f

200

Global Skew (us)

50 r

FTSP vs. PulseSync

* Global Clock Skew
Maximum synchronization error between any two nodes

150  H

fh
100 F 1§
*

' ' Average Global Skew —+— 00 Average Global Skew ——
Maximum Global Skew —s+— Maximum Global Skew ——
TSP | PuIseSync |
. 200
5
2 150 |
z
O 100
SOIOO lDEI)OO 15(;00 2O[IJOO 0 5000 10000 15000 20000
Time (s) Time (s)
Synchronization Error FTSP PulseSync
Average (t>2000s) 23.96 us 4.44 us
Maximum (t>2000s) 249 pus 38 s

ETH:zurich
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Synchronization error (us)

FTSP vs. PulseSync

100

“ FTSP ||| PulseSync
2: ﬁﬂﬂﬁﬂwﬂgmmmmmﬂm all %ﬁﬁﬂ,ﬁnﬂnﬁﬂ%%ﬂﬂmﬁwﬁwﬂ

10 15 5 10 15

Distance (Hops) Distance (Hops)



Wireless Multi-hop Time Synchronization

PulseSync
_ 30 O
8 |
(@] i
= e
9 . Glossy
: O
g !
f 1
S 10
s FTSP
< : :
FTSP with high resolution tirmer TPSN
N @ 5 e
T 1ps 2 us
GPS receiver Average synchronization error

Ethernet (PTP)

ETH:zurich
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INCORPORATING TIME-OF-FLIGHT



Is Time-of-flight Really Negligible?

“The absolute value of this delay is negligible as compared to other sources of
packet latency.”

“.. it does not and cannot compensate for the propagation delay. This is not a major
limitation of the approach in typical WSN...”

“... over short distances (less than 300 meters) its duration is negligible (less than

one microsecond).”
’)) Approx. speed of light>




Time-of-flight Matters
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O
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Propagation delay

Time-of-flight Matters

333 ns

Indoors

‘

Outdoors
O
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Outdoor Distances Might Be Long

ETH:zurich

£
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DIR3

2065

fat 460

Deployment of the
PermaSense Project [1] in
the Swiss Alps

Propagation delay 13.33 ps

[1] www.permasense.ch
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Wireless Multi-hop Time Synchronization

[Roman Lim, Balz Maag and Lothar Thiele: Time-of-Flight
TATS Aware Time Synchronization for Wireless Embedded
Systems. Proc. EWSN 2016, p. 149-158, February 2016.]

‘ PulseSync
T e
(@] i
<, |
5 :
9 . Glossy
: O
g !
{ 1
o
= |
= i ; FTSP
- | . @
FTSP with high resolution tirmer TPSN
N @™ 5 e
T 1ps 2 us
GPS receiver Average synchronization error

Ethernet (PTP)

ETH:zurich
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Ingredients for Accurate Synchronization

_________|TPSN FTSP PulseSync Glossy TATS*

MAC-layer timestamping
Linear regression for offset and clock rate estimation
Two-way delay measurements

Fast flooding

* Time-of—flight Aware Time Synchronization

ETH:zurich 49



Synchronizing a Pair of Nodes

Nodel T > time
?
Node 2 . >

T,

Time, (T,)=T,+7?

Transmit-

Receive

ETH:zurich
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Synchronizing a Pair of Nodes

» time

Time, (T,) =T, +?

-t timestamps with sufficient time resolution)

Transmit-

Receive
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Synchronizing a Pair of Nodes

Time, (T,)=T,+7?

Transmit-

Receive

Time node 1

A
.0
‘0
..0’
o~ | slope
-
0"
0"
-
0"’
[} .0‘.
0"
; offset
Time node 2

—» time

52



Synchronizing a Pair of Nodes

Time, (T,)=T,+7?

Transmit-

Receive

ETH:zurich

A
.0
‘0
..0’
| slope .
J —» time
4
P
© 0"
o ’0 ([ ]
c - ’
V o~
£ °
-

mples are better * J

Time node 2

* Up to a time interval where clocks exhibit non-linear behavior
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Synchronization Based on Network

Flooding

Node 3
Node 4

Node n

Uncoordinated (FTSP)

\
\
\
A}

> Node 1
> Node 2
> Node 3
> Nije 4
> Node n

time

Coordinated (PulseSync)

time
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Synchronization Based on Network
Flooding

Uncoordinated (FTSP) Coordinated (PulseSync)

Error exponential in network diameter [1] Error scales with square root of diameter [1]

[1] C. Lenzen et al, Optimal clock synchronization in networks, SenSys 2009




Synchronization Based on Network
Flooding

Uncoordinated (FTSP) Coordinated (PulseSync)

Error exponential in network diameter [1] Error scales with square root of diameter [1]

-nation leads to lower error accumulation per hop]

[1] C. Lenzen et al, Optimal clock synchronization in networks, SenSys 2009




TATS MAC Layer Timestamping

T
TX,uCclock||||||||||||||||||||||||||||||||||
TX IRQ Tsync sent ipacket sent
TX radio preamble [sync payload

\ \ \ |
| tnennsnnsennnnannns Lyenmnedgennses e ensne s ,
RX radio i preamble synce payload :
e T T T e 4
RX processing delay > >
RX IRQ ‘Lsync received lpacket received
RX uC clock |||||||||||||||||||||||||||||||||||

R

Figure 5. Timestamps for one message transmission.
Timestamps T and R are inaccurate due to asynchronous
clocks and uncertainties introduced with radio modulation.



Propagation Delay Measurement

» time

Node 2

Transmit-

Receive

-ay measurement on each Iink]

ETH:zurich
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Putting it Together

MAC-layer timestamping

Linear regression for offset and clock rate estimation

Two-way delay measurements

Fast flooding

Measure delays

Distribute time

Estimate time

time
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Can we measure delays using only one packet per node?

Less transmissions
Fits into existing flooding communication schemes
No need for explicit tree topology creation
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Propagation Delay Measurements in
Floods
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Propagation Delay Measurements in
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Propagation Delay Measurements in
Floods
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Putting it Together

MAC-layer timestamping
Linear regression for offset and clock rate estimation
Two-way delay measurements

Fast flooding

Measure delays

Distribute time Estimate time

\ ] time
|

One network flood
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TATS in a Nutshell

Reference Node J .

» tim
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One broadcast packet per round and node, same as in FTSP and PulseSync
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TATS in a Nutshell

MAC-layer timestamping
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Reference Node
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Node 2
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TATS in a Nutshell
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Fast flooding
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TATS in a Nutshell

Reference Node J .
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TATS in a Nutshell
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Experimental Evaluation on FlockLab
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Comparison to PulseSync and Glossy

Reference node (1)

Nodes equipped with GPS (7)

ETH:zurich
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Comparison to PulseSync and Glossy

Short Parameters
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Head-to-head Comparison

TATS 1007 =

short/long/dynami%;_

Fraction [%]

ETH:zurich
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Head-to-head Comparison
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Embedded Networked Sensing (CENS)
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