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Plan for Today

Focus on methods for assessing power consumption
— Direct measurements

— Indirect measurements

— Estimation methods

— High dynamic range

Scaling up the design space:
— Network-wide view of state and power with sensor network testbeds

Testing Methods

Modeling Technique

Validation using Formal Methods
In-Band/In-System Validation using Assertions



MODELING, TOOLS AND METHODS
FOR POWER ANALYSIS



Highly Resource Distributed
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Wireless Networked
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Assessing Power Consumption

* Two main categories

— Direct measurement using subsystem power sensors and meters
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— Indirect estimation based on information provided like temperature or
performance counters and a model
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Key Issues With RT Power Estimation

e Excessive dynamics

CDF of P-State Draws

— Large dynamic range /
— Fast transients ety o) mal
— Spurious events (low frequency) E‘;j i
— Capacitances smooth out details :03 | |

 Access to appropriate resources L

— Only few components have metering capabilities designed in

* Appropriate models
— Dealing with complex, non-linear systems
— Calibration
— Often, simple approaches show remarkable success
— Interpretation of power data



Power Traces are Complex and Long
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... and a wireless node is MUCH more than the processor
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MEASURING POWER
CONSUMPTION



A Basic Power Meter Architecture

* Resistive Method
e Shunt with differential amplifier
* Integrated in the power supply path
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Current Metering Techniques

expensive, not distributed,
not scalable, not embedded,

cumbersome, expensive, not distributed,
not scalable, not embedded, low resolution
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Ports: moteVec (measure),
Vee,Vref, debug,

Ground Rings
Noise Isolation

- .

1.35 inch i
low resolution, low responsiveness, high cost, high quiescent power
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Fine-grained Power Break-down
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Marc A. Viredaz and Deborah A. Wallach,
“Power Evaluation of a Handheld Computer”,
IEEE Micro, Jan-Feb, 2003
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Not All Energy Sinks Can Be Instrumented

State-based characterization and simple system models

Energy Sink

Power

Microconiroller

Power State

Current

0SC CPU USART
MCU ADC
Timer DMA
\ 4
PA | LNA
Radio Flash | Bensory | LEDs
RX || TX

Power

M

Data Control

CPU ACTIVE 500 A
LPMO 75 nA
LPMIT 75 pA
LPM2 17 A
LPM3 2.6 nA
LPM4 0.2 nA
Voltage Reference ON 500 pA
ADC CONVERTING BOO A
DAC CONVERTING-2 50 A
CONVERTING-5 200 A
CONVERTING-7 700 A
Internal Flash PROGRAM 3 mA
ERASE 3 mA
Temperature Sensor | SAMPLE 60 A
Analog Comparater | COMPARE 45 nA
Supply Supervisor ON 15 A
Kadio

Regulator OFF 1 A
ON 22 pA
POWER_DOWN 20 A
Batter Monitor ENABLED 30 A
Control Path IDLE 426 pA
Rx Data Path RX (LISTEN) 19.7 mA
Tx Data Path TX (+0 dBm) 17.4 mA
TX (-1 dBm) 16.5 mA
TX (-3 dBm) 15.2 mA
TX (-5 dBm) 13.9 mA
TX (-7 dBm) 12.5 mA
TX {-10 dBm} 11.2 mA
TX (-15 dBm) 9.9 mA
TX (-25 dBm) 8.5 mA
" TTasn el E LTy
STANDBY 25 pnA
READ 7 mA
WRITE 12 mA
ERASE 12 mA

LEDU (ked) UN 4.3 m
LED1 (Green) ON 37 mA
LED2 (Blue) ON 1.7 mA
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SPOT: In-System Power Meter for Motes

1 Sensing ! | Conditioning | ! Digitization | , Energy Output ‘: -
— T . Host CPU used for bookkeeping
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Metric Requirement SPOT
Dynamic Range | > 10000 : 1 45000 : 1
Resolution < 2uA < 1pA
Sampling Rate > 20kHz Internally at 1MHz

Output at I2C speed
Perturbation Minimal 102 additional load to DUT

Energy measurement via [2C

At least one read per hour
Integration Easy 1.357x1” all-in-one
Cost < $25 Off-the-shelf ICs

Xiaofan Jiang, Prabal Dutta, David Culler, and lon Stoica: Micro
Power Meter for Energy Monitoring
of Wireless Sensor Networks at Scale. IPSN 2007.
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NEMO: External Meter Sub-System

External resistive meter

e Auto ranging for higher dynamic range

Feedback to host CPU by modulation of power source

Host mote
Control || - + .
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Debugging (UART)

Shunt Resistor Switch

Input

Resistors Output
— A\ \p——ANN———
Switch 1 Control
Switches Switch 2 Control

Switch 3 Control

Host Mote

{

Debugging (JTAG)

Battery Holder
, on Host Mote
1

Fake Battery

Battery Holder
on Nemo

Ruogu Zhou, Guoliang Xing: Nemo: A High-fidelity
Noninvasive Power Meter System for Wireless Sensor

Networks. IPSN 2013.
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Metering by Counting Switching Cycles

Combining a PFM switching regulator and counter

LX
LX ST > Counter
witchin )
Vig tehing v, Vi Micro-
egulator
controller
__Ci” GND __C°“t GND
777 777 777 777

iCount

Dutta, P., Feldmeier, M., Paradiso, J., & Culler, D.
(2008). Energy Metering for Free: Augmenting
Switching Regulators for Real-Time Monitoring.
IPSN 2008 (pp. 283—-294). IEEE.



How Does iCount Work?

. Transfer
AE=Y5Li2 P=AE/At SWITCHING WAVEFORMS
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In-System Metering Comparison

Nemo

1Count

SPOT

Dynamic range

100,000:1

45,000:1 (1 uA - 45 mA)

Resolution

250,000:1 (0.8 uA - 202 mA)
0.013 uA (<50 uA),

0.068 uA (50 uA-250 uA),
0.68 uA (250 uA-2.5 mA),
6.6 uA (2.5 mA -25 mA),
48 uA (>25 mA))

varies w/ sampling rate
10 uA (8 Hz),

100 uA (80 Hz),

1mA (800 Hz)

varies w/ sampling rate
10 uA (220 Hz),

100 uA (2200 Hz),

1 mA (22 KHz)

Sampling rate

8 KHz (w/ compression),
100 KHz (w/o compression)

66 KHz max
80 Hz @ 100 uA resolution

N/A

Measurement error

average 1.34%, max 8%

max +=20%

average 3%

Sleep power measurement Yes No Yes

Power consumption 154 uA (0.1% duty-cycle) 1% of host current plus energy | 1.7 mA
195 uA (1% duty-cycle) loss on regulator (>10%)

Host CPU overhead 0.6% w/ comm., otherwise none | 13% at 8KHz sampling rate N/A

Host resource usa ge

none

Timer, one /O pin

12C bus, multiple 1/O pins

Ease of installation

very easy, wire-free plug n’ play

soldering of wire to host mote

soldering of board onto host;
extra 5.5V power supply
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METHODS FOR ESTIMATING
POWER CONSUMPTION



Run-time Estimation Based on Workload in
Server Systems

* |Idea: measures disc accesses (iostat). Use these performance counters to
compute an approximate disk power consumption.

Ehga = Pspinup ¥ toy + Preaa 2 N, * t,. + PwriteZ Ny *ty+ X Pidle*t;

* A first-order linear model for the whole system

Esystem = aO(Eproc + Emem) + alEboard + athdd + a3Eperiph

* Calibration using a set of benchmark applications

bzip2 cactusadm Ibm leslie3d

80| 80|
60— ep 60| :
gromac h2ed4ref ~ omnet pp peribench
80 | 8o
701 pocgen Ny, ; PN Yoy 70| f
. ol . A |

0 500 1000 1500 2000 0 500 1000 1500 2000
Timels)

* Finer level-of detail using hardware performance counters

Run-time energy consumption estimation based on
workload in server systems. Adam Lewis, Soumik

Ghosh, N.-F. Tzeng. HotPower'08



PowerTOP (for Linux)

e A popular tool for Linux (laptops)
* Visualizes load, frequency and power modes
e Builds a simple component-based power model

oP 2.0 Ovarview Idle stats Frequency stats Device stats Tunables

The battery reports a dischar
The estimated remaining time is 93 minutes

B5.5

Summary: 165.5 wakeups/second, 0.0 GPU ops/second,

round nones

L1

?1] timer(softirg)




Power State Tracking

Led2

On
Off

o?e i

Led0

Hardware C

CPU

0 5 10 15 20 25 30 35 40 45

Time(s)
* |nstrument device drivers
— Export device power states

— Through narrow interface
— OS tracks state transitions

H. Zeng et al. “ECOSystem: Managing Energy as a
First Class Operating Systems Resource”,
ASPLOS’02, 2002.

ETH:zurich

async command void Leds.led0OCn () |
call LedOFowerState.set (1);
/f Betting pin to low turns Led con
call LedD.clr();

b

async command veoid Leds.led0OC££() |
call LedOFower3tate.set (0);
/f Betting pin to high turnzs Led off
call Led(l.s=set();

interface FPowerState
/f Sets the powerstate teo walue.
async ccommand woid set (powerstate t walue);

/{ Sets the bits represented by mask to wvalue.

async command woid setBits (powerstate_t mask,
uint8 t cffset, powerstate_t wvalue);

interface FowerStateTrack |

/f Called if an energy sink power state changes

async event vold changed({powerstate t wvalue);

b

21




In-Band Power Monitoring: PermaSense SIB

ADM  DIRRUHORN ~SAASTAL

Coarse grained in-situ power monitoring =~

— Battery and system voltages

— Total current and subsystem current

— Activity counter (TX, RX, CPU)

Data is transmitted like sensor data

Long-time series available over whole network population

Overhead

— Hardware/power consumption
— Data logistics

PermaDAQ: A scientific instrument for precision sensing and
data recovery in environmental extremes: Jan Beutel,
Stephan Gruber, Andreas Hasler, Roman Lim, Andreas Meier,
Christian Plessl, Igor Talzi, Lothar Thiele, Christian Tschudin,
Matthias Woehrle, Mustafa Yuecel. IPSN 2009
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i.4
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HHHHHH
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e & 7
q .

sl 115 03
asa gl 14 117

Dozer Current

S S W —————

13:00

19:00

01:00
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Estimating Complex Breakdowns

AE
For every state transition ol A

— Snapshot system-wide power states (ay,..., @)
— Snapshot global energy usage (AE)
— Snapshot system clock (At)

40 -

30 -

20 L

) 10

A Power (mW)

. a’s
Generate an equation of the form 0

AE/At = a,p, +... +, 0P, —  Tmem
(p’s are the unknown power draws) At

Solve for p’s using weighted multivariate least squares

Requirement
High-resolution, high-speed power metering
is key for good results
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HIGH-DYNAMIC RANGE AND MIXED
SIGNAL DAQ



Every Nano-Joule Counts

* Energy Harvesting design challenges
e Powers from nW to W range

* Deep-sleep, aggressive duty cycling,
short high current active peaks

* Application specific, variable harvesting
* Need portable and in-situ measurements

Need for portable and high-dynamic range data
logging for long-term in-situ measurements

loT Device
Prototyping

ROCKETLOGGER

o

Accuracy / High Dynamic Range

Portability / In-Situ Measurements

[Lukas Sigrist et.al.: Measurement and Validation
of Energy Harvesting loT Devices. Proc. 2017
Design, Automation & Test in Europe Conference
& Exhibition (DATE 2017), Mar, 2017.]



The ROCKETLOGGER Idea — No Rocket Science

HI o—— Ry,
§ —{
Iin -
V. R Ry o——> Y Iz
in sh L o
Vout V "
R2 1 V+ ) Vout
LO o— T . o o - T o
Shunt Ammeter Feedback Ammeter

Switching circuit to combine advantages of both circuits
Environmental sensors to track harvesting conditions
BeagleBone Green as host platform

+ + + +

Smart students to realize the idea



Managing Measurements and Data

= : * Real-Time Unit for low
emperature”IIIummance“El

7y A. latency reactive readout
Environment Sensors | |
Voltage 1 |—> ADC 1 e -

external
12C Bus

* Data management on top of

Voltage 2 T Sgilﬁd 'L Control Network Linux OS
uto- 1 9
: Service .
| Current 1 |—’ [EN9E | e § - A A Sloage * Web interface for remote

I o > o
Clock \S— control and observation in

le_’ ADC 2 Webserver [¢-4-- .
i...SPL__ly PRU ; real-time
Voltage 3 P E— ; :
,—‘ Auto" Linux OS i fomemene » Network
el == B SD._ Connectivity
attery
Digital 4-6 Power Supply Card * 16 Mb/S ADC data

RocketLogger Cape BeagleBone Platform PRU Programmable 8.3 GB data stored per hour

Real-Time Unit

4
L 4 20 2
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The ROCKETLOGGER Hardware

Open hardware and software
http://rocketlogger.ethz.ch



http://rocketlogger.ethz.ch/

ROCKETLOGGER Measurement Performance

Metric Range/Value
Sampling Rate 1 kSPS up to 64 kSPS * Very-high accuracy
General ) asurement Bandwidth up to 9.5 kHz 4nA /13 uv
Voltage _INoise 5.9 pV RMS (1.38 mV RMS) * Super fast range switching

Input Leakage

t5.5V ~ 5 pA <14 upus

(x4) * Minimal impact on device
Total Dynamic Range 175 dB under test
[EUEERVEIEeERS00mAT VT <47 m burden voltage,
Noise High Range 1.33 A RMS (72 pA RMS) <430 mV when switching
Current oW CurrentRange 2 mA * Negligible input leakage for

+500 mA  Noise Low Range 1.75 nA RMS (390 nA RMS) simultaneous current and
(2x) voltage measurement

Transient Burden Voltage max. 430 mV for < 1.4 us

Accuracy High Range 0.09% + 3 A

Digital (x6) Threshold Voltage (Configurable) 6Vito +6V
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Seamless Range Switching Implementation

I;;; 22 mA: High Range

I, F, : Range Switching * M1 on

) e Stunt ammeter only
R
RShE | > oo * Low shunt resistor, low

A, = 150 A, = 67 burden voltage
in,fb be
ﬁ t’% = I;;, < 2 mA: Low Range
= ' % T * M2 on
Range _l y_{ * Feedback Ammeter
Range Switching Feedback Ammeter . High output Voltage,

high resolution
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Seamless Range Switching Behavior

0.4F
0.35F

0.3F

Burden Voltage [V]

0 0.5u 1M 1.5u
Time [s]
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... And Action!

Demo: measurement of a batteryless “Blinky Node”

v 2 e e sy 1. Accumulation of solar
B * .
I Lo | . energy (Ps) in buffer (I')
Solar gL ' Blinky | L
Panel lVS =7 M VLl Node } 2. Wake-up load when
LED energy level reached
I | Teeee 3. Load executes (P;) using
a1 OP buffered energy
» 12 HI
v, | Is>reioren % 4. <repeat forever>
S V1IN Vg
V2 IN V,
V3 IN V,
Vs VL VA IN
RocketLogger
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Demo: What to Observe

Voltage [V]

%103
5 ~4
45 (2) (1) Sleep mode power
' ! measurement (9 nA @ 2.0 V)
ol (2) Energy accumulation in the
35 (5) 12 g 220 uF buffer capacitance
: 5 (3) Wake-up tri t4.8V
3 o g p trigger at 4.
13 buffer voltage
25
(1) 0 (4) Step from 9 nA sleep to 4 mA
2 - active current
‘""""Vsolar “Vaiter Vicad ™ 'solar — 'Load ‘ . ]
15 S S S S S H RS O (5) Solar panel open circuit
5 14 voltage sampling for MPPT
=) _DlLED_DlTRIG| (3)
A e N I S
55 60 65 70 75 80 85
Time [s]

Plotting in Matlab is as easy as: rld('‘measurement file.rld’).plot()
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SCALING-UP THE DESIGN SPACE:
SENSOR NETWORK TESTBEDS



WSN Design and Development Tools

A

Simulation

Scale

.
.
.
.
®e
.
.
e
oo,
®ee
®eo
.
®

| Test Grids

Figure abridged from D. Estrin/J. Elson Reality

e Traditional test grid
— Wired backchannel

— Simple centralized control and
data collection

e Alternative: In-band collection




Example: Motelab Testbed

Harvard wireless sensor network testbed

. Primary design philosophy: Testbed should be both open and easy to use
. Open: Users at multiple institutions should have access for experimentation
. Easy to use: Web-based interface for programming, debugging, accessing

190 Tmote Sky nodes deployed over 3 floors of EECS building

. Each node connected to wall power and Ethernet for reprogramming and debug
« Spanning approx. 70,000 sq. ft.

Logging of serial port data to a database

. Provides easy access to debugging and profiling data
« SQL access to database in real time, or download ZIP file after run is complete

Network bridge to serial port on each node

. Each node given a specific IP address/port # for serial port access
. Allows remote programs to send and receive data to individual nodes in real time

G. Werner-Allen, P. Swieskowski and M. Welsh. MotelLab: a wireless sensor
network testbed. In Proceedings of the 4th international symposium on
Information processing in sensor networks (IPSN 2005).



Example: Motelab Testbed

.
— e

20-PIRSON
[+ M,
o

[_z
CRADUATE
HULEHL M

Tl

freany oog

\

18 PERGON FACULTY
CONE, R, Ll
{2l | 1.0
ey 3E 5 .
% ST =
—a
[ N ) T
o WATE 4
Y
. l — E— -
— i

Map of 2nd floor nodes only; blue circles represent nodes
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Example: Motelab Testbed

28— 77—

I 'I',jclnhtl.irllesl-ll.'u_.lll:lag"l u 2;5 RS

1ga | Sensys'06 _

168 | NSDI'07 .

IPSN'07 Sensys'07
148 | _

128 .

188 .

jobs/day

88 .

68

48

28

a
B83/81/86 B85/01./86 87/81/86 89/81/06 11/81/86 a1/81/a7 a3/81/a7 85/81/a
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Many Testbed Variants Exist

e Campus/Office dlstrlbutlon

Wyman Park WSN Testhed

— Indriya

O |
Il I ==
M ‘ g
— Kansel o
P . 2 ®
| w _SERE R aE el ==Y w: iy
J_M.p:; 8 a I%F NS ;t\p";-"* izl «1@‘.*‘\:;3 n
— : i VT B 8 g vt . | C
i = g Prp oy L/W | ;> B <M
I | o [

(‘;
e Web-based access %

e Wired backchannel - g e
to central server =

o e kﬂ
Super 3

Node

TWIST Testbed @ TU Berlin
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Diverse Landscape of Testbeds

Basic
support

Observations

Controlled
environment

Node programming
Support for multiple platforms

Large testbeds

Serial 1/0

Distributed power measurements

Mobility support
Temperature emulation

Interference generation

Motelab IPSN ‘05, DSN EWSN 07, ...

TWIST REALMAN 06
Kansei IPSN 06

PowerBench IWSNE 08,
SANDbed ARCS ‘10,
w-iLab.t TridentCom ‘10

Jiménez-Gonzalez et al. IROS ‘10

TemplLab IPSN ‘14
JamlLab IPSN ‘11



WSN Design and Development Tools

A

Simulation K
ne¢
o~ bo’ﬁ.\e“ g
g Coa‘g X0 \Og\c \e.b\e
....... o ¥\
............ roct Grid \_\m\’te not f\e
" Test Grids
Figure abridged from D. Estrin/J. Elson Reality g

e Traditional test grid
— Wired backchannel

— Simple centralized control and
data collection

e Alternative: In-band collection




WSN Design and Development Tools

A

Simulation

Scale

.
.
.
®e
.
.
.
e
oo,
®ee
LY
o

| Test Grids

Figure abridged from D. Estrin/J. Elson Reality

* Correctness at deployment time is crucial
* Validation tools are needed

» Testbeds capture intricate details of
the behavior of devices
and the environment

ETH:zurich



Multiple Modalities, Fine Grained
Resolution

Node programming

' L
Basic Support for multiple platforms FlockLab

support . .
Large testbeds Less intrusive state
extraction
Serial /0 Precise time measurements

Observations High resolution distributed

Distributed power measurements
power measurements

Mobility support Time triggered actions

Controlled

_ Temperature emulation
environment

Interference generation



DSN Testbed: Distributed Observers

SRR : ’
:ooﬂ.'i;"zf,;;"&; o s i ; (‘;,«‘
o B P - N

Key Differentiators
e Distributed stateful observers co-
located with the DUT

* Mobility: Wireless, battery powered

Functionality

* Remote reprogramming
* Extraction of log data

* Stimuli, e.g. fault injection

* Synchronization of traces and actions
* Centralized logging

* Detailed behavioral analysis [Beutel et al. SenSys2004,
IPSN2005, EWSN2007]




/

Testbed server

Observer

System layer

Wired and wireless observation layer

* Fast, distributed tracing and actuation of /ogic
* Synchronized power tracing

* Sensor stimuli and references

e Time synchronization to ~us

ETH:zurich 45




Extending the Target-Observer Model

Qbserver Target

GPIO Monitor | je———
e — — /:
- _ e
o =~
g w
KX KX X KK ( 5 g
— :
Powerprofiling |}«

e Stateful observer supporting multiple services
— Fast, distributed tracing and actuation of logic

D

Application

N

[~ scalabilit
— Deep local storage y

J\

— Synchronized power tracing

— Sensor stimuli and references — modalities

* Time synchronization to ~20 us (NTP) ~

[Woehrle SenSys2009, Lim IPSN2013]
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FlockLab

» 4 Target Architectures
—Tmote Sky
—TinyNode
—Iris
— Opal

* 30 Node Testbed

— Ethernet/WLAN backbone
—In- & Outdoor

. Indoar observer (Ethernat)

—
0o 5 10 15 2m

{“:} Qutdoor observer (Wi-Fi)

Link with PRR > 90% (Tmote)

Vi

ETH:zurich
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http://www.flocklab.ethz.ch/

Synchronized Power and State Traces
from Distributed Nodes

P
P

Sender

Receiver
i}

111111111111111111111111111111111111111111111111

IIIIII
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o

Average current draw [mA]

—i
an

o

Test Case: Analysis of CTP/LPL

%

 —e—Opal (868 MHz, 6 dBm)

—
(@)

—4—Tinynode (868 MHz, 12.5 dBm)

Tmote Sky (2.4 GHz, 0 dBm)

(average, 15th and 85th percentiles)

—
C)

Average current draw [mA]

]

—e—(Opal (868 MHz, 6 dBm)
—4—Tinynode (868 MHz, 12.5 dBm)

Tmote Sky (2.4 GHz, 0 dBm)
(average, 15th and 85th percentiles)

5_
75 80 85 90 95 100 0 1 2 3
Data yield [%] End-to-end latency [s]
Radio on [l Data Tx
Data/Ack Rx [ Ack Tx
Parent | I (1)
chid| I 1 | | ol 11 1
0 25 50 75 100 125

Time [ms]




Test Case: Synchronized Glossy Floods

25— | ] ] ] ] ] ]
24 = oomem oooomm | |Initiator — e e —
551 — — — Radio on — — —
21k — — — Packet Rx — — —
201~ - - — Il Packet Tx I — - -
13_ - -_ -_ — IRxfaiIure — : : -
17+ - - | - - - -
16— - - - - - -
15+ - - - - - -
w— 14+ - - - | - - ]
[}
o 13- - | - - - - -
© 12— - - - - - -
= 11+ - | - - - - -
10+ | - - - - - -
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8- - - - - - -
TE - - - - - -
6 - - - - - -
5 - - - [ e e
Al [ - - -
3+ - - - - - -
2 - ] - | ] ] -
1= B - - - - -
()= - - -— | ] —-— — |
0 5 10 15 20 25 30 35 40
Time [ms]

(a) Radio states of 26 Tmote targets obtained from GPIO tracing.

b 20 Radio on
= Packet Rx
5 10 Il Packet Tx
= —— Current draw
(@]
0 |
0 5 10 15 20 25 30 35 40 .
Time [ms] 1

(b) Radio state and current draw of target 0 in (a).




Test Case: FTSP Clock Accuracy

50
%) 0 (indoors, FTSP root)
< 40l 1 (indoors)
o ——2 (outdoors)
>
= —3 (outdoors)
o 30
o
5 1
= 20F——m—

| \

| | | | | | | | | | | \ | \ | | \ | \ | | |
01 2 3 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 0
Time of the day [h]

_ 10f

-

o 5—

q% F-..‘:."ll"' v - i\ — = T S

5 GPIO tracing: FTSP:

S -or 1 (indoors) = 1 (indOOrs)

(—3 —-10-—2 (outdoors) i 2 (outdoors)
1 5_—|3 ‘(outldoolrs) | o 3 goutdoors)

| | | | |
01234567891011121314151617181920212223O
Time of the day [h]
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FlockLab Testbed Statistics

Number of Users 368
Total Tests 64765
Time Occupied [h] 15155
Time Occupied [%] 34.8
Average Test Duration [min] 29.2
e TMNOt .
FlockLab Tests Per Target Platform . FlockLab Test Service Usage
Mica
10000 2 20000
e TinyN [ p—
i
F K J o9
100 Opal 0 a00®® .- -
. 2012 2013 2014 2015 2016 2017
10 — S
. Serial mmmms GPIO tracing s GPIO actuation
1 eee00(CC43
2012 2013 2014 2015 2016 2017 0 . Power profilinge @ e e Total Tests
. s DPP : :
FlockLab Numbers of Active Users FlockLab Time Testbed Occupied
100 . \Vismote 4000 60
e0o0®
80 mmm OpenlMote oo ®e 40
- et o 2000 o°®
[  ACM2 o® o. . 20
°
“0 o’ o - 0
20 mmmmm CC430
°o® 2012 2013 2014 2015 2016 2017
o - la — ris
2012 2013 2014 2015 2016 2017 mmmm Time Occupied [h] e e o o Time Occupied [%]

Data taken 2017-05-09
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FlockLab Testbed User Demographics

FlockLab Users SenSys 2010 Participants

\f‘??\

- _

m Switzerland m United States
® Germany ® India

m Sweden m China

m |reland m Singapore
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A Big Success — The Rise of WSN Testbeds

Motelab: A wireless sensor network testhed
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depley, and debug applications on realistic large-scale sensor networks have gone unmet.
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paper presents FlockLab, a testbed that overcomes this limitation by allowing multiple
services to run simultaneously and synchronously against all nodes under test in addition
to the traditional serial port service: tracing of GPIO pins to record logical events
occurring on a nede, actuation of GPIO pins to trigger actions on a node, and high-
resolution power profiling. FlockLab's accurate timing information in the low microsecond
range enables logical events to be correlated with power samples, thus providing a
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WSN Design and Development Tools

A . .
- | Simulation Can we Emulate Reality
in the Lab?
. o
R DSN/FlockLab Testbed
Test Grids T

Figure abridged from D. Estrin/J. Elson Reality

* Testbeds are not the real
target environment
— RF environment
— Stimuli from physical processes
— Weather
— Scale

ETH:zurich



Challenge: The Physical Env

e Strong daily variation of temperature
— -30°Cto +40°C
— AT = 20°C/hour

* Impacton

— timing, energy availability, fatigue, ...
20_ ......

ilronment
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] —Node 2 | k .
OU ‘|0 I " ,,,,,,,,,,,,,,,,,,,,,,,,, r ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, — —Node3 .......... ,ﬁ‘ ,,,,,,,,,,,,,,,,,,,,, r: .........................................
; y‘\ .'
S5
©
@
Q
£
L
l_

-20
12/07 12/08 12/09 12/10 12/11 12/12 12/13 12/14
ETHZ.. ... Time [day]



Extending Physical Characterization

* Emulating the environment...
— temperature cycle testing (TCT)

* ...and resource usage

— different power sources:
Batteries, rechargeable
cells, solar, fixed DC power...

ETH:zurich 57



Impact of Environmental Extremes

* Tighter guard times increase energy efficiency
* Software testing in a climate chamber

— Clock drift compensation yields + 5ppm

e Validation of correct function

| 50
—— Temperature
= 160 —_ . -140
c Storage Duration —
.5 190 -=—=-DAQ Duration . ' 130 g
@ © Watchdog Resets e ‘ ' H ©
S kY S
2 80 £ 120 ©
: g
o <
= ' . ()]
O 0L b SN H l
& 40T ~40°C - _ il 10
mA | L Onnnnnnnnnns . .. 0
2 4 10 12 14

Time [hours]
ETH:zurich [Beutel DATE 2011]



FlockLab Testbed Statistics
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FlockLab Testbed User Demographics

FlockLab Users
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FLOCKLAB RECENT DEVELOPMENTS



Long-Range Extension

~1 Network Topology

« Goal: City-wide long-range testbed
o Current network: 3 rooftop nodes, 28 indoor nodes

» Antenna options: Identical targets with different
antennas (e.g. high-gain, low-gain)

‘

28
Indoor

F

Demo

» FlockLab observer hardware
exhibit
e Demonstration of running a
FlockLab test on the rooftop
nodes
* Web interface

e Tracing results (GPIO,
serial, power)

ETH:zurich




FlockLab v2.0

Why: End-of-life of components

GPIO tracing with 10Mhz
Serial logging

Controllable target voltage

Serial Wire Debugging using SEGGER J-Link/J-
Trace

High dynamic range current measurement
GPS time synchronisation

Support for multiple targets

Compatibility to existing targets



FlockLab V2.0 Prototype

ETH:zurich



FlockLab V2.0 Pre-Series




Side Effect — nRF52810

ETH:zurich



Less Instrumentation using J-Link/J-
Trace

n Target
emote Serv System
CPU

erver
UsB
S B




Leveraging Full ARM Debug/Trace
Support

ARM Cortex-M CoreSight Debug

2-pin Serial Wire
Debug (SWD)
interface

Debug g | Debug

10 pin Cortex Debug Connector
Or

20 pin IDC Debug Connector

A

JTAG debug

or i
interface

Connector

On the fly debug
accesses to memory,
debug and peripherals

h

Software
Breakpoints

Halting, resume,

Single stepping,
restart, register read

& write Serial Wire Viewer
ETM (program|
Tgcs ) Trace Port Off-chip
Interface Trace
Unit (TPIU) Port
Data Watchpoints
Instrumentation
(ITM) Trace
Hardware

Cortex-M3/M4 Processor

Breakpoints

ETH:zurich

-

SRAM

Peripherals

Flash programming & verify via debug connector




TESTING METHODS — MODELING
TECHNIQUE - VALIDATION



WSN Validation Methods

* Threats to predictability

— non-deterministic environment (energy harvesting, availability of
communication)

— working close to resource limits (energy, memory, bandwidth)

makes systems extremely fragile

V
* Formal methods * Testing
e« verification = in.cre-ase observability
« correct by construction  distributed and scalable

e different modalities



Testing — A Step Towards Reality

Application
Goal

Reality

Boundary of Simulation

"

1 2 5 10 100 1000
Scale

72
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Methodology and Development Tools

Extending the Logical View
* Detailed physical monitoring

* Control of the environment

* Physical stimulation

Physical * Control of resources
Characterization

From Platform to Testbed
to Multi-Platform

* Native execution
* Log file analysis . . .
« Influence of the environment Advanced Software Engineering Practices

ETHzurich 73



Coordinated Testing

Environment

~~

input

System under Test
(Sensor Node)

Test passed:
YES or NO

ETH:zurich

packet yield [%)]

Formalize testing procedure

— Given some test case, an
environment and
corresponding outputs.

— Based on the outputs check
whether the system works as
expected

— Repeat this...

* TOSSIM Simulation

" DSN testbed

5 10 15 20 25 30 35 40 45
#testruns
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Automation: Continuous Integration

* Run Build and Test Loop
Continuously Code

— Watch repository for changes Versioning

— Run build and tests

— Publish status of the
build and tests to developers

Compilati
on

Reporting

* Benefits
— Detect errors early
— Monitor code quality over
time
— Prevent integration problems

ETH:zurich
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Example Tool Cruisecontrol

Config Control Panel

I Metrics

Tiny0S Metrics

XML Log File
FindBugs

Test Results
PMD

Build Results
CheckStyle

cruisecontrol
—

n toolkit

MNumber of Build Attempts 286
Mumber of Broken Builds 74
Mumber of Zuccessfil Bulds 222

S Timeline of build types

14:45

’.
A

-
.
oy L] L) an
09/08 16/08 23/08  30/08

. . o ¢ * .
-f
05/07 0z/08

date

'y -
1afoe 2106 28/06 12/07 19407  26/07

{build
(build

Maore builds v

M Eroken Builds M Good Builds

Timeline of coding violations

violations

.
06/09

Breakdown of build types

Eroken Builds

. o Good Builds

13/08

M Broken Builds M Good Builds

02/08  08/08  16/08  23/08  30/08

date

lajo6  21/06  28/06  05/07 1207  19/07  26/07

M FindBugs M CheckStyle PMD Javadoc

06/09

1308 zo0/0




Detailed Statistics over Development Time

Timeline of build types
00:00 - _ 3 -
. - L . . . .
22:00 -4 L]
L] L ] [
20:00( * e « * * e, H . : ;
. »
° . o
18:00 P . . . : ot .
16:00 » - * m -
14:00 . Tiny05-2.x Ram Usage
al
E 1200 o 150
=
too0|  * 125
08:00 T ‘
\
06:00 1o
in \
04:00{ @ g \
o200 *
50 |
oo:00—*
23 I‘nll
\
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|IRam M eyesiFiv2 M mica2  mica2dot © micaz M telosh tinynodel
Tiny0S5-2.x Flash Usage
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I
30,000 r | . |
1
25000 | =
QEWW Tiny0S-2.x Mean Current Consumption
= 15,000 0.050
10,000 0.045
0.040
5,000 0.035
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0.020
0.015
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M telosh M tinynode

77



WSN Validation Methods

* Threats to predictability

— non-deterministic environment (energy harvesting, availability of
communication)

— working close to resource limits (energy, memory, bandwidth)
makes systems extremely fragile

1l

N
* Formal methods * Testing
e« verification = in.cre-ase observability
« correct by construction  distributed and scalable

e different modalities



Power Trace Verification

 Generate a (formal) model of the system
— Model of the hardware and software, including dynamic behavior
— Model of the measured power traces
— Model of the test cases

 Conformance test for power measurements

— Can the measured power consumption be explained by the
hardware/software/test specification?

— Failures may be due to model or implementation errors



“Naive” Trace Bounds

Bounds for allowed power Determine static bounds given
consumption a deterministic reference

Target Current Consumption with Fixed Voltage Supply at 3.3V

Interval i Interval i+1 ..
- - - — - . » f; byl L f,*
{ fiat _* """"""" -
f v -
¥,
t " ; i
acceptance region

Lower Bound: 15mA
Test start Teststop

measurements




Validation of Traces using Formal Bounds

Target Current Consumption with Fixed Voltage Supply at 3.3V

£(t) = ag+ap-x+... ?fl’. 6 [J’.,-_].J’.,-\J
0 if ¢ g [?L,'_].fj']

— () Jrr{”_jg_ ift € [f,‘_'l.!':')
o {” if t & [ti—1,ti)

nt [mA]
[

Curre

)y =3 i ()

Vi€ [—At At],Vie N :

L - ;) if (i) + f(E+)) <0
e+ Ty = o 1) A0 ST (),
@) if — f(tim)+ f(ti+)) >0
The upper bound f™ follows accordingly with a bound
value Ay™.

* Assertions based on reference traces/specification

* Integrated with each build (regression testing)
[Woehrle 2007, WEWSN2008, SUTC2008]



Conformance Testing of Power Traces

A

Automatic TLce Generation

Monitoring | : et Vo :

(

] oO : Model Checker e '

Power Measurement

Implementation

>
c
[l
o
3
D
=
®
o
o
o
=
®
q
=
&
0
®
>
q
=
0
)
=3
o
S

HW-oriented | SW-oriented

- Power Consumption |- Component Usage
- Timing Annotations |- Control Flow
- Timing Constraints

expected
behavior

Description of

Test description

Environment

[Matthias Woehrle, Kai Lampka and Lothar Thiele: Exploiting
timed automata for conformance testing of power
measurements. Proc. Formal Modeling and Analysis of
Timed Systems 2009, p. 275-290, September 2009.]
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Conformance Testing of Power Traces

( -TT T TS I R
Model of " _ i Model of
observed Verli.‘y Reachability expected
behavior in UPPAAL behavior
Power PT :
trace : 8 o
o vV...OND | 4
5 | Counterexample : on _ S
' i
"t3ﬁ€ﬂ5y5||pr:s——>t¢>PT:
\ _________________________________________________________________

(@

Il'est description

Expected behavior

System in operation

\ J

ETH:zurich

I Environment
J

[Woehrle 2009]
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Conformance Testing

 Composition of trace and specification: PT || Sys
— Trace automaton PT (Sequential measurements)
— System specification automaton Sys

— Q: Is the power consumption measured explained by the
specification?

 Example tool: Uppaal Model Checker
— Offline conformance test
— Reachability of final trace location

* Possible to test real-time systems on-line: Tron



Basic Timed Automata Model

Infinite state system
* But, reachability is decidable

Mature tools are available (Uppaal, Kronos)
 Power consumption as data variable extension

clock x;
label a,b;
int y=0;




Example Hardware Model

Hardware Model

bool IsInBounds EFD
C (){ . RadiolUp = 20400,
if(crrvalue >= RadioUp+MCUp or _,O_H% RadioLow = 12900
i : RadioUp = 16000, o T—
crrvalue < RadiolLow+MCLow) R 1 on e eInBounds0 —_—
return(false); @ax,‘x
retu l"ﬂ(t r-ue); ActualTransmit T IsinBounds()
} RadioUp = 22800, SEND
RadioLow =11600 _——
IsinBounds() o \ sending?
(r \
———____ lIsinBounds) ___— \
RadioUp = 23800, T — \
RadioLow = 15000 RadioUp = 21700, \
AttemptSend RadiolL.ow = 16000 \
VOLTAGE REG IDLE_TRANSITION STARTUP TRANSITIONING_UP -"f
a<=50 && lsInBounds() a<=100 && IsinBounds() a<= 150 && IsInBounds() a <= 200 && IsinBounds() RadioUp = 20400,
RadioLbw = 12900
N & N %acioU%’ZSDOD h = hy = /
RadiolUp = 4000, RadioUp = 1800, s, ’ RadioUp = 16000, RadioUp = 21700,
OFF / RadioLow = 200, RadioL.ow = 0 Radiolow =200 RadioL.ow = 6000 RadioL.ow = 16000 /
a=0 IsinBounds( _
— RadioUp = 16000, —
IsinBounds() ""“'-h—-___q_q_ off? TRANSITIONING_DN RadiolLow = 209,,;!/ LISTEN_and_RECEIVE
T Eagiotlp = 28{], a <= 50 && IsinBounds() a= Of,,f’
T adioLow = _—
i _ T2 —

87



Example Software and Trace Model

Software Model

initial==true
z=0,
initial=false Send
@J\"x z=0, initial = true
on! S~ 3:480”0
o . sending!
x\x\&(\ _ C.Hrwd’?______
RadioOn = -
OFF @ z<=2000 ! recen ;___————
z <= 50000 | aceive’
z=0, initial = true
off!
Receive

Trace Automaton

crrvValue=100, y=0, stateTrace = 1
crrValue=100, y=0, stateTrace =0 crrValue=200, y=0, stateTrace = 2

0 O O ©

y<=0 ::O y<=70 ::70 y<=1 17 y==1 '1 7




Power States and Power Traces

08 o 4] 5
20

~ 15

E

=

& 107 ims == 50 samples
-

G

Ln

Ly

I:I [ 1 Il i Il K 1 1 el
11608 11609 1161 11611 11612 11613 11.614 11615 11616 11.617 11.618
Time [5)

ETH:zurich
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e

Generating a Power Trace Automaton

1.79204827
2.32205325
0.288717749
0.0842842821
1.57702206
2.0505207
2.25958169
2.8585387
2.94728409
2.70120291
2.55394464
2.59723726

There are millions of power
measurements...

System is indifferent when P € [2mW,3mW]
=
Piecewise compression into one value,
e.g. representation by its average value




Example Power Trace Compression

Arrant dras in ma,

"""""" Helwr | raog
e el B T I TR ER

I'_:I | |
o a6 H GEG A, Bl . abo H.GEG =Rl 2. bias H.GE:

Time in srcond=s
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Experimental Evaluation

Experiment

— TMOTE Sky (MSP 430, TI CC2420) running TinyOS2

— Harvester application, LPL MAC data gathering

— Besides testing a correct run (complex trace)

— Several errors have been introduced

Missing wake-up

Inject error in low power scheduler
Wrong low power state of MC
Specification error).

Current (mA)

5 A

I .I Illi\ ./.F’_’l

e

Currant (mA)
]
l

%,
PR

D n 1 1 1 1 n 1 1 1 n 1 n
11.608 11609 11.61 11611 11612 11.613 11614 11615 11616 11.617 11.618

Time (s) 10 11 12
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Current |

Case Study on Various Traces

T 20k . . . : . : . . ‘
10 | Wakeup pulse from
5 . I | - ; 11.608s - 11.618s
:. | | i = i | | | . : | I ! i |
0 2 4 B 8 10 2 14
Time (s)

Wake-up: Periodic sampling of the channel
Inject:  Extended period error

o 11 12 13 14 15 16
Time {5}

Complex: Send/receive operations with lots of non-determinism
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Explicit Modeling of Defects

25 T T .
20
, LED on
:E‘ 15 - (additional ~2.6 mA)
i
o
L:IJ 10
Last valid state:
14.5083s fill 14 5905 |
z \\ [
I:I = i | ! . 'l I | ! |
13.6 13.8 14 14.2 14.4 14.6 14.8 15 15.2 15
Tima (5]
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Some Runtime Results

Verification Results

Model Samples C()mplfessi()n R.uni_:i_me
Intervals{100uA steps|Intervals|100uA steps
Wake-up 1000000 | 2089 13812 8s 182s
Inject 990000 2040 13666 5s 167s
Complex Trace| 310000 | 21811 89678 15min |5 Fails
MC state 1000000 | 1086 5539 4/ 22s
Specification | 1000000 | 1478 4578 / S 22s

e

Improvements have been done in terms of scalability.
I . . . [Matthias Woehrle, Kai Lampka and Lothar Thiele:
But d Comp eX|ty ISsue remains. Conformance testing for cyber-physical systems

ACM Transactions in Embedded Computing
Systems (TECS). Volume 11, Issue 4, p. 84,
December 2012.]



IN-BAND/IN-SYSTEM VALIDATION
USING ASSERTIONS



Other Approaches — Packet Level Overhearing

Symptoms are detectable by passive inspection
— Dead nodes, Node reboots, Network partitions
— Approximate neighborhood

Failure root causes remain unclear

Problem
Warning
OK

000@

Node not

Data Stream
Processer

Root Cause
| et

Configuration

Packet
Description

, group, length;
{length];

Msg.data (type==1) {

Operator
Graph

Decision Tree|

[Ringwald DCOSS 2007, Roemer IPSN 2009]



Evaluation With Passive Distributed Assertions

* Assertions: express belief int i;
that a condition holds

assert (i > 50);

e Assertions over distributed program variables

— Value of variable i should int i;

equal value of variable k .

at node 100 PDA(i = 100:k);

Varia\blekon
* Checked by passive inspection node 100

— Nodes only broadcast assertions (PDA msg) ,

changes of relevant variables (SNAP msg) k= ...
— Overheard by sniffer network SNAP (k) /

— Minimize interference



Assertion Evaluation Example

Node 1

Latest snapshot of k on
node 2 before T=10

Latest snapshot of k on

Message Trace

node 2 before T=10 s T=10-A

10 | 1=5; PDA (i=2:k) <

__——

Earliest snapshot of k on
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