## Low-Power System Design

227-0781-00L Fall Semester 2019 Jan Beutel



# Plan for Today

- Focus on methods for assessing power consumption
  - Direct measurements
  - Indirect measurements
  - Estimation methods
  - High dynamic range
- Scaling up the design space:
  - Network-wide view of state and power with sensor network testbeds
- Testing Methods
- Modeling Technique
- Validation using Formal Methods
- In-Band/In-System Validation using Assertions



## MODELING, TOOLS AND METHODS FOR POWER ANALYSIS



Highly Resource Constrained Distributed State

# **Wireless Networked Embedded Systems**

### Unreliable Communication

Interaction and Tight Embedding in Environment



# **Assessing Power Consumption**

- Two main categories
  - Direct measurement using subsystem power sensors and meters



 Indirect estimation based on information provided like temperature or performance counters and a model





# Key Issues With RT Power Estimation

- Excessive dynamics
  - Large dynamic range
  - Fast transients
  - Spurious events (low frequency)
  - Capacitances smooth out details
- Access to appropriate resources



- Appropriate models
  - Dealing with complex, non-linear systems
  - Calibration
  - Often, simple approaches show remarkable success
  - Interpretation of power data



### **Power Traces are Complex and Long**



#### ... and a wireless node is MUCH more than the processor





## MEASURING POWER CONSUMPTION

Low-Power System Design

# A Basic Power Meter Architecture

- Resistive Method
- Shunt with differential amplifier
- Integrated in the power supply path





# **Current Metering Techniques**



cumbersome, expensive, not distributed, not scalable, not embedded, low resolution





expensive, not distributed, not scalable, not embedded,



low resolution, low responsiveness, high cost, high quiescent power



## Fine-grained Power Break-down



## Not All Energy Sinks Can Be Instrumented

State-based characterization and simple system models



### SPOT: In-System Power Meter for Motes



| Metric        | Requirement         | SPOT                             |
|---------------|---------------------|----------------------------------|
| Dynamic Range | > 10000:1           | 45000:1                          |
| Resolution    | $< 2\mu A$          | $< 1\mu A$                       |
| Sampling Rate | $> 20 \mathrm{kHz}$ | Internally at 1MHz               |
|               |                     | Output at I2C speed              |
| Perturbation  | Minimal             | $1\Omega$ additional load to DUT |
|               |                     | Energy measurement via I2C       |
|               |                     | At least one read per hour       |
| Integration   | Easy                | 1.35"x1" all-in-one              |
| Cost          | < \$25              | Off-the-shelf ICs                |

Xiaofan Jiang, Prabal Dutta, David Culler, and Ion Stoica: Micro Power Meter for Energy Monitoring of Wireless Sensor Networks at Scale. IPSN 2007.

#### Host CPU used for bookkeeping





# NEMO: External Meter Sub-System

- External resistive meter
- Auto ranging for higher dynamic range
- Feedback to host CPU by modulation of power source



# Metering by Counting Switching Cycles

Combining a PFM switching regulator and counter



#### iCount

Dutta, P., Feldmeier, M., Paradiso, J., & Culler, D. (2008). Energy Metering for Free: Augmenting Switching Regulators for Real-Time Monitoring. IPSN 2008 (pp. 283–294). IEEE.

## How Does iCount Work?

**Transfer** 

SWITCHING WAVEFORMS

 $\Delta E = \frac{1}{2} Li^2 P = \Delta E / \Delta t$ 



## In-System Metering Comparison

|                         | Nemo                              | iCount                         | SPOT                          |
|-------------------------|-----------------------------------|--------------------------------|-------------------------------|
| Dynamic range           | 250,000:1 (0.8 uA - 202 mA)       | 100,000:1                      | 45,000:1 (1 uA - 45 mA)       |
| Resolution              | 0.013  uA (< 50  uA),             | varies w/ sampling rate        | varies w/ sampling rate       |
|                         | 0.068 uA (50 uA-250 uA),          | 10 uA (8 Hz),                  | 10  uA(220  Hz),              |
|                         | 0.68 uA (250 uA-2.5 mA),          | 100 uA (80 Hz),                | 100 uA (2200 Hz),             |
|                         | 6.6 uA (2.5 mA -25 mA),           | 1mA (800 Hz)                   | 1 mA (22 KHz)                 |
|                         | 48  uA  (>25  mA))                |                                |                               |
| Sampling rate           | 8 KHz (w/ compression),           | 66 KHz max                     | N/A                           |
|                         | 100 KHz (w/o compression)         | 80  Hz @ 100  uA resolution    |                               |
| Measurement error       | average $1.34\%$ , max $8\%$      | $\max \pm 20\%$                | average $3\%$                 |
| Sleep power measurement | Yes                               | No                             | Yes                           |
| Power consumption       | 154  uA (0.1%  duty-cycle)        | 1% of host current plus energy | 1.7 mA                        |
|                         | 195  uA (1%  duty-cycle)          | loss on regulator $(>10\%)$    |                               |
| Host CPU overhead       | 0.6% w/ comm., otherwise none     | 13% at 8KHz sampling rate      | N/A                           |
| Host resource usage     | none                              | Timer, one I/O pin             | I2C bus, multiple I/O pins    |
| Ease of installation    | very easy, wire-free plug n' play | soldering of wire to host mote | soldering of board onto host; |
|                         |                                   |                                | extra 5.5V power supply       |



## METHODS FOR ESTIMATING POWER CONSUMPTION

Low-Power System Design

## Run-time Estimation Based on Workload in Server Systems

• **Idea:** measures disc accesses (iostat). Use these performance counters to compute an approximate disk power consumption.

$$E_{hdd} = P_{spinup} * t_{su} + P_{read} \sum N_r * t_r + P_{write \sum N_w * t_w + \sum P_{idle} * t_i}$$

- A first-order linear model for the whole system  $E_{system} = \alpha_0 (E_{proc} + E_{mem}) + \alpha_1 E_{board} + \alpha_2 E_{hdd} + \alpha_3 E_{periph}$
- Calibration using a set of benchmark applications



• Finer level-of detail using hardware performance counters

# PowerTOP (for Linux)

- A popular tool for Linux (laptops)
- Visualizes load, frequency and power modes
- Builds a simple component-based power model

| Power                                                                                        | TOP 2.0                       | Э                                    | Overvi                               | ew Idle sta                     | ats Frequency                                         | stats                               | Device st                                                                   | ats                                     | Tunables 🔤                                           |
|----------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|--------------------------------------|---------------------------------|-------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|
| The battery reports a discharge rate of 14.3 W<br>The estimated remaining time is 93 minutes |                               |                                      |                                      |                                 |                                                       |                                     |                                                                             |                                         |                                                      |
| Summa                                                                                        | ry: 16                        | 5.5 wał                              | keups/s                              | econd, 0.0 (                    | GPU ops/second,                                       | 0.0 VFS                             | ops/sec a                                                                   | and 4.                                  | 1% CPU use                                           |
| Power<br>2.74<br>831<br>527<br>351<br>251                                                    | est.<br>4 W<br>mW<br>mW<br>mW | U<br>100.0<br>100.0<br>1.0<br>1.0    | sage<br>%<br>ms/s<br>%               | Events/s<br>59.8                | Category<br>Device<br>Device<br>Interrupt<br>Device   | Desc<br>Disp<br>USB<br>PS/2<br>Audi | ription<br>lay backli<br>device: US<br>Touchpad<br>o codec hw<br>o codec hw | .ght<br>B Opt<br>/ Key<br>/C0D3:        | ical Mouse<br>/board / Mouse<br>: Intel<br>: Roaltok |
| 282<br>256<br>170                                                                            | mW<br>mW<br>mW                | 6.2<br>24.9<br>100.0                 | ™s/s<br>ms/s<br>%                    | 26.3<br>4.7                     | Process<br>Process<br>Device<br>Interrupt             | /usr<br>xfce<br>USB                 | o codec nm<br>/bin/Xorg<br>4-screensh<br>device: AX<br>sched(soft           | :0 -b<br>10<br>(88772                   | background none                                      |
| 80.1<br>71.8<br>59.5<br>44.9                                                                 | mW<br>mW<br>mW                | 215.5<br>2.0<br>379.2<br>146.4       | µs/s<br>ms/s<br>µs/s<br>µs/s<br>µs/s | 9.0<br>6.3<br>5.0               | Interrupt<br>Process<br>Interrupt<br>Process          | [41]<br>/usr<br>[23]<br>iscs        | i915<br>/bin/Termi<br>ehci_hcd:<br>id                                       | .nal<br>usb2                            |                                                      |
| 40.8<br>30.8<br>26.8<br>20.8<br>15.6                                                         | mW<br>mW<br>mW<br>mW          | 414.7<br>13.2<br>0.7<br>8.2<br>200.4 | µs/s<br>µs/s<br>∎s/s<br>µs/s<br>µs/s | 4.3<br>3.5<br>2.4<br>2.4<br>1.6 | Process<br>Interrupt<br>Process<br>kWork<br>Interrupt | xfwm<br>[6]<br>xfde<br>cons<br>[1]  | 4displa<br>tasklet(so<br>sktopdi<br>ole_callba<br>timer(soft                | y :0.<br>oftiro<br>splay<br>ack<br>irq) | 0sm-client-<br>1)<br>/ :0.0sm-cli                    |
| <esc></esc>                                                                                  | > Exit                        |                                      |                                      |                                 |                                                       |                                     |                                                                             |                                         |                                                      |

## **Power State Tracking**



- Instrument device drivers
  - Export device power states
  - Through narrow interface
  - OS tracks state transitions

H. Zeng et al. "ECOSystem: Managing Energy as a First Class Operating Systems Resource", ASPLOS'02, 2002.

```
async command void Leds.led0On() {
  call Led0PowerState.set(1);
  // Setting pin to low turns Led on
  call Led0.clr();
}
```

```
async command void Leds.led00ff() {
   call Led0PowerState.set(0);
   // Setting pin to high turns Led off
   call Led0.set();
```

interface PowerState {
 // Sets the powerstate to value.
 async command void set(powerstate\_t value);
 // Sets the bits represented by mask to value.
 async command void setBits(powerstate\_t mask,
 uint8\_t offset, powerstate\_t value);

```
interface PowerStateTrack {
    // Called if an energy sink power state changes
    async event void changed(powerstate_t value);
```

### In-Band Power Monitoring: PermaSense SIB

- Coarse grained in-situ power monitoring
  - Battery and system voltages
  - Total current and subsystem current
  - Activity counter (TX, RX, CPU)
- Data is transmitted like sensor data
- Long-time series available over whole network population
- Overhead
  - Hardware/power consumption
  - Data logistics

PermaDAQ: A scientific instrument for precision sensing and data recovery in environmental extremes: Jan Beutel, Stephan Gruber, Andreas Hasler, Roman Lim, Andreas Meier, Christian Plessl, Igor Talzi, Lothar Thiele, Christian Tschudin, Matthias Woehrle, Mustafa Yuecel. IPSN 2009





# **Estimating Complex Breakdowns**

- For every state transition
  - Snapshot system-wide power states ( $\alpha_1, ..., \alpha_n$ )
  - Snapshot global energy usage ( $\Delta E$ )
  - Snapshot system clock ( $\Delta t$ )
- Generate an equation of the form  $\Delta E / \Delta t = \alpha_1 p_1 + ... +, \alpha_n p_n$
- (p's are the unknown power draws)
- Solve for p's using weighted multivariate least squares

#### Requirement

High-resolution, high-speed power metering is key for good results





# HIGH-DYNAMIC RANGE AND MIXED SIGNAL DAQ

Low-Power System Design

### **Every Nano-Joule Counts**

- Energy Harvesting design challenges
  - Powers from nW to W range
  - Deep-sleep, aggressive duty cycling, short high current active peaks
- Application specific, variable harvesting
  - Need portable and in-situ measurements



*Need for portable and high-dynamic range data logging for long-term in-situ measurements* 



[Lukas Sigrist et.al.: Measurement and Validation of Energy Harvesting IoT Devices. Proc. 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE 2017), Mar, 2017.]

### The **RocketLogger** Idea – No Rocket Science





Feedback Ammeter

- + Switching circuit to combine advantages of both circuits
- + Environmental sensors to track harvesting conditions
- + BeagleBone Green as host platform
- + Smart students to realize the idea

### Managing Measurements and Data



- Real-Time Unit for low latency reactive readout
- Data management on top of Linux OS
- Web interface for remote control and observation in real-time
- 16 Mb/s ADC data
- 8.3 GB data stored per hour

### The **ROCKETLOGGER** Hardware



Open hardware and software <u>http://rocketlogger.ethz.ch</u>

### **ROCKETLOGGER** Measurement Performance

|                           | Metric                           | Range/Value                        |  |  |  |
|---------------------------|----------------------------------|------------------------------------|--|--|--|
|                           | Sampling Rate                    | 1 kSPS up to 64 kSPS               |  |  |  |
| General                   | Measurement Bandwidth            | up to 9.5 kHz                      |  |  |  |
| Voltage<br>±5.5 V<br>(×4) | Noise                            | 5.9 μV RMS (1.38 mV RMS)           |  |  |  |
|                           | Input Leakage                    | ~ 5 pA                             |  |  |  |
|                           | DC Accuracy                      | 0.02 % + 13 μV                     |  |  |  |
|                           | Total Dynamic Range              | 175 dB                             |  |  |  |
|                           | Burden Voltage at 500 mA         | 47 mV                              |  |  |  |
|                           | Noise High Range                 | 1.33 μA RMS (72 μA RMS)            |  |  |  |
| Current                   | Low Current Range                | ±2 mA                              |  |  |  |
| ±500 mA                   | Noise Low Range                  | 1.75 nA RMS (390 nA RMS)           |  |  |  |
| (2×)                      | Range Switching Time             | 1.4 μs                             |  |  |  |
|                           | Transient Burden Voltage         | max. 430 mV for $\leq$ 1.4 $\mu$ s |  |  |  |
|                           | Accuracy Low Range               | 0.03 % + 4 nA                      |  |  |  |
|                           | Accuracy High Range              | 0.09 % + 3 μA                      |  |  |  |
|                           | Input Leakage                    | < 1 pA                             |  |  |  |
| Digital (×6)              | Threshold Voltage (Configurable) | -6 V to +6 V                       |  |  |  |

- Very-high accuracy 4 nA / 13 μV
- Super fast range switching ≤ 1.4 µs
- Minimal impact on device under test ≤ 47 mV burden voltage, ≤ 430 mV when switching
- Negligible input leakage for simultaneous current and voltage measurement

### Seamless Range Switching Implementation



 $I_{in} \ge 2$  mA: High Range

- M1 on
- Stunt ammeter only
- Low shunt resistor, low burden voltage

 $I_{in}$  < 2 mA: Low Range

- M2 on
- Feedback Ammeter
- High output voltage, high resolution

### Seamless Range Switching Behavior





### ... And Action!

#### Demo: measurement of a batteryless "Blinky Node"



- 1. Accumulation of solar energy  $(P_S)$  in buffer  $(V_B)$
- 2. Wake-up load when energy level reached
- 3. Load executes  $(P_L)$  using buffered energy
- 4. <repeat forever>

### Demo: What to Observe



- Sleep mode power measurement (9 nA @ 2.0 V)
- (2) Energy accumulation in the 220 μF buffer capacitance
- (3) Wake-up trigger at 4.8 V buffer voltage
- (4) Step from 9 nA sleep to 4 mA active current
- (5) Solar panel open circuit voltage sampling for MPPT

Plotting in Matlab is as easy as: rld(`measurement file.rld').plot()



## SCALING-UP THE DESIGN SPACE: SENSOR NETWORK TESTBEDS

Low-Power System Design

# WSN Design and Development Tools



- Traditional test grid
  - Wired backchannel
  - Simple centralized control and data collection
- Alternative: In-band collection



# Example: MoteLab Testbed

- Harvard wireless sensor network testbed
  - Primary design philosophy: Testbed should be both **open** and **easy to use**
  - Open: Users at multiple institutions should have access for experimentation
  - Easy to use: Web-based interface for programming, debugging, accessing
- 190 Tmote Sky nodes deployed over 3 floors of EECS building
  - Each node connected to wall power and Ethernet for reprogramming and debug
  - Spanning approx. 70,000 sq. ft.
- Logging of serial port data to a database
  - Provides easy access to debugging and profiling data
  - SQL access to database in real time, or download ZIP file after run is complete
- Network bridge to serial port on each node
  - Each node given a specific IP address/port # for serial port access
  - Allows remote programs to send and receive data to individual nodes in real time

G. Werner-Allen, P. Swieskowski and M. Welsh. MoteLab: a wireless sensor network testbed. In Proceedings of the 4th international symposium on Information processing in sensor networks (IPSN 2005).
# Example: MoteLab Testbed



Map of 2<sup>nd</sup> floor nodes only; blue circles represent nodes

# Example: MoteLab Testbed



# Many Testbed Variants Exist

- Campus/Office distribution
  - Indriya
  - Kansei
  - TWIST

**ETH** zürich

- TUTORNET



• Wired backchannel to central server







TWIST Testbed @ TU Berlin

# Diverse Landscape of Testbeds



# WSN Design and Development Tools



- Traditional test grid
  - Wired backchannel
  - Simple centralized control and data collection
- Alternative: In-band collection



#### EHzürich

# WSN Design and Development Tools



- Correctness at deployment time is crucial
- Validation tools are needed
- Testbeds capture intricate details of the behavior of devices and the environment

# Multiple Modalities, Fine Grained Resolution



#### FlockLab

Less intrusive state extraction

Precise time measurements

High resolution distributed power measurements

Time triggered actions

# **DSN Testbed: Distributed Observers**

#### **Key Differentiators**

- Distributed stateful observers colocated with the DUT
- Mobility: Wireless, battery powered

### Functionality

- Remote reprogramming
- Extraction of log data
- Stimuli, e.g. fault injection
- Synchronization of traces and actions
- Centralized logging

Hzurich

Detailed behavioral analysis

[Beutel et al. SenSys2004, IPSN2005, EWSN2007]

# FlockLab Testbed





Time synchronization to ~μs

# **Extending the Target-Observer Model**



- Stateful observer supporting multiple services
  - Fast, distributed tracing and actuation of logic
  - Deep local storage
  - Synchronized power tracing
  - Sensor stimuli and references
- Time synchronization to ~20 μs (NTP)



[Woehrle SenSys2009, Lim IPSN2013]

# FlockLab Testbed @ ETHZ

- 4 Target Architectures
  - Tmote Sky
  - -TinyNode
  - Iris
  - Opal
- 30 Node Testbed

   Ethernet/WLAN backbone
   In- & Outdoor





Get your account @ www.flocklab.ethz.ch



# Synchronized Power and State Traces from Distributed Nodes



# Test Case: Analysis of CTP/LPL



# Test Case: Synchronized Glossy Floods



# Test Case: FTSP Clock Accuracy



# **FlockLab Testbed Statistics**

| Number of Users             | 368   |
|-----------------------------|-------|
| Total Tests                 | 64765 |
| Time Occupied [h]           | 15155 |
| Time Occupied [%]           | 34.8  |
| Average Test Duration [min] | 29.2  |



Data taken 2017-05-09

# FlockLab Testbed User Demographics







- Switzerland
- Germany
- Sweden
- Ireland

- United States
- India
- China
- Singapore

### A Big Success – The Rise of WSN Testbeds

#### Motelab: A wireless sensor network testbed

| Authors Geoffrey Werner-Allen, Patrick Swieskowski, Ma | ⊿att Welsh |
|--------------------------------------------------------|------------|
|--------------------------------------------------------|------------|

#### Publication date 2005/4/24

Conference Proceedings of the 4th international symposium on Information processing in sensor networks

Pages 68

Publisher IEEE Press

Description Abstract As wireless sensor networks have emerged as a exciting new area of research in Computer Science, many of the logistical challenges facing those who wish to develop, deploy, and debug applications on realistic large-scale sensor networks have gone unmet. Manually reprogramming nodes, deploying them into the physical environment, and instrumenting them for data gathering is tedious and time-consuming. To address this need we have developed MoteLab. a Web-based sensor network testbed. MoteLab consists of ...

Total citations Cited by 735



005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Scholar articles Motelab: A wireless sensor network testbed G Werner-Allen, P Swieskowski, M Welsh - Proceedings of the 4th international symposium on . Cited by 735 - Related articles - All 9 versions

#### FlockLab: A Testbed for Distributed, Synchronized Tracing and Profiling of Wireless Embedded Systems

Authors Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp Sommer, Jan Beutel

#### Publication date 2013/4

- Conference Proc. Int'l Conf. Information Processing in Sensor Networks (IPSN 2013)
- Description Testbeds are indispensable for debugging and evaluating wireless embedded systems. While existing testbeds provide ample opportunities for realistic, large-scale experiments, they are limited in their ability to closely observe and control the distributed operation of resource-constrained nodes-access to the nodes is restricted to the serial port. This paper presents FlockLab, a testbed that overcomes this limitation by allowing multiple services to run simultaneously and synchronously against all nodes under test in addition to the traditional serial port service: tracing of GPIO pins to record logical events occurring on a node, actuation of GPIO pins to trigger actions on a node, and highresolution power profiling. FlockLab's accurate timing information in the low microsecond range enables logical events to be correlated with power samples, thus providing a previously unattained level of visibility into the distributed ...

Total citations Cited by 202





# Challenge: The Physical Environment

- Strong daily variation of temperature
  - − −30°C to +40°C
  - −  $\Delta T \leq 20^{\circ}C/hour$
- Impact on

timing, energy availability, fatigue, ...





# **Extending Physical Characterization**

- Emulating the environment...
  - temperature cycle testing (TCT)



- ... and resource usage
  - different power sources:
     Batteries, rechargeable
     cells, solar, fixed DC power...





# Impact of Environmental Extremes



- Tighter guard times increase energy efficiency
- Software testing in a climate chamber
  - Clock drift compensation yields ± 5ppm
- Validation of correct function



[Beutel DATE 2011]

# **FlockLab Testbed Statistics**

| Number of Users             | 368   |
|-----------------------------|-------|
| Total Tests                 | 64765 |
| Time Occupied [h]           | 15155 |
| Time Occupied [%]           | 34.8  |
| Average Test Duration [min] | 29.2  |



Data taken 2017-05-09

## FlockLab Testbed User Demographics







- Switzerland
- Germany
- Sweden
- Ireland

- United States
- India
- China
- Singapore

# A Big Success – The Rise of WSN Testbeds

#### Motelab: A wireless sensor network testbed

| Authors | Geoffrey W | /erner-Allen, | Patrick | Swieskowski, | Matt | Welsh |
|---------|------------|---------------|---------|--------------|------|-------|
|---------|------------|---------------|---------|--------------|------|-------|

- Publication date 2005/4/24
  - Conference Proceedings of the 4th international symposium on Information processing in sensor networks
    - Pages 68
  - Publisher IEEE Press
  - Description Abstract As wireless sensor networks have emerged as a exciting new area of research in Computer Science, many of the logistical challenges facing those who wish to develop, deploy, and debug applications on realistic large-scale sensor networks have gone unmet. Manually reprogramming nodes, deploying them into the physical environment, and instrumenting them for data gathering is tedious and time-consuming. To address this need we have developed MoteLab. a Web-based sensor network testbed. MoteLab consists of ...

Total citations Cited by 735



2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Scholar articles Motelab: A wireless sensor network testbed G Werner-Allen, P Swieskowski, M Welsh - Proceedings of the 4th international symposium on . Cited by 735 - Related articles - All 9 versions

#### FlockLab: A Testbed for Distributed, Synchronized Tracing and Profiling of Wireless Embedded Systems

Authors Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp Sommer, Jan Beutel

#### Publication date 2013/4

- Conference Proc. Int'l Conf. Information Processing in Sensor Networks (IPSN 2013)
- Description Testbeds are indispensable for debugging and evaluating wireless embedded systems. While existing testbeds provide ample opportunities for realistic, large-scale experiments, they are limited in their ability to closely observe and control the distributed operation of resource-constrained nodes-access to the nodes is restricted to the serial port. This paper presents FlockLab, a testbed that overcomes this limitation by allowing multiple services to run simultaneously and synchronously against all nodes under test in addition to the traditional serial port service: tracing of GPIO pins to record logical events occurring on a node, actuation of GPIO pins to trigger actions on a node, and highresolution power profiling. FlockLab's accurate timing information in the low microsecond range enables logical events to be correlated with power samples, thus providing a previously unattained level of visibility into the distributed ...

Total citations Cited by 202



Low-Power System Design

### **FLOCKLAB RECENT DEVELOPMENTS**



## Long-Range Extension



# FlockLab v2.0

- Why: End-of-life of components
- GPIO tracing with 10Mhz
- Serial logging
- Controllable target voltage
- Serial Wire Debugging using SEGGER J-Link/J-Trace
- High dynamic range current measurement
- GPS time synchronisation
- Support for multiple targets
- Compatibility to existing targets

## FlockLab V2.0 Prototype





### FlockLab V2.0 Pre-Series





### Side Effect – nRF52810





# Less Instrumentation using J-Link/J-Trace



# Leveraging Full ARM Debug/Trace Support



Flash programming & verify via debug connector



# TESTING METHODS – MODELING TECHNIQUE – VALIDATION

Low-Power System Design

# WSN Validation Methods

- Threats to predictability
  - non-deterministic environment (energy harvesting, availability of communication)
  - working close to resource limits (energy, memory, bandwidth) makes systems extremely fragile




# Methodology and Development Tools



Influence of the environment

**Advanced Software Engineering Practices** 

# **Coordinated Testing**



- Formalize testing procedure
  - Given some test case, an environment and corresponding outputs.
  - Based on the outputs check whether the system works as expected





## Automation: Continuous Integration

- Run Build and Test Loop Continuously
  - Watch repository for changes
  - Run build and tests
  - Publish status of the build and tests to developers
- Benefits
  - Detect errors early
  - Monitor code quality over time
  - Prevent integration problems



## **Example Tool Cruisecontrol**



### **Detailed Statistics over Development Time**



# WSN Validation Methods

- Threats to predictability
  - non-deterministic environment (energy harvesting, availability of communication)
  - working close to resource limits (energy, memory, bandwidth) makes systems extremely fragile



# **Power Trace Verification**

- Generate a (formal) model of the system
  - Model of the hardware and software, including *dynamic behavior*
  - Model of the measured power traces
  - Model of the test cases
- Conformance test for power measurements
  - Can the measured power consumption be explained by the hardware/software/test specification?
  - Failures may be due to model or implementation errors

# "Naïve" Trace Bounds

# Bounds for allowed power consumption

### Determine static bounds given a deterministic reference



## Validation of Traces using Formal Bounds



- Assertions based on reference traces/specification
- Integrated with each build (regression testing)

[Woehrle 2007, WEWSN2008, SUTC2008]

### **Conformance Testing of Power Traces**



[Matthias Woehrle, Kai Lampka and Lothar Thiele: Exploiting timed automata for conformance testing of power measurements. Proc. Formal Modeling and Analysis of Timed Systems 2009, p. 275-290, September 2009.]

## **Conformance Testing of Power Traces**



# **Conformance Testing**

- Composition of trace and specification: PT || Sys
  - Trace automaton PT (Sequential measurements)
  - System specification automaton Sys
  - Q: Is the power consumption measured explained by the specification?
- Example tool: Uppaal Model Checker
  - Offline conformance test
  - Reachability of final trace location
- Possible to test real-time systems on-line: Tron

# **Basic Timed Automata Model**

- Infinite state system
- But, reachability is decidable
- Mature tools are available (Uppaal, Kronos)
- Power consumption as data variable extension



## **Example Hardware Model**

#### Hardware Model



# Example Software and Trace Model

#### Software Model



#### Trace Automaton



### **Power States and Power Traces**



### Generating a Power Trace Automaton



## **Example Power Trace Compression**



# **Experimental Evaluation**

- Experiment
  - TMOTE Sky (MSP 430, TI CC2420) running TinyOS2
  - Harvester application, LPL MAC data gathering
  - Besides testing a correct run (complex trace)
  - Several errors have been introduced
    - Missing wake-up
    - Inject error in low power scheduler
    - Wrong low power state of MC
    - Specification error).





#### Case Study on Various Traces Current (mA) 20 15 10 Wakeup pulse from 11.608s - 11.618s 5 0 2 12 4 6 8 10 14 0 Time (s) Wake-up: Periodic sampling of the channel Extended period error Inject:



Complex: Send/receive operations with lots of non-determinism

## **Explicit Modeling of Defects**



## Some Runtime Results

#### Verification Results

| Model         | Samples | Compression |                         | Runtime       |                  |
|---------------|---------|-------------|-------------------------|---------------|------------------|
|               |         | Intervals   | $100 \mathrm{uA}$ steps | Intervals     | 100uA steps      |
| Wake-up       | 1000000 | 2089        | 13812                   | 8s            | 182s             |
| Inject        | 990000  | 2040        | 13666                   | $5\mathrm{s}$ | $167 \mathrm{s}$ |
| Complex Trace | 310000  | 21811       | 89678                   | 15min         | <b>Fails</b>     |
| MC state      | 1000000 | 1086        | 5539                    | 4s            | 22s              |
| Specification | 1000000 | 1478        | 4578                    | 7s            | 22s              |

Improvements have been done in terms of scalability. But a complexity issue remains.

[Matthias Woehrle, Kai Lampka and Lothar Thiele: Conformance testing for cyber-physical systems ACM Transactions in Embedded Computing Systems (TECS). Volume 11, Issue 4, p. 84, December 2012.]

Low-Power System Design

## IN-BAND/IN-SYSTEM VALIDATION USING ASSERTIONS



### Other Approaches – Packet Level Overhearing



Failure root causes remain unclear

[Ringwald DCOSS 2007, Roemer IPSN 2009]

### **Evaluation With Passive Distributed Assertions**

• Assertions: express belief that a condition holds

```
int i;
```

```
...
assert(i > 50);
```

- Assertions over distributed program variables
  - Value of variable i should equal value of variable k at node 100
- Checked by passive inspection
  - Nodes only broadcast assertions (PDA msg) , changes of relevant variables (SNAP msg)
  - Overheard by sniffer network
  - Minimize interference



$$k = \ldots;$$
  
SNAP(k);

### **Assertion Evaluation Example**



# Today's Hot Researcher & Paper

- Kay Roemer
  - Faculty at TU Graz
- Distributed systems background (ETH Zurich)
  - Early influence on Internet of Things
  - Early contributions to sensor/ad-hoc network time sync
  - Recently more focus on dependability/reliability and embedded systems



K. Römer, F. Mattern: **The design space of wireless sensor networks**. Wireless Communications, IEEE 11 (6), 54-61, 2004.