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Abstract
We present DoubleDip, a low power monitoring system

for enabling non-intrusive water flow detection. DoubleDip
taps into minute thermal gradients in pipes for both replen-
ishing energy reserves and performing low power wakeup.
One of the remaining issues with wireless water monitoring
in residences and offices is that current solutions require in-
stalling sensor nodes with access to electrical wiring or re-
placing batteries frequently. DoubleDip (DD) significantly
extends the lifetime of vibration-based non-intrusive water
flow sensors by harvesting thermal energy from hot pipes
wherever accessible. DoubleDip requires less than an inch
of exposed metal pipe to attach a coupler for gathering suf-
ficient energy to power itself, in some cases, into perpetuity.
We observe that water use in homes and offices is incred-
ibly sporadic, making continuous monitoring both imprac-
tical and wasteful. Instead, DD puts a thermoelectric har-
vester into double duty. It uses thermal gradients not only for
gathering energy but also for extremely low power (< 1µA)
wakeup. In this paper, we describe the DoubleDip design
and demonstrate that thermoelectric wakeup is essential for
longevity and accuracy. Since DD wakes up from its low
power state only when there is a water flow event, it replen-
ishes the energy it uses in sensing and transmitting data by
the energy it harvests from the corresponding heat gradient.
While DD nodes installed on cold water pipes harvest far less
than those installed on hot water pipes, our pilot deployment
over four weeks and five locations suggests that thermoelec-
tric wake up is only slightly worse in latency for cold water
monitoring and there is sufficient energy harvested from the
hot water that it can be shared to extend the lifetime of nearby
cold water nodes too.
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1 Introduction
Water monitoring in homes and office buildings promises

to help alleviate some of the water reserve burdens we face
today [27]. Reliable measurements of consumption are es-
sential for evaluating the impacts of conservation projects
on urban water demand [20]. Providing consumers with a
fixture-level understanding of their usage through appropri-
ate interfaces provides opportunities to make informed de-
cisions about investments in high efficiency fixtures and ap-
pliances [11] and serves to encourage them toward more ef-
fective conservation. Sadly, a significant portion (∼30%) of
water use is actually wasted through leaks and oversight [20]
which might have been detected early with continuous water
monitoring coupled with intelligent analytics.

Gathering continuous usage data with fixture-level gran-
ularity and accuracy, however, should not be cumbersome.
Presently, water flow data is only expected to be available in
aggregate form for the entire household or building through
smart water meters [25]. Previous work has shown that dis-
aggregating this data to individual fixtures is non-trivial due
to the similarity of fixtures in homes and offices [31]. Disam-
biguating across fixtures is especially hard in office buildings
due to extensive plumbing infrastructure that may feed off
just one meter. Conversely, installing in-line water flow sen-
sors on each fixture or even arterial branches in the plumb-
ing network requires much retrofitting, electrical wiring to
power the sensors, or maintenance to change batteries. Con-
sumers ideally desire to conceal the wireless monitoring sys-
tem along with existing plumbing, but nodes that primarily
rely on a fixed energy supply in particular have to remain
accessible.

Improvements in energy efficiency of sensor nodes and
power harvesting electronics have balanced power require-
ments to a degree wherein it is now feasible to tap into energy
reserves that would otherwise have yielded only marginal
improvements to system lifetime. For example, low power
wireless motes such as Heliomote [19] have had remarkable
success using ambient solar radiation and adaptive schedul-
ing mechanisms to power outdoor sensor networks. Yerva et

225



0 5 10 15 20 25 30
20

30

40

50

Te
m

p.
 (

C
)

 

 
Pipe Temperature
DoubleDip Wakeup

0 5 10 15 20 25 30
0

0.1

0.2

Pi
pe

 V
ib

ra
tio

n

Time (h)
 

 
Pipe Vibration
DoubleDip Wakeup

Figure 1: Sample data of pipe temperature, wakeup triggers from DoubleDip, and pipe vibration. Spurious vibrations would
cause frequent false wakeups with vibration-based LPL even though water use is sporadic.

al. [33] were successful in using indoor photovoltaic (IPV)
harvesting to achieve very low duty cycle sensing from am-
bient indoor lighting while maintaining mesh network func-
tionality. Additionally, as sensor nodes decrease in size
to allow for sensing of remote and physically constrained
phenomena and their numbers increase for higher coverage,
energy harvesting techniques move from luxury to neces-
sity [33].

Hot water accounts for over 30% of water usage [20] and
over 20% of household energy consumption for heating [1].
Of this, over 80% is used in faucets, showers, and baths [20].
Short uninsulated pipe segments close to these fixtures are
usually accessible and thermal energy in the form of temper-
ature difference between the surface of the pipe segment and
the ambient enviornment can be transformed into electrical
energy.

We have developed DoubleDip, a source-aware archi-
tecture and platform designed to enable non-intrusive wa-
ter flow monitoring. DoubleDip senses vibrations during a
water “event” much in the way that Kim et al. outline in
NAWMS [14], except that DoubleDip leverages small ther-
mal gradients that accompany water flow for both energy and
wake up. The flow of water and thus the heat gradients from
which DoubleDip harvests energy is incredibly sporadic, due
to the nature of human interaction with both hot and cold wa-
ter in both residential and office environments. The hot wa-
ter input feeders to a kitchen or bathroom sink, for example,
might only see a dozen uses over the course of a day or expe-
rience blackouts for a month at a time during user absences.
The top half of Figure 1 shows the sparse temperature profile
over a sample day for the surface of a hot water pipe leading
to a faucet in a residential apartment. The profile follows a
signature pattern of rapid transient when the faucet is turned
on and slow settling after shut off as the water near the faucet
loses its heat to the ambient environment. The total time that
the faucet is on is almost imperceptible in this plot – 8 min
over the 24 hour period.

1.1 Low Power Wakeup
Harvesting from unpredictable, bursty, and sporadic en-

ergy sources presents a host of challenges. Since the phe-

nomenon being sensed is also the one being harvested from,
keeping the sensors active continuously to monitor a rare,
ephemeral event is both impractical and wasteful [5]. One
alternative to waking the system up from sleep for a water
flow event is to use a form of low power listening (LPL) [26]
with the vibration sensors already in place. A hypothetical
vibration-based LPL mechanism can be imagined that acti-
vates an accelerometer (∼ 300µA current) for a short period
of time to estimate whether a water flow event has started. If
not, the sensor is deactivated and the node goes back to sleep
for the duty cycle period. A concern with this approach is
that an event can only be detected with some latency, which
could be the duty cycle period in the worst case. Assuming
that our target average current consumption is 1µA and that it
takes 250ms to detect the event reliably, the duty cycle period
would have to be 75s to meet the 1µA target. Another issue
is that of false wakeup. The bottom half of Figure 1 shows
the vibration (standard deviation of accelerometer) readings
over the same time duration as the top half, which shows
many high amplitude spurious vibrations that would trigger
even a finely tuned vibration-based LPL system. These vi-
brations originate from adjoining pipes in the plumbing net-
work, the HVAC system, and general activity around the res-
idence. While the NAWMS [14] system cancels out these
“crosstalks,” the false wakeup is still a problem for power
management.

To resolve these issues, DoubleDip employs a thermo-
electric generator (TEG) in double duty. It uses thermal gra-
dients not only for gathering energy but also for extremely
low power (< 1µA) but sensitive wakeup. When a water flow
event begins, there is a small but detectable voltage change
across the TEG due to minute thermal gradients in the water
stored in the pipe. Although this voltage is too small to har-
vest from, it is large and reliable enough to wake from. Fig-
ure 1 shows the triggers generated by DD’s wakeup circuitry
compared to both the temperature profile and the vibration
readings. While vibration has a number of excursions above
a reasonable activity threshold even when temperature does
not change, the DD triggers correctly identify water flow
events (as evidenced by the temperature transient subsequent
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to each trigger and a simultaneous spike in vibration). Ad-
ditionally, DoubleDip wakes up almost instantaneously even
while readings reported by temperature sensors are still be-
low their noise floor, for example near the 21 hr mark in Fig-
ure 1. See Figure 13 and Section 3.6 for a detailed handling
of wakeup performance and why temperature sensors cannot
be used for wakeup directly.

In all, the key idea of the DoubleDip design is that it relies
on an artifact of the phenomenon it is trying to capture to
wake the system out of deep sleep through thermoelectric
harvesting, removing the need for duty cycling, saving state,
and preventing cold-boot delays [33].
1.2 Transient, Anemic Leaves

Interestingly, we find that there is sufficient temperature
gradient in cold water pipes (coming from concealed plumb-
ing) to wake a DD node attached to it. Occasionally, one may
be fortunate enough to harvest some energy from cold water
pipes when cooled water is fed to a heated ambient space or
vice versa. In the worst case, when no additional energy is
harvested, DD operates as a battery-powered sensor whose
lifetime is dependent on the number of events sensed. Our
experiments reveal that DD nodes on hot water pipes often
have a net excess of harvested energy and, since hot and cold
lines are often proximate, we implemented a buddy charging
option by which more anemic nodes can request and receive
energy from nodes with more plentiful energy reserves.

Finally, DoubleDip espouses a transmit-only radio topol-
ogy as advocated by Schmid et al. in [28]. This is not just a
design choice but an application necessity given the extreme
scarcity of the energy reserve from which power is drawn.
DoubleDip makes use of the state-of-the-art in harvesting,
boosting, and radio technologies, but demands of the sensing
application coupled with the scarcity of the energy reserve
dictate that synchronization and wireless mesh routing be
forfeited – without having to wake at a synchronized interval
to listen for inbound packets we save on multiple fronts. We
argue that this sacrifice is an inevitable one as such systems
invade domains with increasingly harsh energy supplies and
power requirements. These transmit-only leaf nodes need
not be cut off from communication entirely; as described in
[28], a simple scheme of queuing messages at branch nodes
and sending them to a leaf destination will suffice, yielding a
fully-networked star routing topology. Furthermore, the low
rate and brevity of transmissions from DD or similar sensors
means that packet collisions will be very rare.
1.3 Contributions of DoubleDip

The DoubleDip architecture is an attempt to ameliorate
the effects of bursty sources on energy harvesting platforms.
Towards this, we describe in detail the following contribu-
tions:
• We introduce the idea of thermoelectric wakeup for

non-intrusive vibration-based water flow monitoring in
residences and office buildings. We observe that water
use even in busy areas like shared university restrooms
is incredibly sporadic (< 1% total use), making con-
tinuous sensing both impractical and wasteful. Using
minute changes in the thermal profile at pipe segments
close to a faucet, DoubleDip is able to wake itself up

rapidly with high accuracy. The wakeup circuit em-
ployed in DD is simple and consumes less than 1µA of
current. If no water flow event ever occurs, DD would
last over 6 yrs in its deep sleep state.

• We design and implement DoubleDip. DD uses thermo-
electric harvesting to recharge its low-leakage battery
whenever an opportunity arises. DD further demon-
strates an architecture for regulating and distributing
harvested power, saving energy by voluntary and sys-
tematic power-gating of harvesting circuitry.

• We have evaluated DoubleDip in five locations over
four weeks: two university restrooms and three resi-
dences. The university deployment spanned a break and
the residences included one single occupant apartment
and two multi-resident home. We find that hot water
sensing frequently provides net excess energy, which
can be shared with cold water DD nodes within proxim-
ity. Lifetime of DD nodes is sometimes limited only by
the charge-discharge cycle lifetime of the Manganese
Lithium batteries they use.

2 Related Work
The past decade has witnessed a sharp rise in the popu-

larity of energy harvesting solutions for wireless sensor net-
works and power management in general. For small scale
systems, harvesting solutions in the form of thermal, kinetic,
solar, and piezoelectric transducers have found applications
in new and exciting arenas. Improvements in low power digi-
tal and analog ICs such as the trail of low power motes mark-
ing the past decades [29, 21, 22, 6] as well as standardization
of popular energy-aware embedded operating systems [18]
have helped elucidate new low power computing paradigms
and increase the lifetime of sensor networks, in some cases,
into years.

The combination of today’s energy harvesting techniques
and the state-of-the art in low power processing and wire-
less communication is indeed exciting, and there has been
considerable research on this front in recent years. EnO-
cean has developed a range of commercially available prod-
ucts spanning solar and thermal harvesting and supporting
various wireless protocols [7], and both Heliomote [19] and
Yerva et al. [33] were successful in routing wireless packets
despite frequently having to cold boot [33]. In contrast, the
extreme scarcity of energy in water pipes dictates that DD
nodes forgo routing altogether.

2.1 Thermoelectric Harvesting
Within the realm of thermoelectric energy generators

(TEGs), much of the prior research can be divided into three
categories – characterization and viability of TEGs for use
in powering wireless sensor nodes, development of wearable
body warmth energy harvesters for Body Area Networks
(BANs), and application-specific systems for gleaning power
from various waste sources.

Towards the characterization of TEGs for use in au-
tonomous sensors, Ferrari et al. have measured the open cir-
cuit voltage and output power characterization for a range
of devices, concluding by powering a low power mote with
wireless transmitter when supplying the TEG with a temper-
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ature gradient [8]. The careful measurement and design of
the system presented in [8] lends credence to the efficacy of
TEGs (and Peltier junctions) in powering sensor boards in
addition to providing theoretical groundwork to compare ex-
pected output power from a given harvesting architecture and
by which we are able to calculate several efficiency metrics
herein.

There have been numerous attempts to create ‘wearable’
or ‘comfortable’ TEGs for body area networks (BAN), such
as those described in [16, 12, 17] though in most cases the
inclusion of a heatsink creates an unfortunate trade-off in
power harvested and comfort. It must be noted that TEGs
harvest energy from a temperature differential across two
surfaces, but without an effective heatsink the cold surface
slowly attains the temperature of the warm side by thermal
conduction through the Peltier junctions reducing the power
harvested despite a continuous heat source. Finding an ap-
propriate heatsink is a challenge in DD as well–perhaps the
most promising in this regard is a new flexible Peltier junc-
tion created by spraying doped silicon onto a flexible sub-
strate [24] and air-cooled over a large area.

Many existing systems have the luxury of constant or
pseudo-stationary energy sources – time constants may be in
terms of hours or days. Zhang et al. demonstrated a “steam-
powered” thermoelectric sensor network [34] using a Mica-2
[21] node and a Peltier device much like the one used in DD.
In contrast, [34] has a fairly constant temperature gradient
reaching as much as 80◦K and is able to generate over 0.5 W
from an industrial steam pipe.

Despite the dissimilarities between DD and other plat-
forms, DoubleDip faces many of the same obstacles encoun-
tered in other architectures and applications. In order to pro-
vide cold-boot power and effectively bootstrap their system,
TwinStar uses a secondary solar panel [35]. Similarly, DD
uses a low leakage lithium battery to avoid bootstrapping and
race-condition issues. DoubleDip could be considered to be
battery powered when opportunities for harvesting do not oc-
cur but recharges its battery when excess energy is available.
Whereas TwinStar accepts leakage and designs control algo-
rithms to counter it, DD reduces leakage by using a battery
in lieu of a supercapacitor—a luxury afforded it given the
low discharge depths of DD nodes on average and thus high
cycle lifetimes of the rechargeable batteries used.

Recharging batteries from thermal harvesting has also
been explored by Sodano et al. [30] for the application of
Structural Health Monitoring (SHM). By directing solar ir-
radiation to heat up one side of a TEG and using a large
mechanical structure such as a bridge to cool the other side,
[30] was able to charge a 300 mAh to capacity in a mere
3.5 min. An exhaustive summary of energy harvesting tech-
niques for SHM including TEGs is presented by Park et al.
in [23]. Therein, the authors cite interesting uses of thermal
harvesting from such non-traditional sources as soil–air tem-
perature gradients, vehicle exhaust pipe heat, and radioactive
decay of isotopes in space (NASA) [23].
2.2 Water Flow Monitoring

Water flow monitoring and leakage detection continue to
be active areas of research. Proposed techniques range from
disaggregation of load monitors to distributed sensing archi-

tectures and even pipe topology mapping [32], each having
inherent advantages and disadvantages. Non-intrusive dis-
aggregation approaches such as Hydrosense [10, 2] use sig-
nature analysis approaches to determine the temporal pro-
file of individual device usage as well as water flow rates.
This approach offers high accuracy for detecting the on/off
signatures for a number of devices after a manual training
phase. While such systems have demonstrated success for
controlled experiments, Froehlich et al. note that it is unclear
how well these techniques scale when many devices overlap
in time and in the presence of variable flow loads such as
sinks [10]. On the other end of the spectrum, distributed ap-
proaches seek to give fixture-level accuracy without requir-
ing a burdensome installation. TriopusNet [15], Fogarty et
al. [9], and NAWMS [14] fall in this latter camp. In Triopus-
Net, sensors are deposited inside the feeder to a pipe network
(residence, office, etc.) and then routed to unique pipe seg-
ments through a systematic turning on and off of faucets in
order to direct nodes to appropriate branches for initial de-
ployment and any maintenance thereafter. While this could
potentially be automated, the infrastructure for doing so does
not yet exist. Fogarty et al. attempt to map auditory signa-
tures to water flow using distributed microphones, though
they face problems with ambient noise and cross-talk.

NAWMS makes inferences about fixture-level water flow
from individual pipe vibration data, self-calibrated using wa-
ter flow information from a single feeder meter. The result-
ing system is non-intrusive and highly accurate, providing
fine-grained flow estimates in environments where in-line
sensors, manual calibration, and load disaggregation are pro-
hibitively difficult.

3 System Architecture
The architectural design of DoubleDip is necessarily in-

terdisciplinary – care must be taken not only to minimize
electrical transients and steady state current but also to de-
sign thermal conduction paths to maximize temperature dif-
ferentials across the TEG surfaces.

3.1 Thermoelectric Generators and the See-
beck Effect

As is the case with other thermoelectric generators, Dou-
bleDip relies on the Seebeck effect – the corollary to the
Peltier effect responsible for converting electricity into tem-
perature differentials. DoubleDip uses a Peltier junction, an
array of n-p junctions, to convert the difference in temper-
ature across the array into an electrical signal, as shown in
Figure 2 and given by:

VT EG ≈
� Tcold

Thot
(Scold −Shot)dT = (Scold −Shot)∆T (1)

where Shot and Scold are the Seebeck coefficients of the
materials used in the Peltier junction. This is a slight ap-
proximation, because in reality the Seebeck coefficients are
non-linear functions of the temperature on an absolute scale.

VT EG is therefore a function of the temperature gradient
across the Peltier device, and so the use of a proper heatsink
is of utmost importance whether producing temperature via
the Peltier effect or harvesting it via the Seebeck effect. This
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Figure 2: Diagram of DD node attached to water pipe, show-
ing coupler, Peltier, heatsink, and the node itself.

Figure 3: Peltier module including aluminum thermal cou-
pler and heatsink. Four arms extend to fasten a heatsink to
the Peltier module and coupler. The 0.75”-wide octagonal
portion is covered in thermal compound prior to attachment
to a right angle valve.

further complicates matters when trying to analyze the life-
time of such a system, as transients in temperature in the
pipes will produce a power dependent on the temperature of
the heatsink at any given time.

3.2 Mechanical Design
As shown in Figure 2, the TEG is attached to a pipe using

a thermal coupler. In order to maximize heat transfer from
the pipe to the aluminum coupler and Peltier module, the
coupler-pipe contact must be of maximum surface area. This
implies that the coupler itself must be designed to tightly fit
a particular pipe. Any variation in this fit will result in vari-
able coupler efficiencies as noted in Section 4. Fortunately,
of the pipes surveyed in this study, each had a fairly standard
right angle valve connecting the feeder pipe to a flexible hose
pipe leading to a faucet. Coupling to this right angle valve
requires a custom milled aluminum piece, and deployments
on other locations such as shower heads would require a dif-
ferent design. Each DD node includes an aluminum thermal
coupler designed to fit around these valves, and the resulting
module with coupler, Peltier device, and heatsink is shown
in Figure 3.

Of equal importance to the performance of DD is the
heatsink used to bring the external side of the Peltier junc-
tion as close to ambient temperature as possible, and thus
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Figure 4: DoubleDip circuitry, including low power
wakeup, RF, accelerometer, buddy plug for energy transfer,
temperature sensors, and analog switches for power-gating
and duty cycling.

increase ∆T. DD uses commercially-available air-cooled fin-
style heatsinks secured to the external side of the Peltier de-
vice with thermal compound.
3.3 Electrical Design

Each DD node makes use of the state-of-the-art in both
processor design and RF communication; the processor used
is the MSP430F2410, boasting 300 nA low power mode with
clock (LPM3) and 100 nA low power mode with RAM reten-
tion but requiring an external interrupt to wakeup. We have
designed the node around the Nordic nRF24L01+ radio, the
barebone radio used in recent Nordic ANT modules. The
nRF24L01+ has a 900 nA deep power down mode and a full
power (0 dBm) transmit current of 11.3 mA. In addition to
processor and RF, the DD design consists of a power man-
agement section, low power wakeup, and a buddy plug for
‘social harvesting.’ The interaction of each of these subunits
can be seen in Figure 4, and is described in detail below.
3.4 Power Management

Both the scarcity and amplitude of the energy events
from which DD harvests dictate that the power regulation
circuitry operate from very low start-up voltages and with
very little quiescent current. Linear Technology offers a
line of step-up DC converters and power management ICs
for energy harvesting applications. Of these, the LTC3109
offers the ability to harvest from both voltage polarities (and
consequently both temperature polarities, ±∆T), and it has
an input impedance similar to that found in most Peltier
devices (∼ 2 − 10Ω). This IC has one main output for
powering a processor or other device as well as a storage
output for placing excess energy harvested in a capacitor
or battery. Though this is a convenient architecture, the
complexity of the design has implications in terms of
quiescent current draw. When not harvesting, the LTC3109
will draw 7 µA from the storage if available and from the
output otherwise. To combat this, we use the IC on an
as-needed basis, isolating it from the processor and sensing
circuit completely when there is no energy to harvest. Figure
4 shows how this is implemented—switch SW1 opens when
the measured ∆T is below a certain threshold, indicating
there is no energy to harvest. Additionally, this reduces the
LTC3109 from an application-specific energy harvesting
device to a load-matched step-up regulator. That is, the DD
architecture is generalizable to any such step-up regulator or
power management IC.
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Figure 5: Comparator-based low power wakeup trigger. Hot
Trigger or Cold Trigger will activate when there is any small
deviation in ∆T, indicating water flow.

3.5 Battery vs. Capacitor
DoubleDip uses a battery-only design when it comes to

energy storage. Despite technological advances in capaci-
tors as storage devices, the leakage and energy density of
supercaps cannot yet compete with current battery technolo-
gies. For example, the battery used in DD is an ML2020—a
rechargeable 45 mAh manganese lithium battery with a vol-
ume of 63 mm3. If we were to draw, for example, 1 µA on
average from this battery, the system lifetime would be 5.13
years from full charge. The equivalent capacitor to yield this
lifetime would be C =

IavgT
∆V ≈ 60F with a volume of ∼1.2

cm3 [3], assuming an operating voltage of 2.5 V (the lin-
ear regime for the ML2020). A capacitor of this size would
have much worse self leakage when compared to the equiv-
alent battery—the same 60 F capacitor has a nominal leak-
age current of 47 µA [3], compared to the virtually negli-
gible (1% per year, < 51nA) self-discharge of the lithium
battery. Because of the uncertainty in the energy events and
the possibility for extended periods of energy ‘droughts,’ we
require an energy reserve capable of lasting for great lengths
of time. The choice of using a rechargeable battery does
not come for free; lithium batteries like the ML2020 have
very low output current and suffer from a limited number
of charge/discharge cycles. Because of the former, we must
charge a capacitor to handle any transient loads like those
demanded by radio transmissions. This is shown in Figures
4 and 6, where SW3 closes to charge CRAD slowly from the
battery and SW4 closes to cold-boot the radio. Because of
the low quiescent current and aggressive duty cycling of DD
nodes, the effective number of charge cycles of the battery
(a decreasing function of the depth of discharge per cycle) is
close to the maximum lifetime for that battery.

3.6 Low-Power Wakeup
An ideal water monitoring circuit is one that detects wa-

ter flow immediately, wakes up to sense that flow, and then
returns to sleep in an energy proportional manner. Detecting
that a water flow event has occurred is a non-trivial challenge
for external sensors, and the solution we have chosen is non-
obvious, requiring due explanation.

Detection and trigger circuits can be divided into two
classes–those that are actively polled and those that drive
asynchronous interrupts. Those belonging to the former
include such mechanisms as low power listen (LPL) ac-
celerometers and temperature sensors, requiring a clock to
periodically wake up and poll the sensors. In order to have
a low latency trigger, we must perform this as frequently as
possible. As mentioned in Section 1, duty cycling the ac-
celerometer to reduce power will introduce an intolerable
latency in the system, and accelerations caused by nearby
pipes and other physical activity around the pipe will cause
frequent false positives.

If we use a low power analog temperature sensor such
as the MCP9700A, we can potentially sample at 1 Hz with
a quiescent of 6µA for only 1–2 ms. This gives a quies-
cent of 6µA× 2ms+ 0.3µA = 0.312µA. At first glance, this
seems like a very desirable wakeup method, but such low
power temperature sensors come at a price in terms of res-
olution and accuracy, and thus false negatives will undoubt-
edly abound. We will see in subsequent sections that even
more power hungry temperature sensors (with resolutions of
around 0.125◦K vs. 0.5◦K for the MCP9700A) often times
do not detect events that the wakeup trigger solution settled
on in this work does until many seconds after the fact, poten-
tially missing the event altogether. Those wakeup triggers
belonging to the second camp—those that actively drive an
interrupt pin—include battery monitoring circuits, tempera-
ture alert ICs, comparators, and the like. Of these, the battery
monitoring circuits and temperature monitoring circuits are
prohibitively power-hungry. Instead, DoubleDip employs
low power comparators with finely tuned thresholds to meet
its lifetime and accuracy goals.

The DD wakeup method, shown in Figure 5, combines a
passive sensor and an active IC (ultra-low power compara-
tors) to create an interrupt driving temperature monitor that
consumes a mere 600 nA quiescent current. We leverage the
fact that the very device from which we are harvesting en-
ergy creates small excursions in voltage (less than 10 mV
in many cases) in the presence of a differential temperature.
By passing this voltage through a low leakage (highly re-
sistive) high pass filter, we can make use of the low power
comparator ICs to send a wakeup trigger for both a positive
and negative excursion from the baseline temperature. The
cutoff frequency here (experimentally chosen to be fs = 10s)
is chosen to allow the baseline to readjust between events,
allowing for detection of multiple subsequent events. Be-
cause this solution drives an active interrupt pin, we are able
to wait in the MSP430’s lowest power setting, LPM4, with-
out requiring power for a clock. This reduces the quiescent
of the MSP430 from 300nA for LPM3 to 100nA for LPM4,
giving a nominal wakeup current of 700 nA. Measured val-
ues indicate that this is closer to around 800nA. This means
that, without any energy events to wake up and measure and
with no additional harvested energy, DD will diligently wait
for an event for 6.4 years given a 3V, 45 mAh battery.
3.7 Social Energy Harvesting

From our pilot deployment across 5 different locations,
it is apparent that, given variations in time of day, weather,
geographic location, plumbing, etc., some nodes will har-
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vest more than others. Specifically, it is the case in those
pipes tested in this pilot study that the hot water pipes ex-
perience a much larger ∆T than the cold water pipes due
to the marginal difference between cold water and ambient
temperatures. Obviously, cold water pipes in such an envi-
ronment will harvest less than hot water pipes. In some situ-
ations the reduction in lifetime of these nodes is unavoidable
and no nodes with surplus reserves are within reach, but in
other cases it is possible and advantageous to transfer power
harvested from DD nodes with excess energy to those suf-
fering from more anemic sources. To accomplish this, we
have added a four wire buddy plug for connecting one node
to another. This four-wire interface (Power, Ground, TX, &
RX) allows a node in surplus to signal to other nodes that
it is about to send energy, after which it closes switch SW5
(Figure 4) to send energy over the Power line.
3.8 DD State Chart

Figure 6 illustrates the state transitions involved in the DD
system flow in the form of a state chart. The diagram starts
at the initialization state of the microcontroller, where GPIO
pins, clocks, and communication registers are set. Upon
completion of the initialization routines, DD immediately
goes into the low power 800 nA state, waiting for an event
to occur. Once an event has occured (either a hot water trig-
ger, a cold water trigger, or a signal from a nearby buddy
node with an energy surplus), the system enters an awake
state (LPM3) with a 1 Hz timer. The awake state has two
independent logic loops, indicated by the dashed line.

In the left-most state loop, the MSP430 repeatedly sam-
ples the accelerometer and temperature (omitted from the
state chart for simplicity) and calculates the accelerometer
variance. It then proceeds to charge the transient load capac-
itor for the radio and transmit all relevant values over wire-

less to the base station. A given transmission period may
contain several retransmits to mitigate packet loss due to the
asynchrony of the network.

The right-most state loop determines the switch state of
the power sector: the harvester will actively charge the bat-
tery as long as ∆T is above a certain threshold and as long
as the battery itself is below a certain threshold. If we have
enough energy, dictated by our specified battery threshold
VT H and ∆T > TT H then we signal any neighbors available
and pass energy to them. Similarly, if at any point we are be-
ing signalled by a buddy (BUDDY = 1 in Figure 6), we never
transition from the Batt Charging state. If at any point we
can gain energy from neither our own harvester (∆T < TT H )
nor a buddy harvester or our own battery reserves are below
VT H , we transition into the No Harvesting state. If we are
in the no harvesting state and the variance of the accelerom-
eter is adequately low (var < ST H ), indicating that there is
no longer water flow to sense, we transition back into LPM4
and the low power wakeup mode.

4 Evaluation
The following section discusses results from hardware

implementations of the proposed architecture as well as en-
ergy, accuracy, and lifetime statistics from the described de-
ployment.

4.1 Energy Harvesting Characterization
In order to better understand the relationship between dif-

ferences in temperature and energy harvested, we first char-
acterized both the Peltier device and the step-up converter
used. To characterize the Peltier device, a known temper-
ature differential was applied across its two ceramic plates
and the resulting open-circuit output voltage (VOC) was mea-
sured. As described by Ferrari et al. in [8], VOC is linearly
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dependent on ∆T , the difference in Seebeck coefficients of
the materials involved, and the thermal conductivity across
the ceramic plates. This linear relationship for a 3×3 cm
Peltier device, the CUI60333, is shown in Figure 7.

Similarly, if we apply a known input voltage to the step-up
converter such that Vin =VOC, we can determine the short cir-
cuit current output of the power management sector and thus
a complete mapping from ∆T to ISC. Figure 8 shows this
mapping, where temperature differences as little as ±1◦K
effect a modest ISC. From this, given a known load resis-
tance, we can calculate the expected output power based on
∆T . In the following section, we use this model and the ac-
tual energy collected to compute the efficiency of the thermal
couplers used.
4.2 Fine-Grained Test Data Collection

In order to verify the DD architecture, we designed a sep-
arate testing board for fine-grained data collection with iden-
tical harvesting and triggering circuitry but with a different
processor (for convenience) and with the possibility of run-
ning on both battery and USB power. This board, shown
in Figure 9, samples pipe temperature, coupler temperature,
heatsink temperature, accelerometer variance, output volt-
age, and system status (showing wakeup triggers, etc.) with
one second granularity. The output of the harvesting cir-
cuitry on the testing board feeds into a large (15 mF) ca-

Figure 9: Testing PCB for 24/7 fine-grained monitoring of
temperatures, accelerations, and energy harvested from both
hot and cold water pipes.

Figure 10: DoubleDip node—ultra low power energy har-
vesting node with low latency wakeup, pipe vibration sens-
ing, temperature sensors, and RF. The board size is roughly
3×3 in.

pacitor from which we can infer both the amount of energy
harvested and the amount that would have been lost due to
quiescent current draw of the boost regulator, had we not
switched it off. If the capacitor on this board goes above a
threshold voltage (2.5 V in these experiments), the capacitor
is drained and the system status indicates that there was a
discharge event. This keeps the capacitor from saturating to
prevent it from rejecting any available harvested energy. We
deployed this board on 6 distinct pipes feeding into 5 differ-
ent sinks in 4 buildings (3 residential and 1 at a university).
Of these pipes, 4 were hot water intake pipes to sinks, and
2 were cold water intakes. The statistics of this deployment
are summarized in Table 1. Data was collected over a total
of 103.5 node-days over which a total of 1,356 water flow
events and 12.6 hours of induced vibrations were recorded.

Figure 11 shows data from a test board deployed for an
example weekday during the month of March. The top
plot shows temperature curves for the water pipe as well as
the difference in temperature between the pipe and heatsink
while the second and third plots show output voltage and cu-
mulative energy harvested, respectively. Energy harvested
during this day totaled around 1000 mJ, while energy ex-
pended is equal to energy spent waiting in low power wakeup
mode plus the energy spent sensing and transmitting water
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Node Time
(hrs)

On Time
(hrs)

Events

Univ. 1 (Hot) 295.6 2.4 389
Univ. 1 (Cold) 289.2 1.9 215
Univ. 2 (Hot) 239.2 2.3 249
Res. 1 (Hot) 99.2 0.5 29
Res. 2 (Hot) 1127.1 2.7 291
Res. 3 (Cold) 435 2.8 183

Table 1: Total deployment statistics for 6 nodes across 4
buildings, showing the total amount of time each node was
installed (Node Time) and active during an event (On Time)
as well as the total number of events sensed.

event data. This number will be explained in detail in the
following sections.

4.3 Wakeup Power, Latency, and Accuracy
The low power wakeup mode draws quiescent current

from two comparators operating at a nominal 300 nA and the
MSP430F2410 operating at a nominal 100 nA, making the
nominal current 700 nA. As Figure 12 shows, this current is
closer to around 800 nA, with an average of 820 nA. Figure
12 also shows that if the pins are configured to communicate
with the radio, the average current goes up to around 900
nA, and if we were to use the MSP430’s LPM3 (with low
power oscillator), the average current would be closer to 1.2
µA. The comparators used (the LTC1540) have a high offset
voltage, meaning that for best performance a comparator’s
reference voltage (also generated by the LTC1540) should
be tuned to just above the triggering threshold. Even with
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Figure 12: Current consumption for low power wakeup cir-
cuitry and deep sleep MSP430 (LPM4). Current is shown
with and without SPI pins configured for RF and compared
to a sleep mode with low power clock (LPM3).

all comparators tuned, DD nodes in different physical loca-
tions and buildings are likely to see a range of wakeup times,
due in large part to the pipe’s distance from the main water
heater, the ambient temperature of the building, the fitting of
the coupler, and even the frequency with which water flows
through that pipe—these factors and others contribute to the
rate of heat transfer from pipe to TEG. Figure 13 explains
the procedure for estimating the wakeup latency from the vi-
bration data and the triggers from the wakeup cycle. Figure
14 shows a CDF of the wakeup latencies across all nodes,
and Table 2 shows the number of false positives and the av-
erage amount of water flow time missed per day. There oc-
cur many more false negatives than false positives (none of
which we observed), but by relating the false negatives to the
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Figure 14: Cumulative distribution function (CDF) for
wakeup latencies across all nodes.

corresponding length of the water event missed, we see that
the actual percentage of water flow left unobserved is fairly
small (< 2%) in a university setting and moderate in residen-
tial settings. Where the pipes are farther from the main boiler
or the water pressure is lower (such as residential housing)
the latency observed and % water flow time unobserved is
considerably higher. However, this can be ameliorated to
some extent through careful tuning. For example, the ex-
cellent latency for all University deployments is in part due
to better tuning given their ease of access. Residential de-
ployments, on the other hand, received no further tuning af-
ter the initial deployment. Figure 15 shows how drastically
wakeup latency can be improved by fine-tuning the compara-
tor threshold. Furthermore, this tuning can be completely
automated. We have created a prototype autotuning system
using a digital potentiometer, yielding much finer resolution
tuning and thus lower latency wakeup. This comes at only a
marginal cost in energy—about 50 nA additional—and will
thus be incorporated into future versions.

%Extra
Events

%Missed
Events

%Missed
Time

Univ. 1 (Hot) 0.00 3.62 1.54
Univ. 1 (Cold) 0.00 2.40 0.73
Univ. 2 (Hot) 0.00 1.61 1.79
Res. 1 (Hot) 0.00 13.79 20.31
Res. 2 (Hot) 0.00 34.60 19.32
Res. 3 (Cold) 0.00 15.38 17.59

Table 2: Wakeup latencies and accuracies per day, per node.
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Figure 15: CDF of wakeup latency for a single node before
and after tuning the wakeup threshold.

4.4 Subsystem Power Characterization
Since the quiescent current of DD is relatively minuscule

and the voltage versus capacity curve of the battery is fairly
flat, we see little or no change in battery voltage as energy is
consumed or returned to the battery. To get a good estimate
of the energy harvested, therefore, the test board shown in
Figure 9 is used. In order to determine the overall system
lifetime and the effect that harvesting has on the lifetime,
however, we must perform a careful analysis of the DD node
itself, shown in Figure 10. Specifically, we characterized the
operation of the Nordic nRF24L01+ 2.4 GHz radio while
operating from a capacitor for transient loads and the power
consumption of the MSP430F2410 when transitioning from
sleep to active mode and sampling an accelerometer at 100
Hz. By doing so, we can calculate the amount of energy
spent per day by knowing the amount of time spent sam-
pling events and transmitting RF. The total amount of energy
consumed per day is then given by:

Eday = Iidle ∗ tidle + Iadxl ∗ ton + IRF−boot ∗N + IT X (ton −N)
(2)

Where N is the number of events detected in that day,
ton is the total amount of system on-time during that day,
IRF−boot is the average cold boot wakeup current of the
nRF24L01+ radio after power-gating the radio, and IT X
refers to the average transmission cost of the radio when one
packet is sent every second.

Figure 16 shows the instantaneous and average currents
consumed by both the accelerometer and the MSP430 while
sampling the accelerometer for 32 samples. If we naively
sample the accelerometer, an ADXL335, by power-gating
only at the very beginning and end of the sampling ses-
sion, the system consumes 296 µA on average. If however
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Figure 16: Current consumption of an ADXL335 3-axis
analog accelerometer, sampling 32 bytes every second at 100
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clarity. Power-gating reduces average current consumption
from 296 µA to 120 µA.

Figure 17: Current consumption of a Nordic nRF24L01+ ra-
dio operating from a capacitor. The radio sends one 32 Byte
packet every second and then is turned off (power-gated).
The right-most plot shows a zoomed in version of what oc-
curs to the voltage across the transient capacitor during a sin-
gle transmission.

we power-gate the accelerometer in between samples (some-
thing that is only possible if the decoupling capacitance is
kept below 0.1 µF), we obtain an average power of 120 µA.

Figure 17 shows the operation of the radio from a tran-
sient load capacitor. A modest reduction in capacitor volt-
age occurs during each transmission, and the capacitor must
be recharged in a periodic fashion to send multiple pack-
ets or retransmissions. The current consumed by the radio
as measured by an ammeter and verified from Figure 17
is 4.96 µA with σ = 0.99µA for power-gating and 3.43 µA
with σ = 0.37µA for power-down (RAM retention) for one
32 Byte packet per second. By moving away from LPL ra-
dio reception and heavily duty cycling stackless radios, we
can greatly reduce the consumption of what was once and in
some systems remains the power bottleneck [4, 13].
4.5 Net Energy Profile

Combining these numbers as per Equation 2 and compar-
ing with the total amount of energy harvested per day given
the test boards yields the net harvested per day, per node.

Figure 18 shows these numbers plotted per day-of-the-week
(left) and the net energy per day taken by subtracting en-
ergy consumed from energy harvested (right) along with the
average net energy per day. As expected, the most energy
gained per day is realized by the two hot water intake pipes
in the university restroom. Additionally, these two numbers
are heavily influenced by both the day of the week (weekend
vs. weekday) and the season – the weekdays leading up to
the second week are during a university break. Residential 1
(a single residence), for which only 6 days of data were col-
lected, is also marginally in positive numbers, despite a low
number of total events. This is due to the energy proportion-
ality of DD, scaling down to just 820 nA when no activities
are present. University 1 Cold and Residential 2 and 3, how-
ever, are in negative numbers, indicating that their lifetime
is limited by more than just the shelf life and cycle count
of the battery chosen. The DD system lifetime can then be
estimated by:

tli f e =

�
tbat−shel f−li f e if Eavg ≥ 0
A·h(bat)×Vcc×3600

|Eavg|×365.25 if Eavg < 0 (3)

where the capacity of the rechargeable lithium battery
used is 45mAh, and Vcc = 3V during normal operation. The
energy burned per day for a node where no events occur
and no energy is harvested is 228mJ and the total lifetime
is 6.4 years. On the other hand, the worst case Eavg per
day from Figure 18 is -128 mJ / day, belonging to Resi-
dential 3 cold. This has a total lifetime of 45mAh × 3 ×
3600/128mJ×365.25 = 10.4 years, almost 10 years shy of
the shelf life of the ML2020 battery used. This energy can be
made up for if we request energy from a nearby node in order
to meet the full shelf life specification of the battery, though
in some cases nodes with energy deficits may be isolated.

Finally, it is also particularly interesting to note unex-
pected trends (or even lack thereof) in terms of power har-
vested by week-day. There are many confounding variables
responsible for some of the change in energy harvested dur-
ing the first week (vacation) and over the weekends, not the
least of which is the status of HVAC in the building. For ex-
ample, if air conditioning is turned off to save power, the am-
bient temperature of the cold water close to the valve might
rise while the water in walled-in pipes remains cool, causing
an increased ∆T when water begins to flow.
4.6 Efficiency

There are many conversions from the path of temperature
to usable energy, and it is worth noting the various ineffi-
ciencies at each junction and the effect each has on the sys-
tem as a whole. Perhaps the most important of these is the
pipe→coupler+heatsink junction. The inefficiencies here are
very observable; an ideal heatsink would remain at ambient
temperature while an ideal coupler would track the pipe tem-
perature with zero error. Instead, the heatsink converges to
within some ∆T of the coupler given time and the coupler
resembles a low-pass filtered version of the pipe tempera-
ture. Figure 19 shows an example of the temperature curves
observed during two bursts of hot water on University 1 Hot.

By combining the temperature measurements with
the model derived in Figure 8, we can calculate the
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Figure 18: Energy harvested and consumed per day for 2 example weeks. By subtracting energy consumed from energy
harvested (left) we get the net energy per day (right). Mean daily energy and lifetime estimates are calculated using the entire
data set for each node (not shown). University 1 (Hot), University 2 (Hot), and Residential 1(Hot) show a net positive in energy
gained, indicating that the node lifetime is limited only by the battery shelf life. The others (while suffering a net loss in energy)
are still considerably better than they would have been had the same circuitry been used without harvesting.

Location Coupler Efficiency (%)
University 1 (Hot) 65.82
University 1 (Cold) 19.55
University 2 (Hot) 41.59
Residential 1 (Hot) 27.09
Residential 2 (Hot) 17.96
Residential 3 (Cold) 21.65

Table 3: Coupler efficiencies

pipe→coupler efficiency as the ratio between power deliv-
ered to the TEG and ideal power given the pipe and ambient
temperatures. These values are given in Table 3, ranging
from 65% all the way down to 18%. The variation can be
explained in part by the installations—each installation re-
quires fastening the coupler to the pipe, and some installa-
tions were more successful than others due to manufacture
variations in the right angle valves and couplers as well as
variations in how tightly each coupler was fastened to the

right angle valve. Improving this efficiency can be accom-
plished by increasing the surface area in contact with the
coupler, decreasing the mass and radiant surface area of the
coupler, and improving the fastening process. The calcu-
lation of the efficiency of converting the thermal energy to
electrical energy, on the other hand, is quite complex and
contains many opposing forces. In order to capture more heat
from the pipe, more surface area must be in contact with the
coupler as stated above. Yet in increasing the surface area
in contact one necessarily increases the mass of the coupler
itself, increasing the rise time of the coupler and decreasing
the responsiveness of the wakeup triggers. Measures can be
taken to decrease the thermal mass of the coupler while re-
taining a larger surface area in contact with the pipe, but in
doing so care should be taken to not increase the radiant sur-
face area of the coupler, thereby creating a virtual heatsink
on the side on you wish to retain heat. Figure 20 shows how
the current thermal coupler responds to changes in contact
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Figure 20: Temperature change rate for varying contact ar-
eas.

area. Decreasing contact area clearly decreases the rate at
which heat is transferred to the TEG, which will decrease
energy harvested and increase wakeup latency.

The conversion of the small electrical signal (VOC) pro-
duced by the Peltier (and indeed the Peltier junction itself)
to a usable voltage is another significant source of ineffi-
ciency. The specified efficiency of the step-up converter
used (and as validated by tests described earlier) is at most
25% and perhaps better estimated at around 15% given the
range of input voltages seen. This efficiency increases dra-
matically if we can afford to increase the operational start-
up voltage. That is, if we can increase VOC by means de-
scribed above, we can not only harvest more but lose less
in the boost conversion process. Finally, there is a loss in
the diode used to drop the output voltage of the step-up con-
verter from 3.3 V to 3.1 V—the nominal charging voltage of
the lithium battery—and in the charging / discharging routine
of the battery itself. The efficiency of the diode can be cal-
culated as 100%× 3.1V

3.3V ≈ 94%, and despite lengthy tests of
charge & discharge cycles at varying currents, no apprecia-
ble inefficiency in the battery could be detected. Given these
inefficiencies, the potential to harvest from energy embed-

ded in water pipes is clearly much greater than we are able
to achieve with our current prototype, and improvements in
technologies and methods mentioned throughout this paper
will likely allow for a host of similar applications.

5 Future Work
Despite the success of DD in meeting the shelf life limits

of the battery used for those nodes with a net positive energy
per day and those in close proximity and able to share sur-
plus energy reserves, there remain interesting challenges to
both increasing the efficiency and quality of DD and apply-
ing these lessons elsewhere. Potential future work currently
under consideration includes:

1. A finite element analysis of heat transfer and dissipation
via the thermal coupler.

2. A more advanced two-way communication protocol
between proximal harvesting nodes, allowing nearby
nodes access to battery state of all neighboring nodes
and ways to more elegantly meet lifetime specs.

3. A continued deployment across more residencies to bet-
ter understand the variations of wakeup latencies, tem-
peratures, and power numbers from location to location.

4. Developing a hybrid capacitor system to amortize the
effect of battery shelf-life on overall system lifetime.

6 Conclusion
We have demonstrated an architecture—DoubleDip—

capable of sensing pipe vibrations and enabling non-
intrusive water flow detection for, in some cases, the entire
lifetime of the lithium battery used (20+ years). We accom-
plished this by leveraging the energy embedded in the dif-
ferential temperature between the pipe (hot or cold) and the
ambient room temperature for both compensating energy ex-
penditures and triggering the system to awaken from a deep
sleep mode. DD espouses an extremely low power archi-
tecture, wherein the sacrifice of mesh networking, time syn-
chronization, and other luxuries is a necessity given the ane-
mia and irregularity of the energy (water) events.

Our pilot deployment of 6 nodes across 5 sinks and 4
buildings showed that our low power wakeup trigger had a
reasonable latency (around 4 seconds after calibration) and
a high accuracy of detection, with virtually no false posi-
tives and a small fraction of water flow time missed with
respect to the total time of water flow per day. We observed
that some pipes experience much greater changes in temper-
ature and thus were able to harvest much more than others,
even given physical proximity. To mitigate this, we devel-
oped a method by which a node with excess energy reserves
can wake up a nearby node and transfer a fraction of its har-
vested energy. Net energy gain from day to day varied from
an average of +316 mJ/day on a university hot water pipe
feeding a sink faucet to -128 mJ/day on one residential cold
water pipe, meaning the lifetime of some nodes was limited
only by the battery shelf life, and even those nodes with net
losses in energy saw an improvement through harvesting and
the low power DD architecture.

Finally, all hardware schematics have been re-
leased as open source material and can be found at
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http://nesl.ee.ucla.edu/fw/dd.
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